On σ -countably tight spaces

István Juhász

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

SETTOP 2016

June 23, 2016

6TH EUROPEAN SET THEORY CONFERENCE

JULY 3-7, 2017

MTA RÉNYI INSTITUTE OF MATHEMATICS, BUDAPEST

www.renyi.hu

István Juhász (MTA Rényi Institute)

A B F A B F

A .

æ

イロト イヨト イヨト イヨト

2

イロト イヨト イヨト イヨト

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

< ロ > < 同 > < 回 > < 回 >

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

< ロ > < 同 > < 回 > < 回 >

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

PROBLEM

Are σ -CT (or *fin*-CT) homogeneous compacta of cardinality c?

・ロト ・ 四ト ・ ヨト ・ ヨト

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

PROBLEM

Are σ -CT (or fin-CT) homogeneous compacta of cardinality c?

EXAMPLES. 1) Set $\sigma_i = \{ x \in \{0, 1\}^{\kappa} : |\{\alpha < \kappa : x(\alpha) \neq i\}| < \omega \}.$

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

PROBLEM

Are σ -CT (or *fin*-CT) homogeneous compacta of cardinality c?

EXAMPLES. 1) Set $\sigma_i = \{x \in \{0, 1\}^{\kappa} : |\{\alpha < \kappa : x(\alpha) \neq i\}| < \omega\}$. Then $\sigma_0 \cup \sigma_1$ is a σ -compact subgroup of $\mathbb{C}_{\kappa} = \{0, 1\}^{\kappa}$, both σ_0 and σ_1 are Frèchet, hence CT, but $t(\sigma_0 \cup \sigma_1) = |\sigma_0 \cup \sigma_1| = \kappa$.

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

PROBLEM

Are σ -CT (or *fin*-CT) homogeneous compacta of cardinality c?

EXAMPLES. 1) Set $\sigma_i = \{x \in \{0, 1\}^{\kappa} : |\{\alpha < \kappa : x(\alpha) \neq i\}| < \omega\}$. Then $\sigma_0 \cup \sigma_1$ is a σ -compact subgroup of $\mathbb{C}_{\kappa} = \{0, 1\}^{\kappa}$, both σ_0 and σ_1 are Frèchet, hence CT, but $t(\sigma_0 \cup \sigma_1) = |\sigma_0 \cup \sigma_1| = \kappa$.

2) The compactum $\omega_1 + 1$ is 2-CT with $t(X) > \omega$.

DEFINITION. A space is σ -countably tight (= σ -CT), resp. *fin*-CT, if it is covered by countably many, resp. finitely many CT subspaces.

THEOREM (R. de la Vega)

Every CT homogeneous compactum has cardinality c.

compactum = infinite compact T_2 space

PROBLEM

Are σ -CT (or *fin*-CT) homogeneous compacta of cardinality c?

EXAMPLES. 1) Set $\sigma_i = \{x \in \{0, 1\}^{\kappa} : |\{\alpha < \kappa : x(\alpha) \neq i\}| < \omega\}$. Then $\sigma_0 \cup \sigma_1$ is a σ -compact subgroup of $\mathbb{C}_{\kappa} = \{0, 1\}^{\kappa}$, both σ_0 and σ_1 are Frèchet, hence CT, but $t(\sigma_0 \cup \sigma_1) = |\sigma_0 \cup \sigma_1| = \kappa$.

2) The compactum $\omega_1 + 1$ is 2-CT with $t(X) > \omega$.

æ

イロト イヨト イヨト イヨト

THEOREM 1.

Assume that the compactum X is the union of countably many dense CT subspaces,

THEOREM 1.

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous.

A > + = + + =

THEOREM 1.

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq \mathfrak{c}$.

< ロ > < 同 > < 回 > < 回 >

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq \mathfrak{c}$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq \mathfrak{c}$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

On the proofs:

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq c$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

On the proofs: In both cases, it suffices to show

 $w(X) \leq \mathfrak{c}$ and $\pi\chi(X) = \omega$

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq c$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

On the proofs: In both cases, it suffices to show

 $w(X) \leq \mathfrak{c}$ and $\pi\chi(X) = \omega$

by:

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq c$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

On the proofs: In both cases, it suffices to show

 $w(X) \leq \mathfrak{c}$ and $\pi\chi(X) = \omega$

by:

THEOREM (van Mill)

If X is a power homogeneous compactum then $|X| \le w(X)^{\pi\chi(X)}$.

Assume that the compactum X is the union of countably many dense CT subspaces, moreover X^{ω} is homogeneous. Then $|X| \leq c$.

THEOREM 2.

If X is a *fin*-CT homogeneous compactum then |X| = c.

On the proofs: In both cases, it suffices to show

 $w(X) \leq \mathfrak{c}$ and $\pi\chi(X) = \omega$

by:

THEOREM (van Mill)

If X is a power homogeneous compactum then $|X| \le w(X)^{\pi\chi(X)}$.

