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Fruška Gora

21 June 2016

joint work with Yair Hayut



Reflection/compactness principles

The study of reflection and compactness principles has been a

central theme in modern set theory.

In the context of this talk, very roughly speaking, a reflection

principle at a cardinal λ takes the following form:

If (something) holds for λ, then it holds for some

(many) α < λ.

Compactness is the dual notion:

If (something) holds for all (most) α < λ, then it holds

for λ.

Canonical inner models, such as L, typically exhibit large degrees

of incompactness, while the existence of large cardinals tends to

imply compactness and reflection principles.
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Stationary reflection

Definition

Let β be an ordinal of uncountable cofinality.

1 S ⊆ β is stationary (in β) if S ∩ C 6= ∅ for all closed,

unbounded C ⊆ β.

2 Suppose S ⊆ β is stationary and α < β has uncountable

cofinality. S reflects at α if S ∩ α is stationary in α.

3 Suppose T is a collection of stationary subsets of β and

α < β has uncountable cofinality. T reflects simultaneously

at α if S reflects at α for all S ∈ T .

Definition

Suppose κ ≤ λ are cardinals, with λ regular, and S ⊆ λ is

stationary. Refl(< κ,S) is the statement that, whenever T is a

collection of stationary subsets of S and |T | < κ, then T reflects

simultaneously at some α < λ. Refl(< κ+,S) ≡ Refl(κ,S).
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Square principles

Definition (Jensen, Schimmerling)

Suppose κ, µ are cardinals, with µ infinite. �µ,<κ is the assertion

that there is a sequence ~C = 〈Cα | α < µ+〉 such that:

1 for all α < µ+, Cα is a collection of clubs in α and

0 < |Cα| < κ;

2 for all α < β < µ+ and C ∈ Cβ, if α ∈ lim(C ), then

C ∩ α ∈ Cα.

3 for all α < µ+ and C ∈ Cα, otp(C ) ≤ µ;

�µ,<κ+ ≡ �µ,κ. �µ,1 ≡ �µ. �µ,µ ≡ �∗µ.

Note that, if ~C is a �µ,<κ-sequence, then there cannot be a

thread through ~C , i.e. a club D ⊆ µ+ such that, for all

α ∈ lim(D), D ∩ α ∈ Cα.
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Square and stationary reflection

Theorem (Folklore)

Suppose �µ holds. Then Refl(1,S) fails for every stationary

S ⊆ µ+.

Theorem (Folklore?)

Suppose �ω1,ω holds. Then Refl(1,S) fails for every stationary

S ⊆ ω2.

Theorem (Schimmerling, Foreman-Magidor)

Suppose �ℵω,<ω holds. Then Refl(1,S) fails for every stationary

S ⊆ ℵω+1.
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hold.

Theorem (CFM)
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Theorem (CFM)

Assuming the consistency of infinitely many supercompact

cardinals, it is consistent that �∗ℵω holds and Refl(< ℵω,S
ℵω+1
<ℵn )

holds for all n < ω.

(Sλκ = {α < λ | cf(α) = κ}.)
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More square principles

Principles of the form �µ,<κ can be weakened by replacing the

order-type restrictions with the requirement that the sequence

have no thread.

Definition (Todorcevic)

Suppose κ < λ are cardinals, with λ > ω1 regular. �(λ,< κ) is

the assertion that there is a sequence ~C = 〈Cα | α < λ〉 such that:

1 for all α < λ, Cα is a collection of clubs in α and

0 < |Cα| < κ;

2 for all α < β < λ and C ∈ Cβ, if α ∈ lim(C ), then

C ∩ α ∈ Cα.

3 there is no club D ⊆ λ such that, for all α ∈ lim(D),
D ∩ α ∈ Cα.

�(λ,< κ+) ≡ �(λ, κ). �(λ, 1) ≡ �(λ).
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Inconsistency results

Theorem (Folklore)

Suppose �(λ) holds. Then Refl(2,S) fails for every stationary

S ⊆ λ.

