Countably compact + countably tight and proper forcing

Alan Dow

Department of Mathematics and Statistics University of North Carolina Charlotte

June 12, 2016

Alan Dow Countably compact + countably tight and proper forcing

C-closed vs $t = \omega$ vs $h\pi\chi = \omega$

□ > < E > < E >

C-closed vs $t = \omega$ vs $h\pi\chi = \omega$ I didn't used to be :(

→ Ξ → → Ξ →

C-closed vs $t = \omega$ vs $h\pi\chi = \omega$

I didn't used to be :(

review some proper forcing technology for diagonalizing a maximal filter of closed sets with a free sequence

A B F A B F

C-closed vs $t = \omega$ vs $h\pi\chi = \omega$

I didn't used to be :(

- review some proper forcing technology for diagonalizing a maximal filter of closed sets with a free sequence
- **o** discuss new results including that PFA implies that

 $h\pi\chi = \omega$ spaces are C-closed.

伺 ト く ヨ ト く ヨ ト

Solution A state of the second s

- Y has countable tightness (t = ω) providing each Y ⊂ X is closed if it contains the closure of all its countable subsets
- (2) for compact X, tfae

→ Ξ → < Ξ</p>

- Y has countable tightness (t = ω) providing each Y ⊂ X is closed if it contains the closure of all its countable subsets
- **(a)** for compact X, tfae
 - X has countable tightness $(t = \omega)$
 - [Arhangelskii] X contains no uncountable free sequence
 - Sapirovskii] X has hereditary countable π -character $h\pi\chi = \omega$

- Y has countable tightness (t = ω) providing each Y ⊂ X is closed if it contains the closure of all its countable subsets
- **(a)** for compact X, tfae
 - X has countable tightness $(t = \omega)$
 - [Arhangelskii] X contains no uncountable free sequence
 - Sapirovskii] X has hereditary countable π -character $h\pi\chi = \omega$
- S X is sequential if each Y ⊂ X is closed providing it contains the limits of all its converging subsequences.

ヨッ イヨッ イヨッ

- Y has countable tightness (t = ω) providing each Y ⊂ X is closed if it contains the closure of all its countable subsets
- **(a)** for compact X, tfae
 - X has countable tightness $(t = \omega)$
 - [Arhangelskii] X contains no uncountable free sequence
 - Sapirovskii] X has hereditary countable π -character $h\pi\chi = \omega$
- S X is sequential if each Y ⊂ X is closed providing it contains the limits of all its converging subsequences.
- each sequential space has countable tightness

伺下 イヨト イヨト

- Y has countable tightness (t = ω) providing each Y ⊂ X is closed if it contains the closure of all its countable subsets
- **(a)** for compact X, tfae
 - X has countable tightness $(t = \omega)$
 - [Arhangelskii] X contains no uncountable free sequence
 - Sapirovskii] X has hereditary countable π -character $h\pi\chi = \omega$
- S X is sequential if each Y ⊂ X is closed providing it contains the limits of all its converging subsequences.
- each sequential space has countable tightness
- **(**MoMr statement:] "compact $+ t = \omega \Rightarrow$ sequential"

同 ト イヨ ト イヨト

• every countably compact subset of a sequential space is closed

- every countably compact subset of a sequential space is closed
- **@** C-closed \equiv every countably compact subset is closed

- every countably compact subset of a sequential space is closed
- $\textbf{O} \quad \text{C-closed} \equiv \textbf{every countably compact subset is closed}$
- o countably compact C-closed spaces are countably tight

- every countably compact subset of a sequential space is closed
- $\textbf{O} \quad \text{C-closed} \equiv \textbf{every countably compact subset is closed}$
- o countably compact C-closed spaces are countably tight
- MA implies compact C-closed spaces are sequential

- every countably compact subset of a sequential space is closed
- $\textbf{O} \quad \text{C-closed} \equiv \textbf{every countably compact subset is closed}$
- o countably compact C-closed spaces are countably tight
- MA implies compact C-closed spaces are sequential
- 𝔅 ◊ ⊢ compact + $hπ\chi = ω \implies$ C-closed [Ost., Fed. '72]

