A fragment of PFA consistent with large continuum

Tanmay Inamdar

University of East Anglia, Norwich

A partition relation

Definition: $\omega_{1} \rightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$
For every graph $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$, one of the two happens:
(i) there is an uncountable $A \subseteq \omega_{1}$ such that $[A]^{2} \subseteq K_{0}$, or
(ii) there is an uncountable $A \subseteq \omega_{1}$ and an uncountable pairwise disjoint $\mathcal{B} \subseteq\left[\omega_{1}\right]^{<\omega}$ such that for every $\alpha \in A$ and $F \in \mathcal{B}$, if $\alpha<F$, then $\{\alpha\} \otimes F \cap K_{1} \neq \emptyset$.

A partition relation

Definition: $\omega_{1} \rightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$
For every graph $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$, one of the two happens:
(i) there is an uncountable $A \subseteq \omega_{1}$ such that $[A]^{2} \subseteq K_{0}$, or
(ii) there is an uncountable $A \subseteq \omega_{1}$ and an uncountable pairwise disjoint $\mathcal{B} \subseteq\left[\omega_{1}\right]^{<\omega}$ such that for every $\alpha \in A$ and $F \in \mathcal{B}$, if $\alpha<F$, then $\{\alpha\} \otimes F \cap K_{1} \neq \emptyset$.

Theorem (Todorčević)
(i) PFA implies $\omega_{1} \rightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$;
(ii) $\omega_{1} \rightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$ implies that there are no S-spaces;
(iii) $\left(\mathfrak{p}>\omega_{1}\right.$ or $\left.\mathfrak{b}>\omega_{1}\right) \omega_{1} \rightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$ implies $\omega_{1} \rightarrow\left(\omega_{1}, \alpha\right)^{2}$ for every ordinal $\alpha<\omega_{1}$.

The side condition method

The poset: $p=\left(w_{p}, \mathcal{N}_{p}\right)$ where
(i) $w_{p} \subseteq \omega_{1}$ a finite 0 -clique;
(ii) \mathcal{N}_{p} a finite \in-chain of elementary substructures of $\left(H_{\theta}, \in, \triangleleft\right)$ containing K_{0}, K_{1};
(iii) For every $\{\alpha, \beta\}_{<}$in w_{p}, there is $M \in \mathcal{N}_{p}$ such that $M \cap\{\alpha, \beta\}_{<}=\{\alpha\}$.

The side condition method

The poset: $p=\left(w_{p}, \mathcal{N}_{p}\right)$ where
(i) $w_{p} \subseteq \omega_{1}$ a finite 0 -clique;
(ii) \mathcal{N}_{p} a finite \in-chain of elementary substructures of $\left(H_{\theta}, \in, \triangleleft\right)$ containing K_{0}, K_{1};
(iii) For every $\{\alpha, \beta\}_{<}$in w_{p}, there is $M \in \mathcal{N}_{p}$ such that $M \cap\{\alpha, \beta\}_{<}=\{\alpha\}$.

Proving properness

For $n<\omega$, let \mathscr{H}^{n} be the n-fold Fubini product of the coideal of uncountable subsets of ω_{1}. If $\mathcal{F} \in \mathscr{H}^{n} \cap M_{0} \in M_{1} \in M_{2} \ldots \in M_{n}$, $\bar{v} \in \mathcal{F}$ is separated by $M_{0} \in M_{1} \in M_{2} \ldots \in M_{n}$, then there is $\bar{u} \in M_{0}$ such that $\bar{u} \cup \bar{v}$ is a 0-clique.

An axiom

Definition: GID $_{\omega_{1}}$

Let $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ be a graph on ω_{1}. Let \mathscr{I} be a proper ideal on ω_{1} which is σ-generated by $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that for any $n<\omega$, if $\mathcal{F} \in \mathscr{H}^{n}$, then there are $\bar{u}<\bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_{0}$. Then there is an uncountable 0 -clique.

