A fragment of PFA consistent with large continuum

Tanmay Inamdar

University of East Anglia, Norwich

A partition relation

Definition: $\omega_1 \rightarrow (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$

For every graph $[\omega_1]^2 = K_0 \cup K_1$, one of the two happens:

- (i) there is an uncountable $A \subseteq \omega_1$ such that $[A]^2 \subseteq K_0$, or
- (ii) there is an uncountable A ⊆ ω₁ and an uncountable pairwise disjoint B ⊆ [ω₁]^{<ω} such that for every α ∈ A and F ∈ B, if α < F, then {α} ⊗ F ∩ K₁ ≠ Ø.

A partition relation

Definition: $\omega_1 \rightarrow (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$

For every graph $[\omega_1]^2 = K_0 \cup K_1$, one of the two happens:

- (i) there is an uncountable $A \subseteq \omega_1$ such that $[A]^2 \subseteq K_0$, or
- (ii) there is an uncountable A ⊆ ω₁ and an uncountable pairwise disjoint B ⊆ [ω₁]^{<ω} such that for every α ∈ A and F ∈ B, if α < F, then {α} ⊗ F ∩ K₁ ≠ Ø.

Theorem (Todorčević)

The side condition method

The poset: $p = (w_p, \mathcal{N}_p)$ where

(i) $w_p \subseteq \omega_1$ a finite 0-clique;

(ii) \mathcal{N}_p a finite \in -chain of elementary substructures of $(H_{\theta}, \in, \triangleleft)$ containing K_0, K_1 ;

(iii) For every $\{\alpha, \beta\}_{<}$ in w_p , there is $M \in \mathcal{N}_p$ such that $M \cap \{\alpha, \beta\}_{<} = \{\alpha\}.$

The side condition method

The poset: $p = (w_p, \mathcal{N}_p)$ where

(i) $w_p \subseteq \omega_1$ a finite 0-clique;

- (ii) \mathcal{N}_p a finite \in -chain of elementary substructures of $(H_{\theta}, \in, \triangleleft)$ containing K_0, K_1 ;
- (iii) For every $\{\alpha, \beta\}_{<}$ in w_p , there is $M \in \mathcal{N}_p$ such that $M \cap \{\alpha, \beta\}_{<} = \{\alpha\}.$

Proving properness

For $n < \omega$, let \mathscr{H}^n be the n-fold Fubini product of the coideal of uncountable subsets of ω_1 . If $\mathcal{F} \in \mathscr{H}^n \cap M_0 \in M_1 \in M_2 \ldots \in M_n$, $\bar{v} \in \mathcal{F}$ is separated by $M_0 \in M_1 \in M_2 \ldots \in M_n$, then there is $\bar{u} \in M_0$ such that $\bar{u} \cup \bar{v}$ is a 0-clique. An axiom

Definition: GID_{ω_1}

Let $[\omega_1]^2 = K_0 \cup K_1$ be a graph on ω_1 . Let \mathscr{I} be a proper ideal on ω_1 which is σ -generated by $\langle I_\alpha : \alpha < \omega_1 \rangle$ such that for any $n < \omega$, if $\mathcal{F} \in \mathscr{H}^n$, then there are $\bar{u} < \bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_0$. Then there is an uncountable 0-clique.

An axiom

Definition: GID_{ω_1}

Let $[\omega_1]^2 = K_0 \cup K_1$ be a graph on ω_1 . Let \mathscr{I} be a proper ideal on ω_1 which is σ -generated by $\langle I_\alpha : \alpha < \omega_1 \rangle$ such that for any $n < \omega$, if $\mathcal{F} \in \mathscr{H}^n$, then there are $\bar{u} < \bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_0$. Then there is an uncountable 0-clique.

PFA implies GID_{ω_1} : $p = (w_p, \mathcal{N}_p)$ where

(i) $w_p \subseteq \omega_1$ a finite 0-clique;

(ii) \mathcal{N}_p a finite \in -chain of elementary substructures of $(H_{\theta}, \in, \triangleleft)$ containing $K_0, K_1, \langle I_{\alpha} : \alpha < \omega_1 \rangle$;

(日) (同) (三) (三) (三) (○) (○)

(iii) For every $\{\alpha, \beta\}_{<}$ in w_p , there is $M \in \mathcal{N}_p$ such that $\bigcup (M \cap \mathscr{I}) \cap \{\alpha, \beta\}_{<} = \{\alpha\}.$

An axiom

Definition: GID_{ω_1}

Let $[\omega_1]^2 = K_0 \cup K_1$ be a graph on ω_1 . Let \mathscr{I} be a proper ideal on ω_1 which is σ -generated by $\langle I_\alpha : \alpha < \omega_1 \rangle$ such that for any $n < \omega$, if $\mathcal{F} \in \mathscr{H}^n$, then there are $\bar{u} < \bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_0$. Then there is an uncountable 0-clique.

