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Definitions

C a category whose objects are non-empty compact second
countable metric spaces

arrows are pairs of the form 〈e, p〉, where e : K → L is a
continuous injection and p : L→ K is a continuous surjection
satisfying p ◦ e = idK , and usually some additional properties

so the arrows are retractions onto K
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Definitions - metric

Assume that each K ∈ Ob(C) is equipped with a metric dK .

Given two C-arrows f , g : K → L, f = 〈e, p〉, g = 〈i , q〉, we
define

d(f , g) =

{
maxy∈L dK (p(y), q(y)) if e = i ,

+∞ otherwise.

C equipped with the metric d on each Hom(K , L) is a metric
category if d(f0 ◦ g , f1 ◦ g) ≤ d(f0, f1) and
d(h ◦ f0, h ◦ f1) ≤ d(f0, f1), whenever the composition makes
sense.
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Definitions - amalgamation

C is directed if for every A,B ∈ C there is C ∈ C such that
there exist arrows from A to C and from B to C .

C has the almost amalgamation property if for every C-arrows
f : A→ B, g : A→ C , for every ε > 0, there exist C-arrows
f ′ : B → D, g ′ : C → D such that d(f ′ ◦ f , g ′ ◦ g) < ε.

C has the strict amalgamation property if we can have f ′ and
g ′ as above satisfying f ′ ◦ f = g ′ ◦ g .
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Definitions - separability

C is separable if there is a countable subcategory F such that

(1) for every X ∈ Ob (C) there are A ∈ Ob (F) and a C-arrow
f : X → A;

(2) for every C-arrow f : A→ Y with A ∈ Ob(F), for every ε > 0
there exists an C-arrow g : Y → B and an F-arrow u : A→ B
such that d(g ◦ f , u) < ε.
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Definitions - Fräıssé sequence

C-sequence ~U = 〈Um; unm〉 is a Fräıssé sequence if the following
holds:

(F) Given ε > 0, m ∈ ω, and an arrow f : Um → F , where
F ∈ Ob(C), there exist m < n and an arrow g : F → Un such
that d(g ◦ f , unm) < ε.
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Criterion for a Fräıssé sequence

Theorem (Kubís)

Let C be a directed metric category with objects and arrows as
before that has the almost amalgamation property. The following
conditions are equivalent:

(a) C is separable.

(b) C has a Fräıssé sequence.
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Consequences

Theorem (Kubís)

Under assumptions of the previous theorem and separability we
have:

1 Uniqueness There exists exactly one Fräıssé sequence ~U (up
to an isomorphism).

2 Universality For every sequence ~X in C there is an arrow
f : ~X → ~U.

3 Almost homogeneity For every A,B ∈ Ob (C) and for all
arrows i : A→ ~U, j : B → ~U, for every C-arrow f : A→ B, for
every ε > 0, there exists an isomorphism H : ~U → ~U such that
d(j ◦ f ,H ◦ i) < ε.

In our examples we will have almost homogeneity for sequences in
C as well.
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Lelek fan

C – the Cantor set

Cantor fan V is the cone over the Cantor set:
C × [0, 1]/C × {1}

Lelek fan L is a non-trivial closed connected subset of V
containing the top point, which has a dense set of endpoints
in L
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About the Lelek fan

Lelek fan was constructed by Lelek in 1960

Lelek fan is unique: any two are homeomorphic
(Bula-Oversteegen 1990 and Charatonik 1989)
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Geometric fans

Definition

A geometric fan is a closed connected subset of the Cantor fan
containing the top point
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The category

The category F

Objects are finite geometric fans, metric inherited from R2.

f : F → G is affine if f (λ · x) = λ · f (x) for every x ∈ F ,
λ ∈ [0, 1).

f : F → G is a stable embedding if it is a one-to-one affine
map such that endpoints are mapped to endpoints.

An arrow from F to G is a pair 〈e, p〉 such that e : F → G is
a stable embedding, p : G → F is a 1-Lipschitz affine
surjection and p ◦ e = idF .
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Properties

Geometric fans = inverse limits of sequences in F

The category F is directed and has the strict amalgamation
property

F is a separable metric category

Aleksandra Kwiatkowska Lelek fan and Poulsen simplex as Fräıssé limits
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Fräıssé sequences

Theorem (Kubís - K)

Let ~U be a sequence in F and let U∞ be its inverse limit. The
following properties are equivalent:

(a) The set of endpoints E (U∞) is dense in U∞.

(b) ~U is a Fräıssé sequence.
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Consequences

uniqueness of a Fräıssé sequence
The Lelek fan is a unique smooth fan whose set of end-points
is dense.

universality with respect to all geometric fans
For every geometric fan F there are a stable embedding e into
the Lelek fan L and a 1-Lipschitz affine retraction p from L
onto F such that p ◦ e = idF .
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Consequences

almost homogeneity with respect to all geometric fans
Let F be a geometric fan and let f , g : L→ F be continuous
affine surjections. Then for every ε > 0 there is a
homeomorphism h : L→ L such that for every x ∈ L,
dF (f ◦ h(x), g(x)) < ε.