An axiom

Definition: GID $_{\omega_{1}}$

Let $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ be a graph on ω_{1}. Let \mathscr{I} be a proper ideal on ω_{1} which is σ-generated by $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that for any $n<\omega$, if $\mathcal{F} \in \mathscr{H}^{n}$, then there are $\bar{u}<\bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_{0}$.
Then there is an uncountable 0 -clique.
PFA implies GID $_{\omega_{1}}: p=\left(w_{p}, \mathcal{N}_{p}\right)$ where
(i) $w_{p} \subseteq \omega_{1}$ a finite 0 -clique;
(ii) \mathcal{N}_{p} a finite \in-chain of elementary substructures of $\left(H_{\theta}, \in, \triangleleft\right)$ containing $K_{0}, K_{1},\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$;
(iii) For every $\{\alpha, \beta\}_{<}$in w_{p}, there is $M \in \mathcal{N}_{p}$ such that $\bigcup(M \cap \mathscr{I}) \cap\{\alpha, \beta\}_{<}=\{\alpha\}$.

An axiom

Definition: GID $_{\omega_{1}}$

Let $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ be a graph on ω_{1}. Let \mathscr{I} be a proper ideal on ω_{1} which is σ-generated by $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that for any $n<\omega$, if $\mathcal{F} \in \mathscr{H}^{n}$, then there are $\bar{u}<\bar{v}$ in \mathcal{F} such that $\bar{u} \otimes \bar{v} \subseteq K_{0}$.
Then there is an uncountable 0 -clique.
PFA implies GID $_{\omega_{1}}: p=\left(w_{p}, \mathcal{N}_{p}\right)$ where
(i) $w_{p} \subseteq \omega_{1}$ a finite 0 -clique;
(ii) \mathcal{N}_{p} a finite \in-chain of elementary substructures of $\left(H_{\theta}, \in, \triangleleft\right)$ containing $K_{0}, K_{1},\left\langle l_{\alpha}: \alpha<\omega_{1}\right\rangle$;
(iii) For every $\{\alpha, \beta\}_{<}$in w_{p}, there is $M \in \mathcal{N}_{p}$ such that $\bigcup(M \cap \mathscr{I}) \cap\{\alpha, \beta\}_{<}=\{\alpha\}$.

Application
$\left(\mathrm{GID}_{\omega_{1}}\right)$ If X is a second countable T_{2} space of size $\aleph_{1}, K \subseteq[X]^{2}$ an open graph such that the σ-ideal of countably chromatic sets is proper and \aleph_{1}-generated, then X has an uncountable clique.

Main result

Theorem (I.)
(CH) Let κ be a regular cardinal such that $2^{<\kappa}=\kappa$ and $\kappa^{\aleph_{1}}=\kappa$. Then there is an \aleph_{2}-Knaster, proper partial order \mathbb{P} such that

$$
V^{\mathbb{P}} \models \mathrm{GID}_{\omega_{1}}+\mathrm{MA}_{\omega_{1}}+2^{\aleph_{0}}=\kappa .
$$

Main result

Theorem (I.)
(CH) Let κ be a regular cardinal such that $2^{<\kappa}=\kappa$ and $\kappa^{\aleph_{1}}=\kappa$. Then there is an \aleph_{2}-Knaster, proper partial order \mathbb{P} such that

$$
V^{\mathbb{P}} \models \mathrm{GID}_{\omega_{1}}+\mathrm{MA}_{\omega_{1}}+2^{\aleph_{0}}=\kappa .
$$

Method

Asperó-Mota iterations: Build an iteration $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa\right\rangle$ with symmetric systems of structures as side conditions. Also need symmetries at individual stages, and a sequence of increasingly correct truth predicates for definability of the forcing at individual stages.

