Mathias–Příkrý forcing and generic ultrafilters

David Chodounský

Institute of Mathematics CAS
Ultrafilters on ω

Definition
An ultrafilter \mathcal{F} on ω is a *P-point* if for each $\mathcal{C} \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition
An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $I \subset \mathcal{F}^*$ there is an \mathcal{F}-ideal C such that $I \subseteq C \subseteq \mathcal{F}^*$.
Ultrafilters on ω

Definition
An ultrafilter \mathcal{F} on ω is a P-point if for each $\mathcal{C} \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition
An ultrafilter \mathcal{F} on ω is selective if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω. The following properties are equivalent:

1. \mathcal{F} is selective,
2. For each $c : [\omega]^2 \rightarrow 2$ there exists a c-homogeneous set $F \in \mathcal{F}$, for each tall analytic ideal $I \neq \emptyset$.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $I \subset \mathcal{F}^*$ there is an \mathcal{F}-ideal C such that $I \subseteq C \subseteq \mathcal{F}^*$.
Ultrafilters on ω

Definition
An ultrafilter \mathcal{F} on ω is a *P-point* if for each $C \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in C$.

Definition
An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω. The following properties are equivalent:

1. \mathcal{F} is selective,
2. For each $c : [\omega]^2 \to 2$ there exists a c-homogeneous set $F \in \mathcal{F}$,
3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I}.
Ultrafilters on ω

Definition
An ultrafilter \mathcal{F} on ω is a *P-point* if for each $C \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in C$.

Definition
An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω. The following properties are equivalent:

1. \mathcal{F} is selective,
2. For each $c : [\omega]^2 \to 2$ there exists a c-homogeneous set $F \in \mathcal{F}$,
3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I}.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $\mathcal{I} \subseteq \mathcal{F}^*$ there is an F_σ ideal \mathcal{C} such that $\mathcal{I} \subseteq \mathcal{C} \subseteq \mathcal{F}^*$.
Generic filters

Theorem

The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^*)\) is a selective ultrafilter.
Generic filters

Theorem
The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^*)\) is a selective ultrafilter.

Theorem (Todorcevic)

\((\text{LC})^1\) An ultrafilter is selective if and only if it is a generic filter on \(\mathcal{P}(\omega) \setminus \text{Fin}\) over \(L(\mathbb{R})\).

\(^1\text{(LC)}\) denotes the assumption that there exist sufficiently large cardinals in \(V\). In this talk infinitely many Woodin and a measurable above.
Generic filters

Theorem
The generic filter on the poset $(\mathcal{P}(\omega) \setminus \text{Fin}, \subset^*)$ is a selective ultrafilter.

Theorem (Todorcevic)

$(\text{LC})^1$ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin}$ over $L(\mathbb{R})$.

Let \mathcal{I} be an F_σ ideal on ω. Denote by $\mathbb{Q}_\mathcal{I}$ the forcing $(\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)$.

$^1(\text{LC})$ denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above.
Generic filters

Theorem
The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^*)\) is a selective ultrafilter.

Theorem (Todorcevic)
\((\text{LC})\) An ultrafilter is selective if and only if it is a generic filter on \(\mathcal{P}(\omega) \setminus \text{Fin}\) over \(L(\mathbb{R})\).

Let \(\mathcal{I}\) be an \(F_\sigma\) ideal on \(\omega\). Denote by \(\mathbb{Q}_\mathcal{I}\) the forcing \((\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)\).

Theorem (Zapletal, Ch.)
\((\text{LC})\) \(\mathcal{F}\) is a \(\mathbb{Q}_\mathcal{I}\)-generic filter over \(L(\mathbb{R})\) iff
\begin{enumerate}
 \item \(\mathcal{F}\) is a \(P\)-point disjoint with \(\mathcal{I}\), and
 \item for each closed set \(C \subseteq \mathcal{P}(\omega)\) disjoint with \(\mathcal{F}\) there is \(e \in \mathcal{F}^*\) such that \(C \subseteq \langle \mathcal{I}, \{e\} \rangle\).
\end{enumerate}

\(^1\)(\text{LC}) denotes the assumption that there exist sufficiently large cardinals in \(V\).
In this talk infinitely many Woodin and a measurable above.
Definition (Mathias forcing)

\[M = \{ \langle a, F \rangle : a \in [\omega]^<\omega, F \in [\omega]^\omega \} \]

\[\langle a, F \rangle < \langle b, H \rangle \text{ if } b \subseteq a, F \subseteq H, \text{ and } a \setminus b \subseteq H. \]
Definition (Mathias–Příkrý forcing)

Let \mathcal{F} be a filter on ω.

$\mathcal{M}(\mathcal{F}) = \{\langle a, F \rangle : a \in [\omega]<\omega, F \in \mathcal{F}\}$

$\langle a, F \rangle < \langle b, H \rangle$ if $b \subseteq a$, $F \subseteq H$, and $a \setminus b \subseteq H$.

Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq \ast F$ for each $F \in \mathcal{F}$).

