Lelek fan and Poulsen simplex as Fraïssé limits

Aleksandra Kwiatkowska

University of Bonn joint work with Wiesław Kubiś

June 22, 2016

4 B K 4 B K

Definitions

• C a category whose objects are non-empty compact second countable metric spaces

∃ → < ∃ →</p>

Definitions

- C a category whose objects are non-empty compact second countable metric spaces
- arrows are pairs of the form ⟨e, p⟩, where e: K → L is a continuous injection and p: L → K is a continuous surjection satisfying p ∘ e = id_K, and usually some additional properties

.

Definitions

- C a category whose objects are non-empty compact second countable metric spaces
- arrows are pairs of the form ⟨e, p⟩, where e: K → L is a continuous injection and p: L → K is a continuous surjection satisfying p ∘ e = id_K, and usually some additional properties
- so the arrows are retractions onto K

- 4 B b 4 B b

Definitions - metric

- Assume that each $K \in Ob(\mathcal{C})$ is equipped with a metric d_K .
- Given two C-arrows $f, g \colon K \to L$, $f = \langle e, p \rangle$, $g = \langle i, q \rangle$, we define

$$d(f,g) = \begin{cases} \max_{y \in L} d_{\mathcal{K}}(p(y), q(y)) & \text{if } e = i, \\ +\infty & \text{otherwise} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Definitions - metric

- Assume that each $K \in Ob(\mathcal{C})$ is equipped with a metric d_K .
- Given two C-arrows $f, g \colon K \to L$, $f = \langle e, p \rangle$, $g = \langle i, q \rangle$, we define

$$d(f,g) = \begin{cases} \max_{y \in L} d_{\mathcal{K}}(p(y), q(y)) & \text{if } e = i, \\ +\infty & \text{otherwise.} \end{cases}$$

• C equipped with the metric d on each Hom(K, L) is a metric category if $d(f_0 \circ g, f_1 \circ g) \leq d(f_0, f_1)$ and $d(h \circ f_0, h \circ f_1) \leq d(f_0, f_1)$, whenever the composition makes sense.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions - amalgamation

 C is directed if for every A, B ∈ C there is C ∈ C such that there exist arrows from A to C and from B to C.

3 N 4 3 N

Definitions - amalgamation

- C is directed if for every A, B ∈ C there is C ∈ C such that there exist arrows from A to C and from B to C.
- C has the almost amalgamation property if for every C-arrows $f: A \to B, g: A \to C$, for every $\varepsilon > 0$, there exist C-arrows $f': B \to D, g': C \to D$ such that $d(f' \circ f, g' \circ g) < \varepsilon$.

Definitions - amalgamation

- C is directed if for every A, B ∈ C there is C ∈ C such that there exist arrows from A to C and from B to C.
- C has the almost amalgamation property if for every C-arrows $f: A \to B, g: A \to C$, for every $\varepsilon > 0$, there exist C-arrows $f': B \to D, g': C \to D$ such that $d(f' \circ f, g' \circ g) < \varepsilon$.
- C has the strict amalgamation property if we can have f' and g' as above satisfying $f' \circ f = g' \circ g$.

Definitions - separability

- ${\mathcal C}$ is separable if there is a countable subcategory ${\mathcal F}$ such that
- (1) for every $X \in Ob(\mathcal{C})$ there are $A \in Ob(\mathcal{F})$ and a \mathcal{C} -arrow $f: X \to A$;
- (2) for every C-arrow f: A → Y with A ∈ Ob(F), for every ε > 0 there exists an C-arrow g: Y → B and an F-arrow u: A → B such that d(g ∘ f, u) < ε.</p>

.

Definitions - Fraïssé sequence

C-sequence $\vec{U} = \langle U_m; u_m^n \rangle$ is a Fraïssé sequence if the following holds:

(F) Given $\varepsilon > 0$, $m \in \omega$, and an arrow $f: U_m \to F$, where $F \in Ob(\mathcal{C})$, there exist m < n and an arrow $g: F \to U_n$ such that $d(g \circ f, u_m^n) < \varepsilon$.

