Mathias-Příkrý forcing and generic ultrafilters

David Chodounský

Institute of Mathematics CAS

(ロト・日本)・モン・モン・モー のへの

Definition

An ultrafilter \mathcal{F} on ω is a *P*-point if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i: i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

An ultrafilter \mathcal{F} on ω is a *P*-point if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i: i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω . The following properties are equivalent:

1. \mathcal{F} is selective,

2. For each $c \colon [\omega]^2 \to 2$ there exists a *c*-homogeneous set $F \in \mathcal{F}$,

Definition

An ultrafilter \mathcal{F} on ω is a *P*-point if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i: i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω . The following properties are equivalent:

- 1. \mathcal{F} is selective,
- 2. For each $c \colon [\omega]^2 \to 2$ there exists a *c*-homogeneous set $F \in \mathcal{F}$,

3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I} .

Definition

An ultrafilter \mathcal{F} on ω is a *P*-point if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i: i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω . The following properties are equivalent:

- 1. \mathcal{F} is selective,
- 2. For each $c \colon [\omega]^2 \to 2$ there exists a *c*-homogeneous set $F \in \mathcal{F}$,
- 3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I} .

Theorem (Zapletal)

An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $\mathcal{I} \subset \mathcal{F}^*$ there is an F_{σ} ideal \mathcal{C} such that $\mathcal{I} \subseteq \mathcal{C} \subseteq \mathcal{F}^*$.

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus Fin, \subset^*)$ *is a selective ultrafilter.*

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus Fin, \subset^*)$ *is a selective ultrafilter.*

Theorem (Todorcevic)

 $(LC)^{1}$ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R})$.

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus Fin, \subset^*)$ *is a selective ultrafilter.*

Theorem (Todorcevic)

 $(LC)^{1}$ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R}).$

Let \mathcal{I} be an F_{σ} ideal on ω . Denote by $\mathbb{Q}_{\mathcal{I}}$ the forcing $(\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)$.

¹(LC) denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above. A = V = V = V = V

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus Fin, \subset^*)$ *is a selective ultrafilter.*

Theorem (Todorcevic)

 $(LC)^{1}$ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R}).$

Let \mathcal{I} be an F_{σ} ideal on ω . Denote by $\mathbb{Q}_{\mathcal{I}}$ the forcing $(\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)$. Theorem (Zapletal, Ch.)

(LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- for each closed set C ⊂ P(ω) disjoint with F there is e ∈ F* such that C ⊆ ⟨I, {e}⟩.

¹(LC) denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above. A = A = A = A

Definition (Mathias forcing)

$$\mathbb{M} = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in [\omega]^{\omega} \}$$

$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

 $\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$ $\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$

$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

Definition (Mathias real for \mathcal{F}) $x = \bigcup \{a: \langle a, F \rangle \} \in \mathbb{G}$, where \mathbb{G} is an $\mathbb{M}(\mathcal{F})$ generic filter. Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq^* F$ for each $F \in \mathcal{F}$).

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$

$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

Definition (Mathias real for \mathcal{F}) $x = \bigcup \{a: \langle a, F \rangle \} \in \mathbb{G}$, where \mathbb{G} is an $\mathbb{M}(\mathcal{F})$ generic filter. Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq^* F$ for each $F \in \mathcal{F}$).

Definition

 $U \subset [\omega]^{<\omega}$ is an \mathcal{F} -universal set if $[F]^{<\omega} \cap U \neq \emptyset$ for each $F \in \mathcal{F}$.

Fact $[x]^{\leq \omega} \cap U \neq \emptyset$ for each \mathcal{F} -universal set U.

Definition (Pseudogeneric real for \mathcal{F})

Let \mathcal{F} be a filter on ω . A set $m \subset \omega$ is a *pseudogeneric real for* \mathcal{F} if

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
- 2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F} -universal set U.

Definition (Pseudogeneric real for \mathcal{F})

Let \mathcal{F} be a filter on ω . A set $m \subset \omega$ is a *pseudogeneric real for* \mathcal{F} if

- 1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
- 2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F} -universal set U.

Theorem

If $m \subset \omega$ is a pseudogeneric real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F} .

Theorem (LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- for each closed set C ⊂ P(ω) disjoint with F there is e ∈ F* such that C ⊆ ⟨I, {e}⟩.

Theorem (LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- for each closed set C ⊂ P(ω) disjoint with F there is e ∈ F* such that C ⊆ ⟨I, {e}⟩.

Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Theorem (LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- for each closed set C ⊂ P(ω) disjoint with F there is e ∈ F* such that C ⊆ ⟨I, {e}⟩.

Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists.

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$.

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $\mathcal{M}(\mathcal{F}) \Vdash g \in D^{V[g]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$. Now $g \in D^{V[G]}$, i.e. $g \in j(D) \cap j(\mathcal{F})$.