The Kechris-Pestov-Todorčević correspondence in an abstract setting

Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

> SETTOP Novi Sad, 22 Jun 2016

Starting point

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

- Fraïssé Theory
- Structural Ramsey Theory
- Topological Dynamics of Aut gp's

Starting point

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Thesis. Category theory is an appropriate context for implementing the Kechris-Pestov-Todorčević correspondence.

Outline

Homogeneity	•	Ramsey prop	٠	Extreme amenability	
		\downarrow			
↓ abstract interpretation					
		\downarrow			
Homogeneity	•	Ramsey prop	٠	Extreme amenability	
in a category		in a category	W	v.r.t. particular topology	

Outline

Homogeneity •	Ramsey prop	• Extreme amenability				
	\downarrow					
\downarrow abstract interpretation						
	\downarrow					
Homogeneity •	Ramsey prop	Extreme amenability				
in a category	in a category	w.r.t. particular topology				
	\downarrow					
<i>↓ specialization</i>						
	\downarrow					
Homogeneity •	Ramsey prop	Extreme amenability				
for ultrahomog structs that are not Fraïssé limits						
(e.g. uncountable ulrahomog structs)						

Outline

Homogeneity	٠	Ramsey prop	•	Extreme amenability		
		\downarrow				
	\downarrow abstract interpretation					
		\downarrow				
Homogeneity	•	Ramsey prop	٠	Extreme amenability		
in a category		in a category	v	v.r.t. particular topology		
		\downarrow				
↓ categorical duality						
		\downarrow				
Projective	•	Dual	٠	Extreme amenability		
Homogeneity		Ramsey prop				

T. IRWIN, S. SOLECKI: *Projective Fraïssé limits and the pseudo-arc.* Trans. Amer. Math. Soc. 358, no. 7 (2006) 3077–3096.

Ramsey property in a category

For $k \ge 2$ and $A, B, C \in Ob(\mathbb{C})$ write $C \longrightarrow (B)_k^A$ if:

- ▶ hom(A, B) $\neq \emptyset$ and hom(B, C) $\neq \emptyset$, and
- ► for every **Set**-mapping χ : hom(A, C) $\rightarrow k$ there is a \mathbb{C} -morphism $w : B \rightarrow C$ such that $|\chi(w \cdot hom(A, B))| = 1$.

A category ${\mathbb C}$ has the Ramsey property if:

for all $k \ge 2$ and all $A, B \in Ob(\mathbb{C})$ such that $hom(A, B) \ne \emptyset$ there is a $C \in Ob(\mathbb{C})$ such that $C \longrightarrow (B)_k^A$.

Ramsey property in a category

A category $\mathbb C$ has the dual Ramsey property if $\mathbb C^{op}$ has the Ramsey property.

Recall. The oposite category \mathbb{C}^{op} :

- 1 objects of \mathbb{C}^{op} are the objects of \mathbb{C} ;
- 2 hom_{\mathbb{C}^{op}} $(A, B) = hom_{\mathbb{C}}(B, A);$

3
$$f \cdot g = g \cdot f$$

in \mathbb{C}^{op} in \mathbb{C}

$$(A \xleftarrow{g} B) \cdot (B \xleftarrow{f} C) = A \xleftarrow{f \cdot g} C$$

Ramsey property and extremely amenable groups

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. *TFAE* for a countable locally finite ultrahomogeneous first-order structure F:

- 1 Aut(*F*) is extremely amenable
- 2 Age(*F*) has the Ramsey property and consists of rigid elements.
- ► A group *G* is *extremely amenable* if every continuous action of *G* on a compact Hausdorff space *X* has a common fixed point.

KPT theory in a category – the setup

Let $\mathbb C$ be a category and $\mathbb C_0$ a full subcategory of $\mathbb C$ such that:

- (C1) all morphisms in \mathbb{C} are monic (= left cancellable);
- $(C2) \quad Ob(\mathbb{C}_0) \text{ is a set;} \\$
- (C3) for all $A, B \in Ob(\mathbb{C}_0)$ the set hom(A, B) is finite;
- (C4) for every $F \in Ob(\mathbb{C})$ there is an $A \in Ob(\mathbb{C}_0)$ such that $A \to F$;
- (C5) for every $B \in Ob(\mathbb{C}_0)$ the set $\{A \in Ob(\mathbb{C}_0) : A \to B\}$ is finite.