Remark

in 2015, Bartošová and Kwiatkowska obtained uniqueness,
universality, and almost homogeneity of the Lelek fan in the
context of the projective Fräıssé theory.
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The general setting
The Lelek fan

The Poulsen simplex
More applications to the Lelek fan

Consequences

almost homogeneity with respect to all geometric fans
Let F be a geometric fan and let f , g : L→ F be continuous
affine surjections. Then for every ε > 0 there is a
homeomorphism h : L→ L such that for every x ∈ L,
dF (f ◦ h(x), g(x)) < ε.

Remark
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Extreme points

Definition

A point x in a compact convex set K of a topological vector space
is an extreme point if whenever x = λy + (1− λ)z for some
λ ∈ [0, 1], y , z ∈ K , then λ = 0 or λ = 1.
The set of extreme points of K is denoted by extK .
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Simplices

Definition

A simplex is a non-empty compact convex and metrizable set K in
a locally convex linear topological space such that every x ∈ K has
a unique probability measure µ supported on extK and such that

f (x) =

∫
K
f dµ

for every continuous affine function f : K → R.
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Finite dimensional simplices

Example

Finite-dimensional simplex ∆n

{x ∈ Rn+1 :
n+1∑
i=1

x(i) = 1 and x(i) ≥ 0 for every i = 1, . . . , n + 1}

In particular, ∆0 is a singleton, ∆1 is a closed interval, and ∆2 is a
triangle.
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The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme
points.

Remark

The Poulsen simplex was first constructed by Poulsen in ’61.

Remark

Uniqueness was proved by Lindenstrauss, Olsen, and Sternfeld
in ’78.
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The category

The category S

Objects are finite-dimensional simplices.

p : L→ K is affine if for any x , y ∈ L and λ ∈ [0, 1] we have
p(λx + (1− λ)y) = λp(x) + (1− λ)p(y).

Stable embedding is a one-to-one affine map such that
extreme points are mapped to extreme points.

An arrow from K to L is a pair 〈e, p〉 such that e : K → L is a
stable embedding, p : L→ K is an affine projection and
p ◦ e = idK .
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Properties

Theorem (Lazar-Lindenstrauss ’71)

Metrizable simplices are, up to affine homeomorphisms, precisely
the limits of inverse sequences in S.

The category S is directed and has the strict amalgamation
property

S is a separable metric category
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Fräıssé sequences

Theorem (Kubís - K)

Let ~U be a sequence in S and let K be its inverse limit. The
following properties are equivalent:

(a) The set extK is dense in K .

(b) ~U is a Fräıssé sequence.
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Consequences

uniqueness of a Fräıssé sequence
The Poulsen simplex P is unique, up to affine
homeomorphisms.

universality with respect to all simplices
Every metrizable simplex is affinely homeomorphic to a face
of P.
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Consequences

almost homogeneity with respect to all simplices
Let F be a simplex and let f , g : P→ F be affine and
continuous. Then for every ε > 0 there is an affine
homeomorphism H : P→ P such that for every x ∈ P,
dF (f ◦ H(x), g(x)) < ε, where dF is a fixed compatible metric
on F .

Remark

Uniqueness, universality, and homogeneity of P were proved by
Lindenstrauss, Olsen, and Sternfeld in ’78.
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Homogeneity results

Remark

Let f : S → T be a bijection, such that S ,T ⊆ E (L) are finite
sets. Then there exists an affine homeomorphism h : L→ L such
that h � S = f .

Theorem (Kubís - K)

Let A,B ⊆ E (L) be countable dense sets. Then there exists an
affine homeomorphism h : L→ L such that h[A] = B.
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Comments

Kawamura, Oversteegen, and Tymchatyn in ’96 showed that
the space of end-points of the Lelek fan is countably dense
homogeneous.

There exists a homeomorphism h : E (L)→ E (L) such that for
no homeomorphism f : L→ L, we have f � E (L) = h.
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Generalization of the category F

F be a geometric fan

E (F ) - the set of endpoints of F

A skeleton in F is a convex set D ⊆ F such that E (D) is
countable, contained in E (F ) and dense in E (F ).
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The general setting
The Lelek fan

The Poulsen simplex
More applications to the Lelek fan

Generalization of the category F

Let Fd be the category whose objects are pairs of finite
geometric fans (F 1,F 2) with F 1 = F 2.

An arrow from (F 1,F 2) to (G 1,G 2) is a pair 〈e, p〉 such that
e : F 1 → G 1 is a stable embedding, p : G 2 → F 2 is a
1-Lipschitz affine retraction and p ◦ e = idF .
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The general setting
The Lelek fan

The Poulsen simplex
More applications to the Lelek fan

Generalization of the category F

The category Fd is directed and has the strict amalgamation
property.

Fd is a separable metric category, therefore it has a unique up
to isomorphism Fräıssé sequence.

Its limit is (D,L) for some skeleton D in L.
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Generalization of the category F

To show the main theorem we need the following lemma:

Lemma

Let L be a geometric fan and let D be a skeleton in L. Then there
exist a geometric fan L′, a skeleton D ′ of L′, and an affine (not
necessarily 1-Lipschitz) homeomorphism h : L→ L′ with
h(D) = D ′ such that there is a sequence ~F in Fd satisfying
L′ = lim←−

~F and D ′ = lim−→
~F .
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