Theorem (Hayut-LH)

Suppose �(λ,< ω) holds. Then Refl(2,S) fails for every

stationary S ⊆ λ.
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Theorem (Hayut-LH)
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S ⊆ Sλ≥κ.
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and S ⊆ Sλ≥κ is stationary such that Refl(< κ,S) holds. For all

β ∈ S , let Dβ =
⋂
C∈Cβ lim(C ). Dβ is club in β.

For all α < λ, let Sα = {β ∈ S | α ∈ Dβ}, and let

A = {α < λ | Sα is stationary}. A is unbounded in λ.
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Claim: Suppose γ ∈ A and X ∈ [A ∩ γ]<κ. Then there is C ∈ Cγ
such that X ⊆ C .

Proof of claim: Find δ < λ such that S = {Sα | α ∈ X ∪ {γ}}
reflects simultaneously at δ, and fix E ∈ Cδ. For every

α ∈ X ∪ {γ}, there is βα ∈ lim(E ) ∩ Sα. Then, since α ∈ Dβα

and βα ∈ lim(E ), we have α ∈ lim(E ). In particular, E ∩ γ ∈ Cγ
and X ⊆ E ∩ γ.

Claim: Suppose γ ∈ A. Then there is C ∈ Cγ such that

A ∩ γ ⊆ C .

Proof of claim: Suppose not. For each C ∈ Cγ , find

αC ∈ (A ∩ γ) \ C . Let X = {αC | C ∈ Cγ}. Now X ∈ [A ∩ γ]<κ,

but there is no C ∈ Cγ such that X ⊆ C .

But now
⋃
γ∈λ∩lim(A){C ∈ Cγ | A ∩ γ ⊆ C}, ordered by the initial

segment relation, is a tree of height λ, with levels of size < κ. It

therefore has a cofinal branch, which corresponds to a thread

through ~C.
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Full square sequences

Conjecture

Suppose κ < λ are uncountable cardinals, with λ regular, and

�(λ,< κ) holds. Then Refl(< κ,S) fails for every stationary

S ⊆ λ.

Definition

Suppose ~C is a �(λ,< κ)-sequence. Let AC be the set of α < λ

such that there is a club Dα ⊆ λ such that, for all β ∈ Dα,

α ∈
⋃
C∈Cβ lim(C ). ~C is a full �(λ,< κ)-sequence if AC is

unbounded in λ.
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Full square sequences and reflection

Theorem (Hayut-LH)

Suppose κ < λ are uncountable cardinals, with λ regular, and

there is a full �(λ,< κ)-sequence. Then Refl(< κ,S) fails for

every stationary S ⊆ λ.

Theorem (Hayut-LH)

Suppose κ < λ are uncountable cardinals, with λ regular, and

there is a non-full �(λ,< κ)-sequence. Then Refl(2, λ) fails.
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Consistency results

Theorem (Hayut-LH)

Assume the consistency of infinitely many supercompact

cardinals. Then each of the following is consistent.

1 �(ℵω+1) + Refl(1,ℵω+1).
2 �(ℵω+1, 2)+whenever S is a stationary, co-stationary subset

of ℵω+1, {S ,ℵω+1 \ S} reflects simultaneously.

3 �(ℵω+1,ℵm) + ∀(n < ω)Refl(< ℵm,S
ℵω+1
<ℵn ), where m < ω.

Analogous results can be obtained at other successors of singular

cardinals, at successors of regular cardinals, and at inaccessible

cardinals.
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Souslin trees
In recent work, Brodsky and Rinot have isolated strengthenings of

�(λ,< κ) which, in the presence of ♦(λ), imply the existence of

λ-Souslin trees.

Further analysis of the proofs of the consistency

results of the previous slide reveals that, in the final models for

those results, ♦(λ) and various instances of Brodsky and Rinot’s

square principles can be made to hold. For example, we can get

the following.

Theorem (LH)

Assume the consistency of infinitely many supercompact

cardinals. Then each of the following is consistent.

1 Refl(1,ℵω+1) + there is a coherent ℵω+1-Souslin tree.

2 ∀(n < ω)Refl(< ℵm,S
ℵω+1
<ℵn ) + there is an ℵω+1-Souslin tree,

where m < ω.

As before, analogous results can be obtained for other successors

of singulars, successors of regulars, and inaccessible cardinals.
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