 \mathbb{C}_0 are (templates of) finite objects in \mathbb{C} .

$$\operatorname{Age}(F) = \{A \in \operatorname{Ob}(\mathbb{C}_0) : A \to F\}.$$

KPT theory in a category - the setup

Example. $\text{Rel}(\Delta)$

- ► objects are all relational structures of type ∆,
- hom(A, B) = embeddings $A \rightarrow B$,
- ► **Rel**(Δ)₀ objects are finite relational structures $R = (\{1, ..., n\}, \Delta^R), n \ge 1.$

KPT theory in a category - the setup

Example. Haus

- ► objects are Hausdorff spaces,
- hom(A, B) = continuous surjective maps $A \rightarrow B$,
- ► **Haus**₀ objects are finite discrete spaces $\{1, ..., n\}, n \ge 1$.

An age of a structure in an op-category will be referred to as the projective age and denoted by $\partial Age(A)$.

Example. $\mathcal{K} = \text{Cantor set } 2^{\omega}.$ $\partial \text{Age}(\mathcal{K}) = \text{all finite discrete spaces in Haus}^{\text{op}}.$

KPT theory in a category - the setup

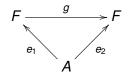
Example. OHaus

- ► objects are all lin ordered Hausdorff spaces,
- hom(A, B) = continuous monotonous surjective maps A → B,
- **OHaus**₀ objects are finite chains $(\{1, \ldots, n\}, \leq), n \ge 1$.

Example. $\mathcal{K}_{\leq} = \mathcal{K}$ with the lexicographic order. $\partial \text{Age}(\mathcal{K}_{\leq}) = \text{all finite chains in OHaus}^{\text{op}}$.

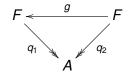
Homogeneous objects

 $F \in Ob(\mathbb{C})$ is homogeneous if for every $A \in Age(F)$ and every pair of morphisms $e_1, e_2 : A \to F$ there is a $g \in Aut(F)$ such that $g \cdot e_1 = e_2$.



Example. Ultrahomogeneous structures in "direct" categories.

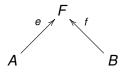
Following Irwin and Solecki, homogeneous structures in an op-category will be referred to as projectively homogeneous.



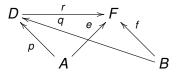
Example. Both \mathcal{K} and \mathcal{K}_{\leq} are projectively homogeneous (each in its category).

$F \in \mathsf{Ob}(\mathbb{C})$ is locally finite if

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.

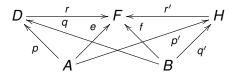


- $F \in \mathsf{Ob}(\mathbb{C})$ is locally finite if
 - 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
 - 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.



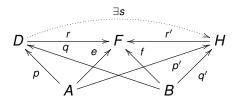
$F \in \mathsf{Ob}(\mathbb{C})$ is locally finite if

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.



$F \in \mathsf{Ob}(\mathbb{C})$ is locally finite if

- 1 for every $A, B \in \text{Age}(F)$ and every $e : A \to F, f : B \to F$ there are a $D \in \text{Age}(F), r : D \to F, p : A \to D$ and $q : B \to D$ such that $r \cdot p = e$ and $r \cdot q = f$, and
- 2 for every $H \in Ob(\mathbb{C})$, $r' : H \to F$, $p' : A \to H$ and $q' : B \to H$ such that $r' \cdot p' = e$ and $r' \cdot q' = f$ there is an $s : D \to H$ such that the diagram below commutes.



Example. Every object in $\text{Rel}(\Delta)$ is locally finite.

Locally finite structures in an op-category will be referred to as projectively locally finite.

Example. Both \mathcal{K} and \mathcal{K}_{\leqslant} are projectively locally finite (each in its category).

Finitely separated automorphisms

The automorphisms of $F \in Ob(\mathbb{C})$ are finitely separated if the following holds for all $f, g \in Aut(F)$:

if $f \neq g$ then there is an $A \in Age(F)$ and an $e : A \rightarrow F$ such that $f \cdot e \neq g \cdot e$.

Example. Automorphisms of every relational structure are finitely separated.

Example. The automorphisms of both \mathcal{K} and \mathcal{K}_{\leqslant} are finitely separated (each in its category).