PFA implies GID_{ω_1} : $p = (w_p, \mathcal{N}_p)$ where

(i) $w_p \subseteq \omega_1$ a finite 0-clique;

(ii) \mathcal{N}_p a finite \in -chain of elementary substructures of $(H_{\theta}, \in, \triangleleft)$ containing $K_0, K_1, \langle I_{\alpha} : \alpha < \omega_1 \rangle$;

(iii) For every $\{\alpha, \beta\}_{<}$ in w_p , there is $M \in \mathcal{N}_p$ such that $\bigcup (M \cap \mathscr{I}) \cap \{\alpha, \beta\}_{<} = \{\alpha\}.$

Application

 (GID_{ω_1}) If X is a second countable T_2 space of size \aleph_1 , $K \subseteq [X]^2$ an open graph such that the σ -ideal of countably chromatic sets is proper and \aleph_1 -generated, then X has an uncountable clique.

Main result

Theorem (I.)

(CH) Let κ be a regular cardinal such that $2^{<\kappa} = \kappa$ and $\kappa^{\aleph_1} = \kappa$. Then there is an \aleph_2 -Knaster, proper partial order \mathbb{P} such that

$$V^{\mathbb{P}} \models \mathsf{GID}_{\omega_1} + \mathsf{MA}_{\omega_1} + 2^{\aleph_0} = \kappa.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main result

Theorem (I.)

(CH) Let κ be a regular cardinal such that $2^{<\kappa} = \kappa$ and $\kappa^{\aleph_1} = \kappa$. Then there is an \aleph_2 -Knaster, proper partial order \mathbb{P} such that

$$V^{\mathbb{P}} \models \mathsf{GID}_{\omega_1} + \mathsf{MA}_{\omega_1} + 2^{\aleph_0} = \kappa.$$

Method

Asperó-Mota iterations: Build an iteration $\langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle$ with symmetric systems of structures as side conditions. Also need symmetries at individual stages, and a sequence of increasingly correct truth predicates for definability of the forcing at individual stages.

Symmetric systems

Definition: Symmetric systems

Let $T \subseteq H(\kappa)$ and \mathcal{N} a finite set of countable subsets of $H(\kappa)$. Then \mathcal{N} is a *T*-symmetric system if the following hold:

- (i) if $N \in \mathcal{N}$, then $(N, \in, T) \prec (H(\kappa), \in, T)$;
- (ii) if $N, N' \in \mathcal{N}$ are such that $\delta_N = \delta_{N'}$ then there is a unique isomorphism

$$\Psi_{N,N'}:(N,\in,T)\to(N',\in,T)$$

which is the identity on $N \cap N'$;

- (iii) if $N, N', M \in \mathcal{N}$ are such that $\delta_N = \delta_{N'}$ and $M \in N$, then $\Psi_{N,N'}(M) \in \mathcal{N}$;
- (iv) if $M, N \in \mathcal{N}$ are such that $\delta_M < \delta_N$, then there is $N' \in \mathcal{N}$ such that $M \in N'$ and $\delta_N = \delta_{N'}$.

Why symmetric systems?

Lemma

Let \mathcal{N} be a symmetric system and let $N \in \mathcal{N}$. Then there is $\mathcal{M} \subseteq \mathcal{N}$ a finite \in -chain such that

- (i) N is the lowest model of \mathcal{M} ;
- (ii) If $M \in \mathcal{N}$ is such that $\delta_M > \delta_N$, then there is $M' \in \mathcal{M}$ such that $\delta_M = \delta_{M'}$.

Why symmetric systems?

Lemma

Let \mathcal{N} be a symmetric system and let $N \in \mathcal{N}$. Then there is $\mathcal{M} \subseteq \mathcal{N}$ a finite \in -chain such that

- (i) N is the lowest model of \mathcal{M} ;
- (ii) If $M \in \mathcal{N}$ is such that $\delta_M > \delta_N$, then there is $M' \in \mathcal{M}$ such that $\delta_M = \delta_{M'}$.

Lemma

Let \mathscr{I} be an ideal on ω_1 which is σ -generated by $\langle I_{\alpha} : \alpha < \omega_1 \rangle$.