æ

イロト イヨト イヨト イヨト

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} ,

< ロ > < 同 > < 回 > < 回 >

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi \chi(x, X) \leq \omega$.

< ロ > < 同 > < 回 > < 回 >

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H

< ロ > < 同 > < 回 > < 回 >

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$.

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

イロト イ団ト イヨト イヨト

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta

(4) (5) (4) (5)

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta but they are much harder to prove for σ -CT compacta.

(4) (5) (4) (5)

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta but they are much harder to prove for σ -CT compacta.

THEOREM (Pytkeev)

 $L(X_{\delta}) \leq \mathfrak{c}$ for any CT compactum *X*.

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta but they are much harder to prove for σ -CT compacta.

THEOREM (Pytkeev)

 $L(X_{\delta}) \leq \mathfrak{c}$ for any CT compactum *X*.

The result of de la Vega then easily follows from van Mill's.

3

イロト 不得 トイヨト イヨト

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta but they are much harder to prove for σ -CT compacta.

THEOREM (Pytkeev)

 $L(X_{\delta}) \leq \mathfrak{c}$ for any CT compactum *X*.

The result of de la Vega then easily follows from van Mill's.

We do not know if Pytkeev's thm holds for σ - or fin-CT spaces :-(

- 34

THEOREM 3.

(i) No closed subspace of a σ -CT compactum X maps onto \mathbb{C}_{ω_1} , hence there is $x \in X$ with $\pi\chi(x, X) \leq \omega$. So, $\pi\chi(X) = \omega$ if X is homogeneous.

(ii) Every σ -CT compactum X has a non-empty subseparable G_{δ} subset H i.e. such that $H \subset \overline{A}$ for some $A \in [X]^{\omega}$. Clearly, $w(H) \leq \mathfrak{c}$.

These facts are well-known for CT compacta but they are much harder to prove for σ -CT compacta.

THEOREM (Pytkeev)

 $L(X_{\delta}) \leq \mathfrak{c}$ for any CT compactum *X*.

The result of de la Vega then easily follows from van Mill's.

We do not know if Pytkeev's thm holds for σ - or fin-CT spaces :-(

- 34

æ

イロト イヨト イヨト イヨト

THEOREM 4.

István Juhász (MTA Rényi Institute)

æ

イロト イヨト イヨト イヨト

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

< ロ > < 同 > < 回 > < 回 >

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

(1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in X;

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in X;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

```
(1) |\mathcal{Y}| \leq \mathfrak{c}, moreover every Y \in \mathcal{Y} is CT and dense in X;
```

```
(2) every H \in \mathcal{H} is a G_{\delta} of weight w(H) \leq \mathfrak{c}.
```

Then $w(X) \leq \mathfrak{c}$.

< ロ > < 同 > < 回 > < 回 >

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

```
(1) |\mathcal{Y}| \leq \mathfrak{c}, moreover every Y \in \mathcal{Y} is CT and dense in X;
```

```
(2) every H \in \mathcal{H} is a G_{\delta} of weight w(H) \leq \mathfrak{c}.
```

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

```
(1) |\mathcal{Y}| \leq \mathfrak{c}, moreover every Y \in \mathcal{Y} is CT and dense in X;
```

```
(2) every H \in \mathcal{H} is a G_{\delta} of weight w(H) \leq \mathfrak{c}.
```

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

– There is
$$x \in X^{\omega}$$
 with $\pi \chi(x, X) = \omega$

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in X;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

– There is
$$x \in X^{\omega}$$
 with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega$

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is
$$x \in X^{\omega}$$
 with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega$;

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c}$

< ロ > < 同 > < 回 > < 回 >

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c} \Rightarrow X^{\omega}$, hence X can be covered by them;

3

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c} \Rightarrow X^{\omega}$, hence X can be covered by them;

– we have a countable cover \mathcal{Y} of X by dense CT subsets.

3

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c} \Rightarrow X^{\omega}$, hence X can be covered by them;

- we have a countable cover \mathcal{Y} of X by dense CT subsets.
- So, by THM 4., $w(X) \leq \mathfrak{c}$.

э.

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c} \Rightarrow X^{\omega}$, hence X can be covered by them;

- we have a countable cover \mathcal{Y} of X by dense CT subsets.
- So, by THM 4., $w(X) \leq c$. Now apply van Mill.

THEOREM 4.

Let X be a compactum with two covers \mathcal{Y} and \mathcal{H} such that

- (1) $|\mathcal{Y}| \leq \mathfrak{c}$, moreover every $Y \in \mathcal{Y}$ is CT and dense in *X*;
- (2) every $H \in \mathcal{H}$ is a G_{δ} of weight $w(H) \leq \mathfrak{c}$.

Then $w(X) \leq \mathfrak{c}$.