The topology generated by the age of an object

 $F\in\mathsf{Ob}(\mathbb{C})$

For $A \in Age(F)$ and $e_1, e_2 \in hom(A, F)$ let

$$N_F(e_1, e_2) = \{f \in \operatorname{Aut}(F) : f \cdot e_1 = e_2\}.$$

Lemma. Let F be a locally finite object in \mathbb{C} . Then

$$\mathcal{M}_{F} = \{ N_{F}(e_{1}, e_{2}) : A \in \operatorname{Age}(F); e_{1}, e_{2} \in \operatorname{hom}(A, F) \}$$

is a base of a topology α_F on Aut(*F*). If, in addition, the automorphisms of *F* are fintely separated, Aut(*F*) endowed with the topology α_F is a Hausdorff topological group.

The topology generated by the age of an object

Example. In **Rel**(Δ): α_A is the pointwise convergence topology for every Δ -structure *A*.

Example. In **Haus**^{op}: $\alpha_{\mathcal{K}}$ = compact-open topology on \mathcal{K} .

Example. In **OHaus**^{op}: $\alpha_{\mathcal{K}_{\leq}}$ = "compact interval-open interval" topology on \mathcal{K}_{\leq} .

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Corollary 1. Let F be an ultrahomogeneous relational structure. Then Aut(F) with with the pointwise convergence topology is extremely amenable if and only if Age(F) has the Ramsey property.

D. BARTOŠOVÁ: *Universal minimal flows of groups of automorphisms of uncountable structures.* Canadian Mathematical Bulletin, 2012.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Example. The automorphism group of every ultrahomogeneous chain, endowed with the pointwise convergence topology, is extremely amenable.

For (\mathbb{Q}, \leq) : V. G. PESTOV: *On free actions, minimal flows and a problem by Ellis.* Transactions of the American Mathematical Society, 350 (1998) 4149–4165.

In general for chains: D. BARTOŠOVÁ: Universal minimal flows of groups of automorphisms of uncountable structures. Canadian Mathematical Bulletin, 2012.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Corollary 2. Let *F* be a projectively locally finite projectively homogeneous structure. Then Aut(F) endowed with the topology α_F is extremely amenable if and only if $\partial Age(F)$ has the dual Ramsey property.

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Corollary 3. Let *F* be a projectively homogeneous 0-dimensional Hausdorff space. Then Homeo(F) endowed with the compact-open topology is extremely amenable if and only if $\partial Age(F)$ has the dual Ramsey property.

(Cf. D. BARTOŠOVÁ: *Universal minimal flows of groups of automorphisms of uncountable structures.* Canadian Mathematical Bulletin, 2012.)

Theorem. Let F be a homogeneous locally finite object in \mathbb{C} whose automorphisms are finitely separated. TFAE:

- 1 Aut(F) endowed with α_F is extr amenable,
- 2 Age(F) has the Ramsey property.

Example. In Haus^{op}: Homeo(\mathcal{K}) endowed with the compact-open topology is not extremely amenable.

Example. In **OHaus**^{op}: Let *G* be the homeomorphism group of \mathcal{K}_{\leq} endowed with $\alpha_{\mathcal{K}_{\leq}} =$ "compact interval – open interval" topology. Then *G* is extremely amenable.

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé order expansion of \mathcal{F} and X^* the set of admissible linear orders on F. TFAE:

- 1 X^* is a minimal Aut(\mathcal{F})-flow
- 2 Age(\mathcal{F}^*) has the ordering property w.r.t. Age(\mathcal{F}).

L. NGUYEN VAN THÉ: *More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions.* Fund. Math. 222 (2013), 19–47.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé precompact expansion of \mathcal{F} and X^* the set of admissible expansions on F. TFAE:

- 1 X^* is a minimal Aut(\mathcal{F})-flow
- 2 Age(\mathcal{F}^*) has the expansion property w.r.t. Age(\mathcal{F}).

 $\Theta = (\theta_i)_{i < n}$ – a **finite** relational language

$$\Omega_{\mathcal{F}} = \bigcup \{ \mathsf{hom}(\mathcal{A}, \mathcal{F}) : \mathcal{A} \in \mathsf{Ob}(\mathbb{C}_0) \}$$

For $F \in Ob(\mathbb{C})$, a Θ -expansion of F is a tuple $(F, (\rho_i)_{i < n})$ where ρ_i is a finitary relation on Ω_F .

Lemma. Ω_A is finite for $A \in Ob(\mathbb{C}_0)$.

So, Θ -finite \implies these expansions are always precompact.