Symmetric systems

Definition: Symmetric systems

Let $T \subseteq H(\kappa)$ and \mathcal{N} a finite set of countable subsets of $H(\kappa)$. Then \mathcal{N} is a T-symmetric system if the following hold:
(i) if $N \in \mathcal{N}$, then $(N, \in, T) \prec(H(\kappa), \in, T)$;
(ii) if $N, N^{\prime} \in \mathcal{N}$ are such that $\delta_{N}=\delta_{N^{\prime}}$ then there is a unique isomorphism

$$
\Psi_{N, N^{\prime}}:(N, \in, T) \rightarrow\left(N^{\prime}, \in, T\right)
$$

which is the identity on $N \cap N^{\prime}$;
(iii) if $N, N^{\prime}, M \in \mathcal{N}$ are such that $\delta_{N}=\delta_{N^{\prime}}$ and $M \in N$, then $\Psi_{N, N^{\prime}}(M) \in \mathcal{N} ;$
(iv) if $M, N \in \mathcal{N}$ are such that $\delta_{M}<\delta_{N}$, then there is $N^{\prime} \in \mathcal{N}$ such that $M \in N^{\prime}$ and $\delta_{N}=\delta_{N^{\prime}}$.

Why symmetric systems?

Lemma
Let \mathcal{N} be a symmetric system and let $N \in \mathcal{N}$. Then there is $\mathcal{M} \subseteq \mathcal{N}$ a finite \in-chain such that
(i) N is the lowest model of \mathcal{M};
(ii) If $M \in \mathcal{N}$ is such that $\delta_{M}>\delta_{N}$, then there is $M^{\prime} \in \mathcal{M}$ such that $\delta_{M}=\delta_{M^{\prime}}$.

Why symmetric systems?

Lemma

Let \mathcal{N} be a symmetric system and let $N \in \mathcal{N}$. Then there is $\mathcal{M} \subseteq \mathcal{N}$ a finite \in-chain such that
(i) N is the lowest model of \mathcal{M};
(ii) If $M \in \mathcal{N}$ is such that $\delta_{M}>\delta_{N}$, then there is $M^{\prime} \in \mathcal{M}$ such that $\delta_{M}=\delta_{M^{\prime}}$.

Lemma

Let \mathscr{I} be an ideal on ω_{1} which is σ-generated by $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$.
(i) If $M, N \prec\left(H_{\theta}, \in, \triangleleft\right)$ containing $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$ are such that $\delta_{M}=\delta_{N}$, then for any $\{\alpha, \beta\}_{<} \subseteq \omega_{1}, M$ separates $\{\alpha, \beta\}_{<}$iff N separates $\{\alpha, \beta\}_{<}$.
(ii) If \mathcal{N} is a symmetric system all elements of which contain $\left\langle I_{\alpha}: \alpha<\omega_{1}\right\rangle$, if $w \in\left[\omega_{1}\right]^{<\omega}$ is separated by \mathcal{N} and $N \in \mathcal{N}$ is a low model of \mathcal{N}, then there is $\mathcal{M} \subseteq \mathcal{N}$ as above which separates w.

Asperó-Mota iterations

Setup

Let $\Phi: \kappa \rightarrow H(\kappa)$ a nice surjection. Let $\left\langle\theta_{\alpha}: \alpha \leq \kappa\right\rangle$ be a fast growing sequence of regular cardinals such that $\theta_{0}=\left|H\left(\beth_{2}(\kappa)\right)\right|^{+}$, and for $\alpha \leq \kappa$, let

$$
\mathcal{M}_{\alpha}^{*}=\left\{N^{*} \in\left[H\left(\theta_{\alpha}\right)\right]^{\aleph_{0}}: N^{*} \prec H\left(\theta_{\alpha}\right), \Phi, \triangleleft,\left\langle\theta_{\beta}: \beta<\alpha\right\rangle \in N^{*}\right\},
$$

and $\mathcal{M}_{\alpha}=\left\{N^{*} \cap H(\kappa): N^{*} \in \mathcal{M}_{\alpha}^{*}\right\}$. Let T^{α} be the \triangleleft-least
$T \subseteq H(\kappa)$ such that for every $N \in[H(\kappa)]^{\aleph_{0}}$, if
$(N, \in T) \prec(H(\kappa), \in, T)$, then $N \in \mathcal{M}_{\alpha}$. Let

$$
\mathcal{T}_{\alpha}=\left\{N \in[H(\kappa)]^{\aleph_{0}}:\left(N, \in, T^{\alpha}\right) \prec\left(H(\kappa), \in, T^{\alpha}\right)\right\} .
$$