Definition

$U \subseteq [\omega]<\omega$ is an \mathcal{F}-universal set if $[\mathcal{F}]<\omega \cap U \neq \emptyset$ for each $F \in \mathcal{F}$.

Fact

$[x]<\omega \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Definition (Mathias–Příkrý forcing)
Let \mathcal{F} be a filter on ω.

$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle : a \in [\omega]^<\omega, F \in \mathcal{F} \}$

$\langle a, F \rangle < \langle b, H \rangle$ if $b \subseteq a$, $F \subset H$, and $a \setminus b \subset H$.

Definition (Mathias real for \mathcal{F})

$x = \bigcup \{ a : \langle a, F \rangle \} \in \mathbb{G}$, where \mathbb{G} is an $\mathbb{M}(\mathcal{F})$ generic filter.

Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq^* F$ for each $F \in \mathcal{F}$).
Definition (Mathias–Příkrý forcing)
Let \mathcal{F} be a filter on ω.

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle : a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$

$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \supseteq a, F \subset H, \text{and} \ a \setminus b \subset H.$$

Definition (Mathias real for \mathcal{F})

$$x = \bigcup \{ a : \langle a, F \rangle \in G \}, \text{where} \ G \text{ is an } \mathbb{M}(\mathcal{F}) \text{ generic filter.}$$

Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq^* F$ for each $F \in \mathcal{F}$).

Definition

$U \subset [\omega]^{<\omega}$ is an \mathcal{F}-universal set if $[F]^{<\omega} \cap U \neq \emptyset$ for each $F \in \mathcal{F}$.

Fact

$[x]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F}-universal set $U.$
Definition (Pseudogeneric real for \mathcal{F})

Let \mathcal{F} be a filter on ω. A set $m \subset \omega$ is a pseudogeneric real for \mathcal{F} if

1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem

If $m \subset \omega$ is a pseudogeneric real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.
Definition (Pseudogeneric real for \mathcal{F})

Let \mathcal{F} be a filter on ω. A set $m \subset \omega$ is a pseudogeneric real for \mathcal{F} if

1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem

If $m \subset \omega$ is a pseudogeneric real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.
Theorem

(LC) \mathcal{F} is a \mathbb{Q}_I-generic filter over $L(\mathbb{R})$ iff

1. \mathcal{F} is a P-point disjoint with \mathcal{I}, and

2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

Lemma

Let U be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $R \cap V$ is countable in M. Then there is a Mathias real $g \in j(F)$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \forces \dot{g} \in D_{V[\dot{g}]}$.
Theorem

(LC) \mathcal{F} is a $Q\mathcal{I}$-generic filter over $L(\mathbb{R})$ iff

1. \mathcal{F} is a P-point disjoint with \mathcal{I}, and

2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).
Theorem
(LC) \(\mathcal{F} \) is a \(\mathbb{Q}_\mathcal{I} \)-generic filter over \(L(\mathbb{R}) \) iff

1. \(\mathcal{F} \) is a P-point disjoint with \(\mathcal{I} \), and
2. for each closed set \(C \subset \mathcal{P}(\omega) \) disjoint with \(\mathcal{F} \) there is \(e \in \mathcal{F}^* \) such that \(C \subseteq \langle \mathcal{I}, \{e\} \rangle \).

Lemma
Let \(\mathcal{U} \) be a P-point. Assume there is (in some extension of \(V \)) an elementary embedding \(j: V \rightarrow M \) such that \(\mathbb{R} \cap V \) is countable in \(M \). Then there is a Mathias real \(g \in j(\mathcal{F}) \) (over \(V \)).

Lemma
Let \(\mathcal{F} \) be as in the theorem. Suppose \(D \in L(\mathbb{R}) \) is open dense in \(\mathbb{Q}_\mathcal{I} \). Then \(M(\mathcal{F}) \models \dot{g} \in D^{V[\dot{g}]} \).
Lemma
Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j : V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma
Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models \dot{g} \in D^V[\dot{g}]$.
Lemma
Let \(U \) be a P-point. Assume there is (in some extension of \(V \)) an elementary embedding \(j : V \to M \) such that \(\mathbb{R} \cap V \) is countable in \(M \). Then there is a Mathias real \(g \in j(F) \) (over \(V \)).

Lemma
Let \(F \) be as in the theorem. Suppose \(D \in L(\mathbb{R}) \) is open dense in \(\mathbb{Q}_I \). Then \(M(F) \models \dot{g} \in D^{V[\dot{g}]} \).

Suppose \(D \in L(\mathbb{R}) \) is open dense in \(\mathbb{Q}_I \). We need to show that \(D \cap F \neq \emptyset \).
Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j : V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models g \in D^{V[\dot{g}]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j : V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models g \in D^V[\dot{g}]$.

Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension $V[G]$ where $j : V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$.
Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_\mathcal{I}$. Then $\mathcal{M}(\mathcal{F}) \models \dot{g} \in D^V[\dot{g}]$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_\mathcal{I}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension $V[G]$ where $j: V \rightarrow M$ exists. There is a Mathias real $g \in j(\mathcal{F})$. Now $g \in D^V[G]$, i.e. $g \in j(D) \cap j(\mathcal{F})$.