 $\mathbb{C}(\Theta)$ – a category of Θ expansions of objects from \mathbb{C} :

- objects are Θ -expansions of objects from \mathbb{C} ;
- $f: (F, (\rho_i)_{i < n}) \to (H, (\sigma_i)_{i < n})$ is a $\mathbb{C}(\Theta)$ -morphism if
 - ▶ $f \in \hom_{\mathbb{C}}(F, H)$, and
 - ► $(e_0, ..., e_{m-1}) \in \rho_i \Rightarrow (f \cdot e_0, ..., f \cdot e_{m-1}) \in \sigma_i$, for all i < n.

Age(F, $(\theta_i)_{i < n}$) has the expansion property w.r.t. Age(F) if for every $A \in \text{Age}(F)$ there is a $B \in \text{Age}(F)$ such that for all $(A, (\rho_i)_{i < n}), (B, (\sigma_i)_{i < n}) \in \text{Age}(F, (\theta_i)_{i < n})$ we have a morphism $(A, (\rho_i)_{i < n}) \rightarrow (B, (\sigma_i)_{i < n})$ in $\mathbb{C}(\Theta)$.

$$F \in \mathsf{Ob}(\mathbb{C}), \ G = \mathsf{Aut}(F)$$

 $E_F = \{ \text{all the tuples } (\rho_i)_{i < n} \text{ where } \rho_i \subseteq \Omega_F^{m_i} \}$

G acts on E_F logically, that is

$$(
ho_i)_{i < n}^g = (
ho_i^g)_{i < n}$$
 and
 $(e_0, \dots, e_{m-1}) \in
ho_i^g \Rightarrow (g^{-1} \cdot e_0, \dots, g^{-1} \cdot e_{m-1}) \in
ho_i$

Theorem. Let *F* be a locally finite homogeneous object in \mathbb{C} and let $G = \operatorname{Aut}(F)$. Let $(F, (\rho_i)_{i < n})$ be a Θ -expansion of *F* which is locally finite in $\mathbb{C}(\Theta)$. Let $X^{\Theta} = \overline{(\rho_i)_{i < n}^G}$ be a *G*-flow where the action of *G* is logical. TFAE:

- 1 X^{Θ} is a minimal G-flow.
- 2 Age(F, (ρ_i)_{*i*<*n*}) has the expansion property w.r.t. Age(F).

Example. Let *S* be an infinite set, let G = Sym(S) and let (S, \leq) be an ultrahomogeneous chain. Then

$$X^{\Theta} = \overline{\leqslant^G} =$$
all lin orders on S

is a minimal *G*-flow.

Theorem. Let *F* be a locally finite homogeneous object in \mathbb{C} and let $G = \operatorname{Aut}(F)$. Let $(F, (\rho_i)_{i < n})$ be a Θ -expansion of *F* which is locally finite in $\mathbb{C}(\Theta)$. Let $X^{\Theta} = \overline{(\rho_i)_{i < n}^G}$ be a *G*-flow where the action of *G* is logical. TFAE:

1 X^{Θ} is a minimal G-flow.

2 Age(F, (ρ_i)_{*i*<*n*}) has the expansion property w.r.t. Age(F).

Corollary. Let *F* be a projectively locally finite projectively homogeneous object and let $G = \operatorname{Aut}(F)$. Let $(F, (\rho_i)_{i < n})$ be a Θ -expansion of *F* which is projectively locally finite. Let $X^{\Theta} = \overline{(\rho_i)_{i < n}^G}$ be a *G*-flow where the action of *G* is logical. *TFAE*:

- 1 X^{Θ} is a minimal G-flow.
- 2 $\partial \text{Age}(F, (\rho_i)_{i < n})$ has the exp prop w.r.t. $\partial \text{Age}(F)$.

Universal minimal flows

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: *Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups.* GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let \mathcal{F} be a locally finite Fraïssé structure, \mathcal{F}^* a Fraïssé order expansion of \mathcal{F} and X^* the set of admissible linear orders on F. TFAE:

- 1 X^* is the universal minimal Aut(\mathcal{F})-flow
- 2 Age(F*) has the Ramsey property and the ordering property w.r.t. Age(F).

Universal minimal flows

Theorem. Let *F* be a locally finite homogeneous object in \mathbb{C} and let $G = \operatorname{Aut}(F)$. Let $(F, (\rho_i)_{i < n})$ be a Θ -expansion of *F* which is locally finite and homogeneous in $\mathbb{C}(\Theta)$. Let $X^{\Theta} = \overline{(\rho_i)_{i < n}^G}$ be a *G*-flow where the action of *G* is logical.

If X^{Θ} is the universal minimal G-flow then Age $(F, (\rho_i)_{i < n})$ has the Ramsey property and the expansion property w.r.t. Age(F).