- every countably compact subset of a sequential space is closed
- $\textbf{O} \quad \text{C-closed} \equiv \textbf{every countably compact subset is closed}$
- ountably compact C-closed spaces are countably tight
- MA implies compact C-closed spaces are sequential
- 𝔅 ◊ ⊢ compact + $hπ\chi = ω \implies$ C-closed [Ost., Fed. '72]
- CH + hS \neq C-closed [Hajnal-Juhasz '74]

- every countably compact subset of a sequential space is closed
- $\textbf{O} \quad C\text{-closed} \equiv \textbf{every countably compact subset is closed}$

ountably compact C-closed spaces are countably tight

- MA implies compact C-closed spaces are sequential
- 𝔅 ◊ ⊢ compact + $hπ\chi = ω \implies$ C-closed [Ost., Fed. '72]
- CH + hS \neq C-closed [Hajnal-Juhasz '74]

Remark: C-closed is only interesting in countably compact spaces, but "not C-closed" is always interesting

・吊 ・ ・ ラ ト ・ ラ ト

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

2 Define a topology on $X = 2^{<\omega_1} \cup \{z\}$

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

2 Define a topology on $X = 2^{<\omega_1} \cup \{z\}$

A subset of $Y = 2^{<\omega_1}$ is open if it is downwards closed, hence Y is first countable

- 4 国际 - 4 国际

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

Obline a topology on
$$X = 2^{<\omega_1} \cup \{z\}$$

A subset of $Y = 2^{<\omega_1}$ is open if it is downwards closed, hence Y is first countable

and for each $\rho\in 2^{\omega_1}$,

 $[\rho] = \{ \rho \upharpoonright \alpha : \alpha \in \omega_1 \}$ is a clopen copy of ω_1 , and

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

2 Define a topology on
$$X = 2^{<\omega_1} \cup \{z\}$$

A subset of $Y = 2^{<\omega_1}$ is open if it is downwards closed, hence Y is first countable

and for each $\rho \in 2^{\omega_1}$,

 $[\rho] = \{ \rho \upharpoonright \alpha : \alpha \in \omega_1 \}$ is a clopen copy of ω_1 , and

 $X \setminus [
ho]$ is a subbasic open neighborhood for z

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

2 Define a topology on
$$X = 2^{<\omega_1} \cup \{z\}$$

A subset of $Y = 2^{<\omega_1}$ is open if it is downwards closed, hence Y is first countable

and for each $\rho \in 2^{\omega_1}$,

 $[\rho]=\{\rho\restriction\alpha:\alpha\in\omega_1\}$ is a clopen copy of $\omega_1,$ and

 $X \setminus [
ho]$ is a subbasic open neighborhood for z

X is countably compact, has $h\pi\chi = \omega$, and forcing with $2^{<\omega_1}$ destroys $t = \omega$ and C-closed

伺下 イヨト イヨト

• the usual Σ -product in 2^{ω_1} is countably compact, C-closed, $t = \omega$, and $(h)\pi\chi > \omega$.

Also, it contains "many" free sequences and, even, copies of ω_1

2 Define a topology on
$$X = 2^{<\omega_1} \cup \{z\}$$

A subset of $Y = 2^{<\omega_1}$ is open if it is downwards closed, hence Y is first countable

and for each $\rho \in 2^{\omega_1}$,

 $[\rho]=\{\rho\restriction\alpha:\alpha\in\omega_1\}$ is a clopen copy of $\omega_1,$ and

 $X \setminus [
ho]$ is a subbasic open neighborhood for z

X is countably compact, has $h\pi\chi = \omega$, and forcing with $2^{<\omega_1}$ destroys $t = \omega$ and C-closed PFA no help: meet ω_1 -dense sets is just an old ρ

(A) cpt + C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l + $h\pi\chi = \omega$ [IN 80]; [B 89] MoMr

