Additivity of the ideal of microscopic sets

Adam Kwela

University of Gdańsk, Poland

20th June 2016

SETTOP 2016, Novi Sad, Serbia

A set $M \subseteq \mathbb{R}$ is called microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Fact

 \mathcal{M} is a σ -ideal.

Question (G. Horbaczewska)

Is $add(\mathcal{M}) = 2^{\omega}$ under Martin's axiom?

 $\mathrm{add}\,(\mathcal{I})=\min\left\{\mathrm{card}(\mathcal{A}):\ \mathcal{A}\subseteq\mathcal{I}\ \wedge\ \bigcup\mathcal{A}\notin\mathcal{I}\right\}$

Fact

 $2^{\omega} = non(\mathcal{M}) = cov(\mathcal{M}) = cof(\mathcal{M})$ under Martin's axiom.

A set $M \subseteq \mathbb{R}$ is called microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Fact

 \mathcal{M} is a σ -ideal.

Question (G. Horbaczewska)

Is $add(\mathcal{M}) = 2^{\omega}$ under Martin's axiom?

 $\mathrm{add}\,(\mathcal{I})=\min\left\{\mathrm{card}(\mathcal{A}):\;\mathcal{A}\subseteq\mathcal{I}\;\wedge\;\bigcup\mathcal{A}\notin\mathcal{I}\right\}$

Fact

 $2^{\omega} = non(\mathcal{M}) = cov(\mathcal{M}) = cof(\mathcal{M})$ under Martin's axiom.

A set $M \subseteq \mathbb{R}$ is called microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Fact

 \mathcal{M} is a σ -ideal.

Question (G. Horbaczewska)

Is $add(\mathcal{M}) = 2^{\omega}$ under Martin's axiom?

$$\operatorname{add}\left(\mathcal{I}
ight)=\min\left\{\operatorname{card}(\mathcal{A}):\ \mathcal{A}\subseteq\mathcal{I}\ \wedge\ \bigcup\mathcal{A}\notin\mathcal{I}
ight\}$$

Fact

 $2^{\omega} = non(\mathcal{M}) = cov(\mathcal{M}) = cof(\mathcal{M})$ under Martin's axiom.

A set $M \subseteq \mathbb{R}$ is called microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Fact

 \mathcal{M} is a σ -ideal.

Question (G. Horbaczewska)

Is $add(\mathcal{M}) = 2^{\omega}$ under Martin's axiom?

$$\operatorname{\mathsf{add}}(\mathcal{I}) = \min\left\{\operatorname{card}(\mathcal{A}): \ \mathcal{A} \subseteq \mathcal{I} \ \land \ \bigcup \mathcal{A} \notin \mathcal{I}
ight\}$$

Fact

$$2^\omega = \mathit{non}(\mathcal{M}) = \mathit{cov}(\mathcal{M}) = \mathit{cof}(\mathcal{M})$$
 under Martin's axiom.

Let $(f_n)_n$ be a sequence of increasing functions $f_n: (0, 1) \to (0, 1)$ such that the following definition makes sense (i.e., $\lim_{x\to 0^+} f_n(x) = 0$ for all n and there is $x_0 \in (0, 1)$ such that for all $0 < x < x_0$ the sequence $(f_n(x))_n$ is non-increasing and $\sum_n f_n(x) < +\infty$).

Definition (G. Horbaczewska)

A set $M \subseteq \mathbb{R}$ is called (f_n) -microscopic $(M \in \mathcal{M}(f_n))$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq f_k(\varepsilon)$ for all $k \in \mathbb{N}$.

\mathcal{F} is the family of all $(f_n)_n$ satisfying the above conditions.

Proposition (G. Horbaczewska)

 $\bigcap_{(f_n)_n \in \mathcal{F}} \mathcal{M}(f_n)$ is the family of all sets of strong measure zero.

Proposition (Czudek, K., Mrożek, Wołoszyn)

 $\bigcup_{(f_n)_n \in \mathcal{F}} \mathcal{M}(f_n)$ is the family of all Lebesgue null sets.

Let $(f_n)_n$ be a sequence of increasing functions $f_n: (0, 1) \to (0, 1)$ such that the following definition makes sense (i.e., $\lim_{x\to 0^+} f_n(x) = 0$ for all n and there is $x_0 \in (0, 1)$ such that for all $0 < x < x_0$ the sequence $(f_n(x))_n$ is non-increasing and $\sum_n f_n(x) < +\infty$).

Definition (G. Horbaczewska)

A set $M \subseteq \mathbb{R}$ is called (f_n) -microscopic $(M \in \mathcal{M}(f_n))$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq f_k(\varepsilon)$ for all $k \in \mathbb{N}$.

\mathcal{F} is the family of all $(f_n)_n$ satisfying the above conditions.

Proposition (G. Horbaczewska)

 $\bigcap_{(f_n)_n \in \mathcal{F}} \mathcal{M}(f_n)$ is the family of all sets of strong measure zero.