- (i) If $M, N \prec (H_{\theta}, \in, \triangleleft)$ containing $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ are such that $\delta_M = \delta_N$, then for any $\{\alpha, \beta\}_{<} \subseteq \omega_1$, M separates $\{\alpha, \beta\}_{<}$ iff N separates $\{\alpha, \beta\}_{<}$.
- (ii) If \mathcal{N} is a symmetric system all elements of which contain $\langle I_{\alpha}: \alpha < \omega_1 \rangle$, if $w \in [\omega_1]^{<\omega}$ is separated by \mathcal{N} and $N \in \mathcal{N}$ is a low model of \mathcal{N} , then there is $\mathcal{M} \subseteq \mathcal{N}$ as above which separates w.

Asperó-Mota iterations

Setup

Let $\Phi : \kappa \to H(\kappa)$ a nice surjection. Let $\langle \theta_{\alpha} : \alpha \leq \kappa \rangle$ be a fast growing sequence of regular cardinals such that $\theta_0 = |H(\beth_2(\kappa))|^+$, and for $\alpha \leq \kappa$, let

$$\mathcal{M}_{\alpha}^{*} = \{ N^{*} \in [H(\theta_{\alpha})]^{\aleph_{0}} \colon N^{*} \prec H(\theta_{\alpha}), \Phi, \triangleleft, \langle \theta_{\beta} \colon \beta < \alpha \rangle \in N^{*} \},$$

and $\mathcal{M}_{\alpha} = \{N^* \cap H(\kappa) \colon N^* \in \mathcal{M}_{\alpha}^*\}$. Let T^{α} be the \triangleleft -least $T \subseteq H(\kappa)$ such that for every $N \in [H(\kappa)]^{\aleph_0}$, if $(N, \in T) \prec (H(\kappa), \in, T)$, then $N \in \mathcal{M}_{\alpha}$. Let

$$\mathcal{T}_{\alpha} = \{ \mathsf{N} \in [\mathsf{H}(\kappa)]^{\aleph_0} \colon (\mathsf{N}, \in, T^{\alpha}) \prec (\mathsf{H}(\kappa), \in, T^{\alpha}) \}.$$

Asperó-Mota iterations

The partial order

The poset is $\mathbb{P} = \mathbb{P}_{\kappa}$ where $\langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle$ is obtained in the following way. Let $\beta \leq \kappa$. Suppose that \mathbb{P}_{α} has been defined for every $\alpha < \beta$. Elements of \mathbb{P}_{β} will be a pair $q = (F_q, \Delta_q)$ where (C1) F_q is a finite function such that dom $(F_q) \subseteq \beta$; (C2) Δ_{α} is a finite set of pairs (N, γ) such that $N \in [H(\kappa)]^{\aleph_0}$, γ an ordinal such that $\gamma \leq \min\{\beta, \sup(N \cap \kappa)\}$; (C3) $\mathcal{N}_{\beta}^{q} = \{ N \colon (N, \beta) \in \Delta_{q}, \beta \in N \}$ is a T^{β} -symmetric system; (C4) if $\alpha < \beta$, then $q|_{\alpha} = (F_{q} \upharpoonright \alpha, \{(N, \min\{\alpha, \gamma\}) \colon (N, \gamma) \in \Delta_{q}\}) \in \mathbb{P}_{\alpha};$ (C5) if $\xi \in \text{dom}(F_{\alpha})$, then $F_{\alpha}(\xi) \in H(\kappa)$ and $q|_{\mathcal{E}} \Vdash "F_{q}(\xi) \in \Upsilon(\xi)$ "; (C6) if $\xi \in \text{dom}(F_q), N \in \mathcal{T}_{\xi+1}$ and $(N, \nu) \in \Delta_q$ for some

 $\nu \geq \xi + 1$, then $q|_{\xi} \Vdash$ " $F_q(\xi)$ is $(N[G_{\xi}], \Upsilon(\xi))$ -generic".

The iterands

The bookkeeping

Suppose we have defined \mathbb{P}_{α} .

(i) If $\Phi(\alpha)$ is a \mathbb{P}_{α} -name for a ccc poset, then $\Upsilon(\alpha) = \Phi(\alpha)$.

(ii) If $\Phi(\alpha)$ is a \mathbb{P}_{α} -name for a graph $[\omega_1]^2 = K_0 \cup K_1$ and a proper ideal \mathscr{I} which is σ -generated by $\langle I_{\zeta} : \zeta < \omega_1 \rangle$ which has no bad sets, then $\Upsilon(\alpha) = \mathbb{Q}^{K_0, K_1, \langle I_{\zeta} : \zeta < \omega_1 \rangle, V, G_{\alpha}}$.