・ 同 ト ・ ヨ ト ・ ヨ ト

(A) cpt + C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l + $h\pi\chi = \omega$ [IN 80]; [B 89] MoMr (B) cpt + C-closed $\stackrel{CON}{\Rightarrow}$ seq'l [D 15] (a div'g't sequence)

・ 同 ト ・ ヨ ト ・ ヨ ト …

(A)
$$cpt + C$$
-closed $\stackrel{MA}{\Longrightarrow} seq'l + h\pi\chi = \omega$ [IN 80]; [B 89] MoMr
(B) $cpt + C$ -closed $\stackrel{CON}{\Rightarrow} seq'l$ [D 15] (a div'g't sequence)
(C) $ctbly cpt + (t = \omega +)$ C-closed $\stackrel{MA}{\Rightarrow} seq'l but not $h\pi\chi = \omega$$

(A)
$$cpt + C$$
-closed $\stackrel{MA}{\Longrightarrow} seq'l + h\pi\chi = \omega$ [IN 80]; [B 89] MoMr
(B) $cpt + C$ -closed $\stackrel{CON}{\Rightarrow} seq'l$ [D 15] (a div'g't sequence)
(C) $ctbly cpt + (t = \omega +)$ C-closed $\stackrel{MA}{\Longrightarrow} seq'l but not $h\pi\chi = \omega$
(D) $ctbly cpt + t = \omega \stackrel{CH}{\Rightarrow}$ C-closed [HJ 74]$

(A)
$$cpt + C$$
-closed $\stackrel{MA}{\Longrightarrow}$ $seq'l + h\pi\chi = \omega$ [IN 80]; [B 89] MoMr
(B) $cpt + C$ -closed $\stackrel{CON}{\Rightarrow}$ $seq'l$ [D 15] (a div'g't sequence)
(C) $ctbly cpt + (t = \omega +)$ C-closed $\stackrel{MA}{\Rightarrow}$ $seq'l but not $h\pi\chi = \omega$
(D) $ctbly cpt + t = \omega \stackrel{CH}{\Rightarrow}$ C-closed [HJ 74]
(E) $ctbly cpt + h\pi\chi = \omega \stackrel{CON(CH)}{\Longrightarrow}$ C-closed (hence MoMr) [DE 15]$

(A)
$$cpt + C$$
-closed $\stackrel{MA}{\Longrightarrow}$ $seq'l + h\pi\chi = \omega$ [IN 80]; [B 89] MoMr
(B) $cpt + C$ -closed $\stackrel{CON}{\Rightarrow}$ $seq'l$ [D 15] (a div'g't sequence)
(C) $ctbly cpt + (t = \omega +)$ C-closed $\stackrel{MA}{\Rightarrow}$ $seq'l but not $h\pi\chi = \omega$
(D) $ctbly cpt + t = \omega \stackrel{CH}{\Rightarrow}$ C-closed [HJ 74]
(E) $ctbly cpt + h\pi\chi = \omega \stackrel{CON(CH)}{\Longrightarrow}$ C-closed (hence MoMr) [DE 15]
(F) $ctbly cpt + t = \omega \stackrel{PFA??}{\Longrightarrow}$ C-closed (not $h\pi\chi = \omega$) [IN? 80]$

(A) cpt + C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l + $h\pi\chi = \omega$ [IN 80]; [B 89] MoMr CON (B) cpt + C-closed $\neq \Rightarrow$ seq'l [D 15] (a div'g't sequence) (C) ctbly cpt + ($t = \omega$ +) C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l but not $h\pi\chi = \omega$ (D) ctbly cpt + $t = \omega \xrightarrow{CH} C$ -closed [HJ 74] (E) ctbly cpt + $h\pi\chi = \omega \stackrel{CON(CH)}{\Longrightarrow}$ C-closed (hence MoMr) [DE 15] (F) ctbly cpt + $t = \omega \stackrel{PFA??}{\Longrightarrow}$ C-closed (not $h\pi\chi = \omega$) [IN? 80]

(G) ctbly cpt $+ h\pi\chi = \omega \implies$ C-closed [posed DE 15]