Proposition (Czudek, K., Mrożek, Wołoszyn)

 $\bigcup_{(f_n)_n \in \mathcal{F}} \mathcal{M}(f_n)$ is the family of all Lebesgue null sets.

A set $M \subseteq \mathbb{R}$ is called nanoscopic if it is (x^{2^n}) -microscopic.

Question (G. Horbaczewska)

Is the family of all nanoscopic sets an ideal?

Theorem (Czudek, K., Mrożek, Wołoszyn)

No!

Question

How does the ideal/ σ -ideal generated by nanoscopic sets look like? Is it equal to $\mathcal{M}(g_n)$ for some $(g_n)_n \in \mathcal{F}$?

Question

A set $M \subseteq \mathbb{R}$ is called nanoscopic if it is (x^{2^n}) -microscopic.

Question (G. Horbaczewska)

Is the family of all nanoscopic sets an ideal?

Theorem (Czudek, K., Mrożek, Wołoszyn)

No!

Question

How does the ideal/ σ -ideal generated by nanoscopic sets look like? Is it equal to $\mathcal{M}(g_n)$ for some $(g_n)_n \in \mathcal{F}$?

Question

A set $M \subseteq \mathbb{R}$ is called nanoscopic if it is (x^{2^n}) -microscopic.

Question (G. Horbaczewska)

Is the family of all nanoscopic sets an ideal?

Theorem (Czudek, K., Mrożek, Wołoszyn)

No!

Question

How does the ideal/ σ -ideal generated by nanoscopic sets look like? Is it equal to $\mathcal{M}(g_n)$ for some $(g_n)_n \in \mathcal{F}$?

Question

A set $M \subseteq \mathbb{R}$ is called nanoscopic if it is (x^{2^n}) -microscopic.

Question (G. Horbaczewska)

Is the family of all nanoscopic sets an ideal?

Theorem (Czudek, K., Mrożek, Wołoszyn)

No!

Question

How does the ideal/ σ -ideal generated by nanoscopic sets look like? Is it equal to $\mathcal{M}(g_n)$ for some $(g_n)_n \in \mathcal{F}$?

Question

If A is nanoscopic and $B \in SMZ$, then $A \cup B$ is nanoscopic.

 $M \subseteq \mathbb{R}$ is of strong measure zero $(M \in SMZ)$ if for every sequence $(\varepsilon_n)_n$ of positive reals there exists a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon_k$ for all $k \in \mathbb{N}$.

Theorem (Czudek, K., Mrożek, Wołoszyn)

There are an $(x^{n!})$ -microscopic (picoscopic) set X and a point $x \in \mathbb{R}$ such that $X \cup \{x\}$ is not picoscopic anymore!

If A is nanoscopic and $B \in SMZ$, then $A \cup B$ is nanoscopic.

 $M \subseteq \mathbb{R}$ is of strong measure zero $(M \in SMZ)$ if for every sequence $(\varepsilon_n)_n$ of positive reals there exists a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon_k$ for all $k \in \mathbb{N}$.

Theorem (Czudek, K., Mrożek, Wołoszyn)

There are an $(x^{n!})$ -microscopic (picoscopic) set X and a point $x \in \mathbb{R}$ such that $X \cup \{x\}$ is not picoscopic anymore!

Let $(f_n)_n \in \mathcal{F}$. Assume that $X \in \mathcal{M}(f_n)$ satisfies at least one of the following conditions:

- X can be covered by an (f_n) -microscopic \mathbf{F}_{σ} set;
- \overline{X} is an unbounded interval;
- X is bounded.

Then $X \cup Y \in \mathcal{M}(f_n)$ for any $Y \in SMZ$.

Question

Let $(f_n)_n \in \mathcal{F}$ and $X \in \mathcal{M}(f_n)$ be such that $I \subseteq \overline{X}$ for some interval I. Is $X \cup Y \in \mathcal{M}(f_n)$ for any $Y \in SMZ$?

Let $(f_n)_n \in \mathcal{F}$. Assume that $X \in \mathcal{M}(f_n)$ satisfies at least one of the following conditions:

- X can be covered by an (f_n) -microscopic \mathbf{F}_{σ} set;
- \overline{X} is an unbounded interval;
- X is bounded.

Then $X \cup Y \in \mathcal{M}(f_n)$ for any $Y \in SMZ$.

Question

Let $(f_n)_n \in \mathcal{F}$ and $X \in \mathcal{M}(f_n)$ be such that $I \subseteq \overline{X}$ for some interval *I*. Is $X \cup Y \in \mathcal{M}(f_n)$ for any $Y \in SMZ$?

A set is in $\mathcal{M}^*(f_n)$ if it can be covered by an (f_n) -microscopic \mathbf{F}_{σ} set.

 $\mathcal{M}(f_n) \setminus \mathcal{M}^{\star}(f_n) \neq \emptyset$ for any $(f_n)_n \in \mathcal{F}$.