(iii) Otherwise, $\Upsilon(\alpha)$ is the trivial poset.

The iterands

The bookkeeping

Suppose we have defined \mathbb{P}_{α} .

(i) If $\Phi(\alpha)$ is a \mathbb{P}_{α} -name for a ccc poset, then $\Upsilon(\alpha) = \Phi(\alpha)$.

- (ii) If $\Phi(\alpha)$ is a \mathbb{P}_{α} -name for a graph $[\omega_1]^2 = K_0 \cup K_1$ and a proper ideal \mathscr{I} which is σ -generated by $\langle I_{\zeta} : \zeta < \omega_1 \rangle$ which has no bad sets, then $\Upsilon(\alpha) = \mathbb{Q}^{K_0, K_1, \langle I_{\zeta} : \zeta < \omega_1 \rangle, V, G_{\alpha}}$.
- (iii) Otherwise, $\Upsilon(\alpha)$ is the trivial poset.

The iterand: $q \in \mathbb{Q}^{K_0, K_1, \langle I_\zeta : \zeta < \omega_1 \rangle, V, G_\alpha}$ if $q = (w_q, \mathcal{N}_q)$ where

- 1. $w_q \subseteq \omega_1$ is a finite 0-clique;
- 2. $\mathcal{N}_q \subseteq [H(\kappa)^V]^{\aleph_0}$ is, in V, a $T^{\alpha+1}$ -symmetric system which separates w_q : for every $\xi < \nu$ in w_q , there is $M \in \mathcal{N}_q$ such that $\bigcup (M[\mathcal{G}_{\alpha}] \cap \mathscr{I}) \cap \{\xi, \nu\} = \{\xi\}.$

3. There is some $p \in G_{\alpha}$ such that $\mathcal{N}_q \subseteq \mathcal{N}_{\alpha}^p$.

Properness

Propitiousness

In $V[G_{\alpha}]$, \mathbb{Q} is propitious for V, G_{α} if there is a club $D \subseteq [H(\kappa)^{V}]^{\aleph_{0}}$, $D \in V$, such that if (a) $q \in \mathbb{Q}$,

- (b) $\mathcal{N} \subseteq D$ is a $\mathcal{T}^{\alpha+1}$ -symmetric system,
- (c) $q \in N[G_{\alpha}]$ for some $N \in \mathcal{N}$ of minimal height,
- (d) there is a $p \in G_{\alpha}$ such that $\mathcal{N} \subseteq \mathcal{N}_{\alpha}^{p}$,

then there is a $q^* \leq q$ which is $(N[\mathcal{G}_{\alpha}], \mathbb{Q})$ -generic for each $N \in \mathcal{N}$.

Properness

Propitiousness In $V[G_{\alpha}]$, \mathbb{Q} is propitious for V, G_{α} if there is a club $D \subseteq [H(\kappa)^{V}]^{\aleph_{0}}$, $D \in V$, such that if (a) $q \in \mathbb{Q}$, (b) $\mathcal{N} \subseteq D$ is a $T^{\alpha+1}$ -symmetric system, (c) $q \in N[G_{\alpha}]$ for some $N \in \mathcal{N}$ of minimal height, (d) there is a $p \in G_{\alpha}$ such that $\mathcal{N} \subseteq \mathcal{N}^{p}_{\alpha}$, then there is a $q^{*} \leq q$ which is $(N[G_{\alpha}], \mathbb{Q})$ -generic for each $N \in \mathcal{N}$.

Propitiousness of the iterands

- 1. (Shelah, Mekler) ccc posets are propitious;
- 2. The other iterands: inductively, but essentially the same as in the two lemmas.

Questions

Are any of the following consistent?

- (i) Classification of directed posets/transitive relations + $2^{\aleph_0} > \aleph_2.$
- (ii) (Shelah+Zapletal) Every poset of uniform density \aleph_1 embeds $\mathbb{C}(\aleph_1) + 2^{\aleph_0} > \aleph_2$.
- (iii) (Fremlin BU) $MA_{\omega_1} + \omega_1 \not\rightarrow (\omega_1, \alpha)^2$ for some countable ordinal α .
 - (Todorčević) Necessarily, $\alpha > \omega^2$.
 - (Abraham+Todorčević) MA_{ω1} + ω1 → (ω1, (ω1; fin ω1))² is consistent.

(iv) $\mathsf{RPFA}^2 + 2^{\aleph_0} > \aleph_2$.

The end