(A) cpt + C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l + $h\pi\chi = \omega$ [IN 80]; [B 89] MoMr CON (B) cpt + C-closed $\neq \Rightarrow$ seq'l [D 15] (a div'g't sequence) (C) ctbly cpt + ($t = \omega$ +) C-closed $\stackrel{MA}{\Longrightarrow}$ seq'l but not $h\pi\chi = \omega$ (D) ctbly cpt + $t = \omega \xrightarrow{CH} C$ -closed [HJ 74] (E) ctbly cpt + $h\pi\chi = \omega \stackrel{CON(CH)}{\Longrightarrow}$ C-closed (hence MoMr) [DE 15] (F) ctbly cpt + $t = \omega \stackrel{PFA??}{\Longrightarrow}$ C-closed (not $h\pi\chi = \omega$) [IN? 80] (G) ctbly cpt $+ h\pi\chi = \omega \implies$ C-closed [posed DE 15] (H) ctbly cpt + separable + $h\pi\chi = \omega \stackrel{PFA}{\Longrightarrow} t = \omega$ indestructible by forcing with $<\omega_1\omega_2$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● のので

it's all about forcing free ω_1 -sequences

• $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR
- $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR

- $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR
- for all *α*, there are open *W_α*, *U_α* with disjoint closures, and
 {*x_β* : *β* ≤ *α*} ⊂ *W_α* and *U_α* ⊃ {*x_γ* : *α* < *γ*}
- Such a family [T 90] $\{W_{\alpha}, U_{\alpha}\}_{\alpha}$ is an algebraic free sequence, AND

- $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR
- for all *α*, there are open *W_α*, *U_α* with disjoint closures, and
 {*x_β* : *β* ≤ *α*} ⊂ *W_α* and *U_α* ⊃ {*x_γ* : *α* < *γ*}
- Such a family [T 90] $\{W_{\alpha}, U_{\alpha}\}_{\alpha}$ is an algebraic free sequence, AND
- for all α , set $Y_{\alpha} = \bigcap \{ U_{\beta} \cap W_{\gamma} : \beta < \alpha, \ \alpha \le \gamma \}$, and the sequence $\vec{Y} = \{ Y_{\alpha} : \alpha \in \omega_1 \}$ is a free sequence

伺 ト イ ヨ ト イ ヨ ト

- $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR
- for all *α*, there are open *W_α*, *U_α* with disjoint closures, and
 {*x_β* : *β* ≤ *α*} ⊂ *W_α* and *U_α* ⊃ {*x_γ* : *α* < *γ*}
- Such a family [T 90] $\{W_{\alpha}, U_{\alpha}\}_{\alpha}$ is an algebraic free sequence, AND
- for all α , set $Y_{\alpha} = \bigcap \{ U_{\beta} \cap W_{\gamma} : \beta < \alpha, \ \alpha \le \gamma \}$, and the sequence $\vec{Y} = \{ Y_{\alpha} : \alpha \in \omega_1 \}$ is a free sequence

We can get freeness of algebraic free sequence (first order) with ω_1 many dense sets

伺 とう ほう うちょう

- $\{x_{\alpha} : \alpha \in \omega_1\}$ is a free sequence if for all α , $\{x_{\beta} : \beta \leq \alpha\}$ and $\{x_{\gamma} : \alpha < \gamma\}$ have disjoint closures, OR
- for all *α*, there are open *W_α*, *U_α* with disjoint closures, and
 {*x_β* : *β* ≤ *α*} ⊂ *W_α* and *U_α* ⊃ {*x_γ* : *α* < *γ*}
- Such a family [T 90] $\{W_{\alpha}, U_{\alpha}\}_{\alpha}$ is an algebraic free sequence, AND
- for all α , set $Y_{\alpha} = \bigcap \{ U_{\beta} \cap W_{\gamma} : \beta < \alpha, \ \alpha \le \gamma \}$, and the sequence $\vec{Y} = \{ Y_{\alpha} : \alpha \in \omega_1 \}$ is a free sequence

We can get freeness of algebraic free sequence (first order) with ω_1 many dense sets

but, if we are hoping for \vec{Y} to have an ω_1 limit ...