.

Criterion for a Fraïssé sequence

Theorem (Kubiś)

Let C be a directed metric category with objects and arrows as before that has the almost amalgamation property. The following conditions are equivalent:

- (a) C is separable.
- (b) C has a Fraïssé sequence.

Consequences

Theorem (Kubiś)

Under assumptions of the previous theorem and separability we have:

- Uniqueness There exists exactly one Fraïssé sequence \vec{U} (up to an isomorphism).
- Solution \mathbf{V} Universality For every sequence \vec{X} in \mathcal{C} there is an arrow $f: \vec{X} \to \vec{U}$.
- Almost homogeneity For every A, B ∈ Ob(C) and for all arrows i: A → U, j: B → U, for every C-arrow f: A → B, for every ε > 0, there exists an isomorphism H: U → U such that d(j ∘ f, H ∘ i) < ε.</p>

In our examples we will have almost homogeneity for sequences in ${\mathcal C}$ as well.

Lelek fan

• C – the Cantor set

э

Lelek fan

- C the Cantor set
- Cantor fan V is the cone over the Cantor set: $C \times [0,1]/C \times \{1\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

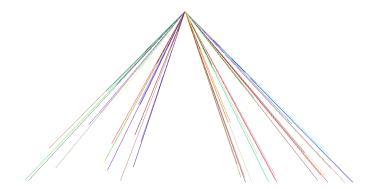
э

Lelek fan

- C the Cantor set
- Cantor fan V is the cone over the Cantor set: $C \times [0,1]/C \times \{1\}$
- Lelek fan L is a non-trivial closed connected subset of V containing the top point, which has a dense set of endpoints in L

伺 ト イ ヨ ト イ ヨ ト

Lelek fan



< ∃ > < ∃ >

About the Lelek fan

• Lelek fan was constructed by Lelek in 1960

伺 ト イヨト イヨト

э

About the Lelek fan

• Lelek fan was constructed by Lelek in 1960

• Lelek fan is unique: any two are homeomorphic (Bula-Oversteegen 1990 and Charatonik 1989)

4 3 5 4 3 5

Geometric fans

Definition

A geometric fan is a closed connected subset of the Cantor fan containing the top point

伺 ト く ヨ ト く ヨ ト

э

The category

The category \mathfrak{F}

• Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .

A B > A B >

э

The category

The category \mathfrak{F}

- Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .
- $f: F \to G$ is affine if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0, 1)$.
- *f* : *F* → *G* is a stable embedding if it is a one-to-one affine map such that endpoints are mapped to endpoints.

伺 ト イ ヨ ト イ ヨ ト

The category

The category \mathfrak{F}

- Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .
- $f: F \to G$ is affine if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0, 1)$.
- *f* : *F* → *G* is a stable embedding if it is a one-to-one affine map such that endpoints are mapped to endpoints.
- An arrow from F to G is a pair ⟨e, p⟩ such that e: F → G is a stable embedding, p: G → F is a 1-Lipschitz affine surjection and p ∘ e = id_F.

- 同 ト - ヨ ト - - ヨ ト

Properties

- Geometric fans = inverse limits of sequences in \mathfrak{F}
- $\bullet\,$ The category \mathfrak{F} is directed and has the strict amalgamation property
- \mathfrak{F} is a separable metric category

4 B K 4 B K

Fraïssé sequences

Theorem (Kubiś - K)

Let \vec{U} be a sequence in \mathfrak{F} and let U_{∞} be its inverse limit. The following properties are equivalent:

(a) The set of endpoints
$$E(U_{\infty})$$
 is dense in U_{∞} .

(b) \vec{U} is a Fraïssé sequence.