Asperó-Mota iterations

The partial order
The poset is $\mathbb{P}=\mathbb{P}_{\kappa}$ where $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa\right\rangle$ is obtained in the following way. Let $\beta \leq \kappa$. Suppose that \mathbb{P}_{α} has been defined for every $\alpha<\beta$. Elements of \mathbb{P}_{β} will be a pair $q=\left(F_{q}, \Delta_{q}\right)$ where
(C1) F_{q} is a finite function such that $\operatorname{dom}\left(F_{q}\right) \subseteq \beta$;
(C2) Δ_{q} is a finite set of pairs (N, γ) such that $N \in[H(\kappa)]^{N_{0}}, \gamma$ an ordinal such that $\gamma \leq \min \{\beta, \sup (N \cap \kappa)\}$;
(C3) $\mathcal{N}_{\beta}^{q}=\left\{N:(N, \beta) \in \Delta_{q}, \beta \in N\right\}$ is a T^{β}-symmetric system;
(C4) if $\alpha<\beta$, then
$\left.q\right|_{\alpha}=\left(F_{q} \upharpoonright \alpha,\left\{(N, \min \{\alpha, \gamma\}):(N, \gamma) \in \Delta_{q}\right\}\right) \in \mathbb{P}_{\alpha} ;$
(C5) if $\xi \in \operatorname{dom}\left(F_{q}\right)$, then $F_{q}(\xi) \in H(\kappa)$ and $\left.q\right|_{\xi} \Vdash$ " $F_{q}(\xi) \in \Upsilon(\xi)$ ";
(C6) if $\xi \in \operatorname{dom}\left(F_{q}\right), N \in \mathcal{T}_{\xi+1}$ and $(N, \nu) \in \Delta_{q}$ for some $\nu \geq \xi+1$, then $\left.q\right|_{\xi} \Vdash{ }^{-}$" $F_{q}(\xi)$ is $\left(N\left[G_{\xi}\right], \Upsilon(\xi)\right)$-generic".

The iterands

The bookkeeping
Suppose we have defined \mathbb{P}_{α}.
(i) If $\Phi(\alpha)$ is a \mathbb{P}_{α}-name for a ccc poset, then $\Upsilon(\alpha)=\Phi(\alpha)$.
(ii) If $\Phi(\alpha)$ is a \mathbb{P}_{α}-name for a graph $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ and a proper ideal \mathscr{I} which is σ-generated by $\left\langle l_{\zeta}: \zeta<\omega_{1}\right\rangle$ which has no bad sets, then $\Upsilon(\alpha)=\mathbb{Q}^{K_{0}, K_{1},\left\langle\zeta_{\zeta}\right.}: \zeta\left\langle\omega_{1}\right\rangle, V, G_{\alpha}$.
(iii) Otherwise, $\Upsilon(\alpha)$ is the trivial poset.

The iterands

The bookkeeping
Suppose we have defined \mathbb{P}_{α}.
(i) If $\Phi(\alpha)$ is a \mathbb{P}_{α}-name for a ccc poset, then $\Upsilon(\alpha)=\Phi(\alpha)$.
(ii) If $\Phi(\alpha)$ is a \mathbb{P}_{α}-name for a graph $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ and a proper ideal \mathscr{I} which is σ-generated by $\left\langle I_{\zeta}: \zeta<\omega_{1}\right\rangle$ which has no bad sets, then $\Upsilon(\alpha)=\mathbb{Q}^{K_{0}, K_{1},\left\langle I_{\zeta}: \zeta<\omega_{1}\right\rangle, V, G_{\alpha}}$.
(iii) Otherwise, $\Upsilon(\alpha)$ is the trivial poset.