김 글 에 가 글 에

Fremlin and Nyikos were first, then Balogh, then many more...

A B + A B +

Fremlin and Nyikos were first, then Balogh, then many more...

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

Fremlin and Nyikos were first, then Balogh, then many more...

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \lhd, \mathcal{W}, \mathcal{F})$, \lhd w.o. of Y

Fremlin and Nyikos were first, then Balogh, then many more...

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \lhd, \mathcal{W}, \mathcal{F})$, \lhd w.o. of Ylet x_M denote \lhd -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \triangleleft, \mathcal{W}, \mathcal{F})$, \triangleleft w.o. of Ylet x_M denote \triangleleft -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$ and $p \in \mathbb{P}$ if $p = \mathcal{M}_p$ is a finite \in -chain of such M

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \triangleleft, \mathcal{W}, \mathcal{F}), \triangleleft$ w.o. of Ylet x_M denote \triangleleft -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$ and $p \in \mathbb{P}$ if $p = \mathcal{M}_p$ is a finite \in -chain of such M $C_p = \{M \cap \omega_1 : M \in \mathcal{M}_p\}$ will yield a cub C_G ,

• • = • • = •

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \triangleleft, \mathcal{W}, \mathcal{F})$, \triangleleft w.o. of Ylet x_M denote \triangleleft -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$ and $p \in \mathbb{P}$ if $p = \mathcal{M}_p$ is a finite \in -chain of such M $C_p = \{M \cap \omega_1 : M \in \mathcal{M}_p\}$ will yield a cub C_G ,

set
$$x_{\delta}^{p} = x_{\mathcal{M} \cap \omega_{1}}$$
, and $\mathcal{W}(p, \delta) = \bigcap \{ \mathcal{W}_{x_{\gamma}^{p}} : x_{\delta}^{p} \in \mathcal{W}_{x_{\gamma}^{p}}, \gamma \in \mathcal{C}_{p} \}$

• • = • • = •

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \triangleleft, \mathcal{W}, \mathcal{F})$, \triangleleft w.o. of Ylet x_M denote \triangleleft -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$ and $p \in \mathbb{P}$ if $p = \mathcal{M}_p$ is a finite \in -chain of such M $C_p = \{M \cap \omega_1 : M \in \mathcal{M}_p\}$ will yield a cub C_G ,

set
$$x^p_{\delta} = x_{\mathcal{M} \cap \omega_1}$$
, and $\mathcal{W}(p, \delta) = \bigcap \{ \mathcal{W}_{x^p_{\gamma}} : x^p_{\delta} \in \mathcal{W}_{x^p_{\gamma}}, \gamma \in \mathcal{C}_p \}$

finally p < q providing $x_{\beta}^{p} \in W(q, \min(C_q \setminus \beta))$ this basically ensures $\{W_{x_{\delta}}\}_{\delta \in C_{G}}$ is algebraic free sequence

伺下 イヨト イヨト

Let Y be countably compact and $t = \omega$. Let \mathcal{F} a maximal filter of Y-closed sets with $\mathcal{F} \to z \in X \setminus Y$ Fix $\mathcal{W} = \{W_y : y \in Y\}$ nbd assignment with $z \notin W_y \notin \mathcal{F}$

for each countable $M \prec (H(\kappa), \in, \triangleleft, \mathcal{W}, \mathcal{F})$, \triangleleft w.o. of Ylet x_M denote \triangleleft -min member of $\bigcap \{\overline{F \cap M} : F \in M \cap \mathcal{F}\}$ and $p \in \mathbb{P}$ if $p = \mathcal{M}_p$ is a finite \in -chain of such M $C_p = \{M \cap \omega_1 : M \in \mathcal{M}_p\}$ will yield a cub C_G ,

set
$$x_{\delta}^{p} = x_{M \cap \omega_{1}}$$
, and $W(p, \delta) = \bigcap \{W_{x_{\gamma}^{p}} : x_{\delta}^{p} \in W_{x_{\gamma}^{p}}, \gamma \in C_{p}\}$

finally p < q providing $x_{\beta}^{p} \in W(q, \min(C_{q} \setminus \beta))$ this basically ensures $\{W_{x_{\delta}}\}_{\delta \in C_{G}}$ is algebraic free sequence

proof of proper with $t = \omega$ is like "no S-space"