同 ト イ ヨ ト イ ヨ ト

Consequences

- uniqueness of a Fraïssé sequence The Lelek fan is a unique smooth fan whose set of end-points is dense.
- universality with respect to all geometric fans
 For every geometric fan F there are a stable embedding e into the Lelek fan L and a 1-Lipschitz affine retraction p from L onto F such that p ∘ e = id_F.

伺 ト イ ヨ ト イ ヨ ト

Consequences

almost homogeneity with respect to all geometric fans
 Let *F* be a geometric fan and let *f*, *g* : L → *F* be continuous
 affine surjections. Then for every ε > 0 there is a
 homeomorphism *h*: L → L such that for every *x* ∈ L,
 d_F(*f* ∘ *h*(*x*), *g*(*x*)) < ε.

伺 ト イ ヨ ト イ ヨ ト

Consequences

almost homogeneity with respect to all geometric fans
 Let F be a geometric fan and let f, g: L → F be continuous affine surjections. Then for every ε > 0 there is a homeomorphism h: L → L such that for every x ∈ L, d_F(f ∘ h(x), g(x)) < ε.

Remark

in 2015, Bartošová and Kwiatkowska obtained uniqueness, universality, and almost homogeneity of the Lelek fan in the context of the projective Fraïssé theory.

- 4 同 6 4 日 6 4 日 6

Extreme points

Definition

A point x in a compact convex set K of a topological vector space is an extreme point if whenever $x = \lambda y + (1 - \lambda)z$ for some $\lambda \in [0, 1], y, z \in K$, then $\lambda = 0$ or $\lambda = 1$. The set of extreme points of K is denoted by ext K.

4 3 5 4 3 5

Simplices

Definition

A simplex is a non-empty compact convex and metrizable set K in a locally convex linear topological space such that every $x \in K$ has a unique probability measure μ supported on ext K and such that

$$f(x) = \int_{\mathcal{K}} f \, d\mu$$

for every continuous affine function $f: K \to \mathbb{R}$.

- 4 B b 4 B b

Finite dimensional simplices

Example

Finite-dimensional simplex Δ_n

$$\{x \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x(i) = 1 \text{ and } x(i) \ge 0 \text{ for every } i = 1, \dots, n+1\}$$

In particular, Δ_0 is a singleton, Δ_1 is a closed interval, and Δ_2 is a triangle.

A B > A B >

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

A B > A B >

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in '61.

A B > A B >

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in '61.

Remark

Uniqueness was proved by Lindenstrauss, Olsen, and Sternfeld in '78.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The category

The category \mathfrak{S}

• Objects are finite-dimensional simplices.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The category

The category \mathfrak{S}

- Objects are finite-dimensional simplices.
- $p: L \to K$ is affine if for any $x, y \in L$ and $\lambda \in [0, 1]$ we have $p(\lambda x + (1 \lambda)y) = \lambda p(x) + (1 \lambda)p(y)$.
- Stable embedding is a one-to-one affine map such that extreme points are mapped to extreme points.

伺 ト イ ヨ ト イ ヨ ト

The category

The category \mathfrak{S}

- Objects are finite-dimensional simplices.
- $p: L \to K$ is affine if for any $x, y \in L$ and $\lambda \in [0, 1]$ we have $p(\lambda x + (1 \lambda)y) = \lambda p(x) + (1 \lambda)p(y)$.
- Stable embedding is a one-to-one affine map such that extreme points are mapped to extreme points.
- An arrow from K to L is a pair ⟨e, p⟩ such that e: K → L is a stable embedding, p: L → K is an affine projection and p ∘ e = id_K.

- 同 ト - ヨ ト - - ヨ ト

Properties

Theorem (Lazar-Lindenstrauss '71)

Metrizable simplices are, up to affine homeomorphisms, precisely the limits of inverse sequences in \mathfrak{S} .