The iterand: $q \in \mathbb{Q}^{K_{0}, K_{1},\left\langle l_{\zeta}: \zeta<\omega_{1}\right\rangle, V, G_{\alpha}}$ if $q=\left(w_{q}, \mathcal{N}_{q}\right)$ where

1. $w_{q} \subseteq \omega_{1}$ is a finite 0 -clique;
2. $\mathcal{N}_{q} \subseteq\left[H(\kappa)^{V}\right]^{\aleph_{0}}$ is, in V, a $T^{\alpha+1}$-symmetric system which separates w_{q} : for every $\xi<\nu$ in w_{q}, there is $M \in \mathcal{N}_{q}$ such that $\bigcup\left(M\left[G_{\alpha}\right] \cap \mathscr{I}\right) \cap\{\xi, \nu\}=\{\xi\}$.
3. There is some $p \in G_{\alpha}$ such that $\mathcal{N}_{q} \subseteq \mathcal{N}_{\alpha}^{p}$.

Properness

Propitiousness

In $V\left[G_{\alpha}\right], \mathbb{Q}$ is propitious for V, G_{α} if there is a club
$D \subseteq\left[H(\kappa)^{V}\right]^{\aleph_{0}}, D \in V$, such that if
(a) $q \in \mathbb{Q}$,
(b) $\mathcal{N} \subseteq D$ is a $T^{\alpha+1}$-symmetric system,
(c) $q \in N\left[G_{\alpha}\right]$ for some $N \in \mathcal{N}$ of minimal height,
(d) there is a $p \in G_{\alpha}$ such that $\mathcal{N} \subseteq \mathcal{N}_{\alpha}^{p}$, then there is a $q^{*} \leq q$ which is $\left(N\left[G_{\alpha}\right], \mathbb{Q}\right)$-generic for each $N \in \mathcal{N}$.

Properness

Propitiousness

In $V\left[G_{\alpha}\right], \mathbb{Q}$ is propitious for V, G_{α} if there is a club
$D \subseteq\left[H(\kappa)^{V}\right]^{\aleph_{0}}, D \in V$, such that if
(a) $q \in \mathbb{Q}$,
(b) $\mathcal{N} \subseteq D$ is a $T^{\alpha+1}$-symmetric system,
(c) $q \in N\left[G_{\alpha}\right]$ for some $N \in \mathcal{N}$ of minimal height,
(d) there is a $p \in G_{\alpha}$ such that $\mathcal{N} \subseteq \mathcal{N}_{\alpha}^{p}$, then there is a $q^{*} \leq q$ which is $\left(N\left[G_{\alpha}\right], \mathbb{Q}\right)$-generic for each $N \in \mathcal{N}$.

Propitiousness of the iterands

1. (Shelah, Mekler) ccc posets are propitious;
2. The other iterands: inductively, but essentially the same as in the two lemmas.

Questions

Are any of the following consistent?
(i) Classification of directed posets/transitive relations + $2^{\aleph_{0}}>\aleph_{2}$.
(ii) (Shelah+Zapletal) Every poset of uniform density \aleph_{1} embeds $\mathbb{C}\left(\aleph_{1}\right)+2^{\aleph_{0}}>\aleph_{2}$.
(iii) (Fremlin BU) $\mathrm{MA}_{\omega_{1}}+\omega_{1} \nrightarrow\left(\omega_{1}, \alpha\right)^{2}$ for some countable ordinal α.

- (Todorčević) Necessarily, $\alpha>\omega^{2}$.
- (Abraham+Todorčević) $\mathrm{MA}_{\omega_{1}}+\omega_{1} \nrightarrow\left(\omega_{1},\left(\omega_{1} \text {; fin } \omega_{1}\right)\right)^{2}$ is consistent.
(iv) RPFA $^{2}+2^{\aleph_{0}}>\aleph_{2}$.

The end