化压力 化压力

We continue to study $X = Y \cup \{z\}$ with Y countably compact and now $t = \omega$ for X. Also, WLOG ω is dense in Y hence X has weight c We continue to study $X = Y \cup \{z\}$ with Y countably compact and now $t = \omega$ for X. Also, WLOG ω is dense in Y hence X has weight \mathfrak{c}

In [DE 15] we first proved that we could countably closed force a filter $\mathcal{F} \to z$ (by weight ω_1) with a base of separable sets.

and then, using $h\pi\chi = \omega$ and countable \mathcal{M}_p poset was totally proper <u>etc.</u> and satisfied the \aleph_2 -p.i.c. and the generic free sequence converges to z by weight $\leq \aleph_1$

< ∃ ► < ∃ ►

We continue to study $X = Y \cup \{z\}$ with Y countably compact and now $t = \omega$ for X. Also, WLOG ω is dense in Y hence X has weight \mathfrak{c}

In [DE 15] we first proved that we could countably closed force a filter $\mathcal{F} \to z$ (by weight ω_1) with a base of separable sets.

and then, using $h\pi\chi = \omega$ and countable \mathcal{M}_p poset was totally proper etc. and satisfied the \aleph_2 -p.i.c. and the generic free sequence converges to z by weight $\leq \aleph_1$ what to do under PFA?

ゆ く き と く ほ と

We continue to study $X = Y \cup \{z\}$ with Y countably compact and now $t = \omega$ for X. Also, WLOG ω is dense in Y hence X has weight \mathfrak{c}

In [DE 15] we first proved that we could countably closed force a filter $\mathcal{F} \to z$ (by weight ω_1) with a base of separable sets.

and then, using $h\pi\chi = \omega$ and countable \mathcal{M}_p poset was totally proper <u>etc.</u> and satisfied the \aleph_2 -p.i.c. and the generic free sequence converges to z by weight $\leq \aleph_1$

allowing us to produce a model of $\mathsf{CH}\,+\,h\pi\chi=\omega\ \Rightarrow\mathsf{C}\text{-closed}\quad\text{and MoMr}$

直 ト イヨト イヨト

First use this same idea (but easier) to prove that ^{<ω1}ω₂ forces that Y ∪ {z} still has countable tightness

- First use this same idea (but easier) to prove that ^{<ω}₁ω₂ forces that Y ∪ {z} still has countable tightness
- ② Use ◊ in extension to choose *F* → *z* with a base of separable sets (need for proper)

A B F A B F

- First use this same idea (but easier) to prove that ^{<ω}₁ω₂ forces that Y ∪ {z} still has countable tightness
- $\{J_{\alpha} : \alpha \in \omega_1\}$ enumerates those $J \subset \omega$ such that $\overline{J} \in \mathcal{F}$,

- First use this same idea (but easier) to prove that ^{<ω}₁ω₂ forces that Y ∪ {z} still has countable tightness
- $\{J_{\alpha} : \alpha \in \omega_1\}$ enumerates those $J \subset \omega$ such that $\overline{J} \in \mathcal{F}$, this is not a filter

- First use this same idea (but easier) to prove that ^{<ω}₁ω₂ forces that Y ∪ {z} still has countable tightness
- $\{J_{\alpha} : \alpha \in \omega_1\}$ enumerates those $J \subset \omega$ such that $\overline{J} \in \mathcal{F}$, this is not a filter
- $J_{\alpha} \in V$ and $z \in J'_{\alpha}$, so assign $\{J(\alpha, \ell)\}_{\ell \in \omega} \subset [J_{\alpha}]^{\aleph_0}$ so that each open $U \ni z$ contains some $J(\alpha, \ell)$ (by $(h\pi\chi = \omega)^V$)