Pf of THM 1. :

- There is $x \in X^{\omega}$ with $\pi \chi(x, X) = \omega \Rightarrow \pi \chi(X^{\omega}) = \omega \Rightarrow \pi \chi(X) = \omega;$

-X, hence X^{ω} has a G_{δ} of weight $\leq \mathfrak{c} \Rightarrow X^{\omega}$, hence X can be covered by them;

- we have a countable cover \mathcal{Y} of X by dense CT subsets.
- So, by THM 4., $w(X) \leq c$. Now apply van Mill.

æ

イロト イヨト イヨト イヨト

æ

イロト イヨト イヨト イヨト

 $-\pi\chi(X) = \omega$ as X is homogeneous;

э

イロト イ団ト イヨト イヨト

 $-\pi\chi(X) = \omega$ as X is homogeneous;

-X has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $-\pi\chi(X) = \omega$ as X is homogeneous;

-X has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $-X = \cup \mathcal{Y}$ where $|\mathcal{Y}| < \omega$ and every $Y \in \mathcal{Y}$ is CT;

3

 $-\pi\chi(X) = \omega$ as X is homogeneous;

- *X* has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $- X = \cup \mathcal{Y}$ where $|\mathcal{Y}| < \omega$ and every $Y \in \mathcal{Y}$ is CT;

- there are \overline{U} regular closed and $\mathcal{Z} \subset \mathcal{Y}$ such that $\overline{U} \subset \cup \mathcal{Z}$ and $Z \cap \overline{U}$ is dense in \overline{U} for every $Z \in \mathcal{Z}$;

.

 $-\pi\chi(X) = \omega$ as X is homogeneous;

- *X* has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $- X = \cup \mathcal{Y}$ where $|\mathcal{Y}| < \omega$ and every $Y \in \mathcal{Y}$ is CT;

- there are \overline{U} regular closed and $\mathcal{Z} \subset \mathcal{Y}$ such that $\overline{U} \subset \cup \mathcal{Z}$ and $Z \cap \overline{U}$ is dense in \overline{U} for every $Z \in \mathcal{Z}$;

- hence $w(\overline{U}) \leq \mathfrak{c}$ by THM 4. ;

.

 $-\pi\chi(X) = \omega$ as X is homogeneous;

- *X* has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $- X = \cup \mathcal{Y}$ where $|\mathcal{Y}| < \omega$ and every $Y \in \mathcal{Y}$ is CT;

- there are \overline{U} regular closed and $\mathcal{Z} \subset \mathcal{Y}$ such that $\overline{U} \subset \cup \mathcal{Z}$ and $Z \cap \overline{U}$ is dense in \overline{U} for every $Z \in \mathcal{Z}$;

- hence $w(\overline{U}) \leq \mathfrak{c}$ by THM 4. ;

– hence $w(X) \leq c$ using compactness and homogeneity.

 $-\pi\chi(X) = \omega$ as X is homogeneous;

- *X* has a cover \mathcal{H} by G_{δ} sets of weight $\leq \mathfrak{c}$;

 $- X = \cup \mathcal{Y}$ where $|\mathcal{Y}| < \omega$ and every $Y \in \mathcal{Y}$ is CT;

- there are \overline{U} regular closed and $\mathcal{Z} \subset \mathcal{Y}$ such that $\overline{U} \subset \cup \mathcal{Z}$ and $Z \cap \overline{U}$ is dense in \overline{U} for every $Z \in \mathcal{Z}$;

- hence $w(\overline{U}) \leq \mathfrak{c}$ by THM 4. ;

– hence $w(X) \leq c$ using compactness and homogeneity.

On σ -CT products

æ

イロト イヨト イヨト イヨト

On σ -CT products

What can we say if X^{ω} is (also) σ -CT?

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

THEOREM 5.

If the product $X = \prod \{X_i : i \in I\}$ is σ -CT then all but finitely many of its factors X_i are CT.

A .

THEOREM 5.

If the product $X = \prod \{X_i : i \in I\}$ is σ -CT then all but finitely many of its factors X_i are CT.

So, if X^{ω} is σ -CT then X is CT.

- **→ → →**

A .

THEOREM 5.

If the product $X = \prod \{X_i : i \in I\}$ is σ -CT then all but finitely many of its factors X_i are CT.

So, if X^{ω} is σ -CT then X is CT.

THANK YOU FOR YOUR ATTENTION !

- **→ → →**

THEOREM 5.

If the product $X = \prod \{X_i : i \in I\}$ is σ -CT then all but finitely many of its factors X_i are CT.

So, if X^{ω} is σ -CT then X is CT.

THANK YOU FOR YOUR ATTENTION !

MANY THANKS TO THE ORGANIZERS!

6TH EUROPEAN SET THEORY CONFERENCE

JULY 3-7, 2017

MTA RÉNYI INSTITUTE OF MATHEMATICS, BUDAPEST

www.renyi.hu

István Juhász (MTA Rényi Institute)

A B F A B F

A .