- \bullet The category \mathfrak{S} is directed and has the strict amalgamation property
- \mathfrak{S} is a separable metric category

4 E 6 4 E 6

Fraïssé sequences

Theorem (Kubiś - K)

Let \vec{U} be a sequence in \mathfrak{S} and let K be its inverse limit. The following properties are equivalent:

- (a) The set ext K is dense in K.
- (b) \vec{U} is a Fraïssé sequence.

A B > A B >

Consequences

- universality with respect to all simplices
 Every metrizable simplex is affinely homeomorphic to a face of P.

4 E 6 4 E 6

Consequences

almost homogeneity with respect to all simplices
 Let *F* be a simplex and let *f*, *g* : ℙ → *F* be affine and
 continuous. Then for every ε > 0 there is an affine
 homeomorphism *H* : ℙ → ℙ such that for every *x* ∈ ℙ,
 d_F(*f* ◦ *H*(*x*), *g*(*x*)) < ε, where *d_F* is a fixed compatible metric
 on *F*.

Remark

Uniqueness, universality, and homogeneity of \mathbb{P} were proved by Lindenstrauss, Olsen, and Sternfeld in '78.

(4 同) (4 回) (4 回)

Homogeneity results

Remark

Let $f: S \to T$ be a bijection, such that $S, T \subseteq E(\mathbb{L})$ are finite sets. Then there exists an affine homeomorphism $h: \mathbb{L} \to \mathbb{L}$ such that $h \upharpoonright S = f$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Homogeneity results

Remark

Let $f: S \to T$ be a bijection, such that $S, T \subseteq E(\mathbb{L})$ are finite sets. Then there exists an affine homeomorphism $h: \mathbb{L} \to \mathbb{L}$ such that $h \upharpoonright S = f$.

Theorem (Kubiś - K)

Let $A, B \subseteq E(\mathbb{L})$ be countable dense sets. Then there exists an affine homeomorphism $h: \mathbb{L} \to \mathbb{L}$ such that h[A] = B.

- 4 同 6 4 日 6 4 日 6

Comments

• Kawamura, Oversteegen, and Tymchatyn in '96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.

4 B K 4 B K

Comments

- Kawamura, Oversteegen, and Tymchatyn in '96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.
- There exists a homeomorphism h: E(L) → E(L) such that for no homeomorphism f: L → L, we have f ↾ E(L) = h.

.

Generalization of the category \mathfrak{F}

- F be a geometric fan
- E(F) the set of endpoints of F
- A skeleton in F is a convex set D ⊆ F such that E(D) is countable, contained in E(F) and dense in E(F).

- 4 B b 4 B b

Generalization of the category \mathfrak{F}

Let \$\vec{F}^d\$ be the category whose objects are pairs of finite geometric fans (F¹, F²) with F¹ = F².

.

Generalization of the category \mathfrak{F}

- Let \$\vec{F}^d\$ be the category whose objects are pairs of finite geometric fans (F¹, F²) with F¹ = F².
- An arrow from (F¹, F²) to (G¹, G²) is a pair ⟨e, p⟩ such that
 e: F¹ → G¹ is a stable embedding, p: G² → F² is a
 1-Lipschitz affine retraction and p ∘ e = id_F.

Generalization of the category $\mathfrak F$

- The category \mathfrak{F}^d is directed and has the strict amalgamation property.
- \mathfrak{F}^d is a separable metric category, therefore it has a unique up to isomorphism Fraïssé sequence.
- Its limit is (D, \mathbb{L}) for some skeleton D in \mathbb{L} .

Generalization of the category \mathfrak{F}

To show the main theorem we need the following lemma:

Lemma

Let L be a geometric fan and let D be a skeleton in L. Then there exist a geometric fan L', a skeleton D' of L', and an affine (not necessarily 1-Lipschitz) homeomorphism $h: L \to L'$ with h(D) = D' such that there is a sequence \vec{F} in \mathfrak{F}^d satisfying $L' = \varprojlim \vec{F}$ and $D' = \varinjlim \vec{F}$.