伺下 イヨト イヨト

- Sirst use this same idea (but easier) to prove that ^{<ω}₁ω₂ forces that Y ∪ {z} still has countable tightness
- $\{J_{\alpha} : \alpha \in \omega_1\}$ enumerates those $J \subset \omega$ such that $\overline{J} \in \mathcal{F}$, this is not a filter
- $J_{\alpha} \in V$ and $z \in J'_{\alpha}$, so assign $\{J(\alpha, \ell)\}_{\ell \in \omega} \subset [J_{\alpha}]^{\aleph_0}$ so that each open $U \ni z$ contains some $J(\alpha, \ell)$ (by $(h\pi\chi = \omega)^V$)
- {
 M_α : α ∈ ω₁} is a continuous ∈-chain of countable
 M ≺ (H(ω₂), ∈, ⊲, F, I, ...) − hence [ω₁]^{ℵ₀} ⊂ ⋃_α M_α.

・吊 ・・ ティー・・

Well, I did say there'd be a picture

Alan Dow Countably compact + countably tight and proper forcing

Hausdorff-Luzin gaps to the rescue

simultaneously force cub *C* using $H(\kappa)$ big κ , algebraic free sequence $\{W_{\delta}, U_{\delta} : \delta \in C\}$ as before and a sequence $\{L_{\delta} : \delta \in C\}$ $p = \mathcal{M}_p \cup L^p$, finite $L^p \subset C_p \times \omega$, so that

• for each $\delta \in C$ we pick $J_{\alpha_{\delta}}$ in good position wrt M_{δ}

Hausdorff-Luzin gaps to the rescue

simultaneously force cub *C* using $H(\kappa)$ big κ , algebraic free sequence $\{W_{\delta}, U_{\delta} : \delta \in C\}$ as before and a sequence $\{L_{\delta} : \delta \in C\}$ $p = \mathcal{M}_p \cup L^p$, finite $L^p \subset C_p \times \omega$, so that

- for each $\delta \in C$ we pick $J_{\alpha_{\delta}}$ in good position wrt M_{δ}
- $\begin{array}{l} \textcircled{O} \quad L_{\delta} \subset \omega \text{ is a pseudointersection for (think of } L_{\delta} \rightarrow x_{\delta}) \\ \{U_{\beta} : \beta \in C \cap \delta\} \cup \{W_{\gamma} : \gamma \in C \setminus \delta\} \text{ (hence } L_{\delta}' \subset Y_{\delta}) \end{array}$

伺下 イヨト イヨト

Hausdorff-Luzin gaps to the rescue

simultaneously force cub *C* using $H(\kappa)$ big κ , algebraic free sequence $\{W_{\delta}, U_{\delta} : \delta \in C\}$ as before and a sequence $\{L_{\delta} : \delta \in C\}$ $p = \mathcal{M}_p \cup L^p$, finite $L^p \subset C_p \times \omega$, so that

- for each $\delta \in C$ we pick $J_{\alpha_{\delta}}$ in good position wrt M_{δ}
- $\begin{array}{l} \textcircled{O} \quad L_{\delta} \subset \omega \text{ is a pseudointersection for (think of } L_{\delta} \rightarrow x_{\delta}) \\ \{U_{\beta} : \beta \in C \cap \delta\} \cup \{W_{\gamma} : \gamma \in C \setminus \delta\} \text{ (hence } L_{\delta}' \subset Y_{\delta}) \end{array}$
- So for each ℓ ∈ ω, the family {L_δ, J(α_{δ}, ℓ) : δ ∈ C} is a Hausdorff-Luzin family (usual demand on L^p for p < q).</p>

「ヨート・イヨート・・

• for each $\delta \in C$ we pick $J_{\alpha_{\delta}}$ in good position wrt M_{δ}

- $\begin{array}{l} \textcircled{O} \quad L_{\delta} \subset \omega \text{ is a pseudointersection for (think of } L_{\delta} \rightarrow x_{\delta}) \\ \{U_{\beta} : \beta \in C \cap \delta\} \cup \{W_{\gamma} : \gamma \in C \setminus \delta\} \text{ (hence } L_{\delta}' \subset Y_{\delta}) \end{array}$
- for each ℓ ∈ ω, the family {L_δ, J(α_δ, ℓ) : δ ∈ C} is a Hausdorff-Luzin family (usual demand on L^p for p < q).