Theorem (Czudek, K., Mrożek, Wołoszyn)

 $\mathcal{M}^{\star}(f_n)$ is a σ -ideal for any $(f_n)_n \in \mathcal{F}$.

Proposition (K.)

Assume Martin's axiom. Then
$$add\left(\mathcal{M}\left(x^{\ln(n+1)}\right)\right)=2^{\omega}.$$

A set is in $\mathcal{M}^*(f_n)$ if it can be covered by an (f_n) -microscopic \mathbf{F}_{σ} set.

 $\mathcal{M}(f_n) \setminus \mathcal{M}^{\star}(f_n) \neq \emptyset$ for any $(f_n)_n \in \mathcal{F}$.

Theorem (Czudek, K., Mrożek, Wołoszyn)

 $\mathcal{M}^{\star}(f_n)$ is a σ -ideal for any $(f_n)_n \in \mathcal{F}$.

Proposition (K.)

Assume Martin's axiom. Then
$$add\left(\mathcal{M}\left(x^{\ln(n+1)}
ight)
ight)=2^{\omega}.$$

A set is in $\mathcal{M}^*(f_n)$ if it can be covered by an (f_n) -microscopic \mathbf{F}_{σ} set.

 $\mathcal{M}(f_n) \setminus \mathcal{M}^{\star}(f_n) \neq \emptyset$ for any $(f_n)_n \in \mathcal{F}$.

Theorem (Czudek, K., Mrożek, Wołoszyn)

 $\mathcal{M}^{\star}(f_n)$ is a σ -ideal for any $(f_n)_n \in \mathcal{F}$.

Proposition (K.)

Assume Martin's axiom. Then
$$add\left(\mathcal{M}\left(x^{\mathsf{ln}(n+1)}
ight)
ight)=2^{\omega}.$$

A set $M \subseteq \mathbb{R}$ is microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Definition

A set $M \subseteq \mathbb{R}$ is in \mathcal{M}' if for every $\varepsilon \in (0, 1)$ there are a set $D \subseteq \mathbb{N}$ of asymptotic density zero and a sequence of intervals $(I_k)_{k \in D}$ such that $M \subseteq \bigcup_{k \in D} I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in D$.

 $D \subseteq \mathbb{N}$ is of asymptotic density zero if $\lim_n \frac{|D \cap \{1, \dots, n\}|}{n} = 0$.

Fact

 \mathcal{M}' is a σ -ideal.

Proposition (K.)

Assume Martin's axiom. Then any union of less than 2^ω sets from \mathcal{M}' is microscopic.

A set $M \subseteq \mathbb{R}$ is microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Definition

A set $M \subseteq \mathbb{R}$ is in \mathcal{M}' if for every $\varepsilon \in (0, 1)$ there are a set $D \subseteq \mathbb{N}$ of asymptotic density zero and a sequence of intervals $(I_k)_{k \in D}$ such that $M \subseteq \bigcup_{k \in D} I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in D$.

 $D \subseteq \mathbb{N}$ is of asymptotic density zero if $\lim_n \frac{|D \cap \{1, \dots, n\}|}{n} = 0$.

Fact

 \mathcal{M}' is a σ -ideal.

Proposition (K.)

Assume Martin's axiom. Then any union of less than 2^ω sets from \mathcal{M}' is microscopic.

A set $M \subseteq \mathbb{R}$ is microscopic $(M \in \mathcal{M})$ if for all $\varepsilon \in (0, 1)$ there is a sequence of intervals $(I_k)_k$ such that $M \subseteq \bigcup_k I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in \mathbb{N}$.

Definition

A set $M \subseteq \mathbb{R}$ is in \mathcal{M}' if for every $\varepsilon \in (0, 1)$ there are a set $D \subseteq \mathbb{N}$ of asymptotic density zero and a sequence of intervals $(I_k)_{k \in D}$ such that $M \subseteq \bigcup_{k \in D} I_k$ and $|I_k| \leq \varepsilon^k$ for all $k \in D$.

 $D \subseteq \mathbb{N}$ is of asymptotic density zero if $\lim_n \frac{|D \cap \{1, \dots, n\}|}{n} = 0$.

Fact

 \mathcal{M}' is a σ -ideal.

Proposition (K.)

Assume Martin's axiom. Then any union of less than 2^ω sets from \mathcal{M}' is microscopic.

Theorem (K.)

 $\mathcal{M}\setminus \mathcal{M}'\neq \emptyset.$

Theorem (K.

 $add(\mathcal{M}) = \omega_1.$

イロン イボン イヨン トヨ

Theorem (K.)

 $\mathcal{M}\setminus \mathcal{M}'\neq \emptyset.$

Theorem (K.)

$$add(\mathcal{M}) = \omega_1.$$

ヘロト ヘロト ヘヨト ヘヨト

🔋 A. Kwela,

Additivity of the ideal of microscopic sets. Top. App. 204 (2016), 51-62.

K. Czudek, A. Kwela, N. Mrożek, W. Wołoszyn *Ideal-like properties of generalized microscopic sets*. Submitted.

Thank you for your attention!