Then, for each open $U \ni z$, there is an ℓ such that $S_{\ell} = \{\delta \in C : J(\alpha_{\delta}, \ell) \subset U\}$ is uncountable,

・ 同 ト ・ ヨ ト ・ 日 ト …

• for each $\delta \in C$ we pick $J_{\alpha_{\delta}}$ in good position wrt M_{δ}

- $\begin{array}{l} \textcircled{O} \quad L_{\delta} \subset \omega \text{ is a pseudointersection for (think of } L_{\delta} \rightarrow x_{\delta}) \\ \{U_{\beta} : \beta \in C \cap \delta\} \cup \{W_{\gamma} : \gamma \in C \setminus \delta\} \text{ (hence } L_{\delta}' \subset Y_{\delta}) \end{array}$
- for each ℓ ∈ ω, the family {L_δ, J(α_δ, ℓ) : δ ∈ C} is a Hausdorff-Luzin family (usual demand on L^p for p < q).

Then, for each open $U \ni z$, there is an ℓ such that $S_{\ell} = \{\delta \in C : J(\alpha_{\delta}, \ell) \subset U\}$ is uncountable, which means $\{\delta \in C : U \cap L_{\delta} \neq^{*} \emptyset\}$ is uncountable

- $\begin{array}{l} \textcircled{O} \quad L_{\delta} \subset \omega \text{ is a pseudointersection for (think of } L_{\delta} \rightarrow x_{\delta}) \\ \{U_{\beta} : \beta \in C \cap \delta\} \cup \{W_{\gamma} : \gamma \in C \setminus \delta\} \text{ (hence } L_{\delta}' \subset Y_{\delta}) \end{array}$
- for each ℓ ∈ ω, the family {L_δ, J(α_δ, ℓ) : δ ∈ C} is a Hausdorff-Luzin family (usual demand on L^p for p < q).

Then, for each open $U \ni z$, there is an ℓ such that $S_{\ell} = \{\delta \in C : J(\alpha_{\delta}, \ell) \subset U\}$ is uncountable, which means $\{\delta \in C : U \cap L_{\delta} \neq^{*} \emptyset\}$ is uncountable which means z is a CAP of the free sequence $\{Y_{\delta} : \delta \in C\}$

addendum

• PFA \vdash cpt + $t = \omega$ have G_{δ} -dense set of G_{δ} -points, this was critical in proof of

∃ >

addendum

• PFA \vdash cpt + $t = \omega$ have G_{δ} -dense set of G_{δ} -points,

this was critical in proof of

② [Eisworth] PFA⊢ ℵ₀-bounded non-compact t = ω spaces contain copies of ω₁
 (we have seen this is more useful than free sequence)
addendum

• PFA \vdash cpt + $t = \omega$ have G_{δ} -dense set of G_{δ} -points,

this was critical in proof of

- ② [Eisworth] PFA⊢ ℵ₀-bounded non-compact t = ω spaces contain copies of ω₁
 (we have seen this is more useful than free sequence)
- Solution [Koszmider] it is consistent with MA + not CH to have a compact sequential space with no G_{δ} -points.

addendum

• PFA \vdash cpt + $t = \omega$ have G_{δ} -dense set of G_{δ} -points,

this was critical in proof of

- ② [Eisworth] PFA⊢ ℵ₀-bounded non-compact t = ω spaces contain copies of ω₁
 (we have seen this is more useful than free sequence)
- Solution [Koszmider] it is consistent with MA + not CH to have a compact sequential space with no G_{δ} -points.
- [with Hart] it is consistent (Mahlo) to have a model of MoMr

 all compact countably tight are sequential
 with a compact sequential space with no G_δ-points.

直 ト イヨト イヨト