Rosenthal compact spaces

Antonio Avilés

Universidad de Murcia, author supported by MINECO and FEDER (MTM2014-54182-P) and by Fundación Séneca - Región de Murcia (19275/PI/14).

Fruska Gora 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

For compact K, TFAE

For compact K, TFAE

• K is metrizable.

<ロ> (四) (四) (三) (三) (三) (三)

For compact K, TFAE

- K is metrizable.
- 2 K has a countable basis of open sets.

(ロ) (同) (E) (E) (E)

For compact K, TFAE

- K is metrizable.
- 2 K has a countable basis of open sets.
- There is a countable family of open sets that disjointly separates the points of *K*.

(ロ) (同) (E) (E) (E)

For compact K, TFAE

- K is metrizable.
- 2 K has a countable basis of open sets.
- There is a countable family of open sets that disjointly separates the points of *K*.

•
$$K \subset C(X)$$
 for some Polish X.

 $C(X) = \{f : X \longrightarrow \mathbb{R} \text{ continuous } \}$

 $f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x) = \lim f_n(x)$ with f_n continuous.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

 $f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x) = \lim f_n(x)$ with f_n continuous.

Definition

A compact space K is Rosenthal if $K \subset Baire_1(X)$ for some Polish X.

 $f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x) = \lim f_n(x)$ with f_n continuous.

Definition

A compact space K is Rosenthal if $K \subset Baire_1(X)$ for some Polish X.

For the working mathematician:

```
f: X \longrightarrow \mathbb{R} is Baire-1 if f(x) = \lim f_n(x) with f_n continuous.
```

Definition

A compact space K is Rosenthal if $K \subset Baire_1(X)$ for some Polish X.

For the working mathematician:

If you construct a compact space without using any strange set-theoretic device (like AC), then most probably you got a Rosenthal compactum.

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

The Bourgain-Fremlin-Talagrand theorem

(ロ) (同) (E) (E) (E)

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

• $K \subset Baire_1(X)$

The Bourgain-Fremlin-Talagrand theorem

(日) (同) (E) (E) (E)

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

- $K \subset Baire_1(X)$
- **2** $K \subset Borel(X)$

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

- $K \subset Baire_1(X)$
- **2** $K \subset Borel(X)$
- **3** $K \subset Borel(X)$ and $K = \overline{\{f_n\}}$ with $f_n \in C(X)$.

(日) (同) (E) (E) (E)

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

- $K \subset Baire_1(X)$
- **2** $K \subset Borel(X)$
- **3** $K \subset Borel(X)$ and $K = \overline{\{f_n\}}$ with $f_n \in C(X)$.

• $K = \overline{\{f_n\}}$ with $f_n \in C(X)$, and $\beta \omega \not\subset K$.

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:

- $K \subset Baire_1(X)$
- **2** $K \subset Borel(X)$
- **3** $K \subset Borel(X)$ and $K = \overline{\{f_n\}}$ with $f_n \in C(X)$.
- $K = \overline{\{f_n\}}$ with $f_n \in C(X)$, and $\beta \omega \not\subset K$.

+ every Rosenthal K is Fréchet-Urysohn space: every point in the closure of a set A is the limit of sequence from A.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then

• either
$$K \supset A(\mathfrak{c})$$

- $or \ K \supset S$
- \bigcirc or $K \supset D$
 - A(c) is the one-point compactification of the discrete set of size c.
 - S is the split Cantor set: $2^{\omega+1}$ ordered lexicographically, with the order topology.
 - *D* is the Alexandroff duplicate of the Cantor set.

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then

• either
$$K \supset A(\mathfrak{c})$$

- $or \ K \supset S$
- \bigcirc or $K \supset D$
 - A(c) is the one-point compactification of the discrete set of size c.
 - S is the split Cantor set: $2^{\omega+1}$ ordered lexicographically, with the order topology.
 - *D* is the Alexandroff duplicate of the Cantor set.

Our aim: Multidimensional versions of this result.

 $\varphi: K \longrightarrow L$ continuous.

 $\varphi: K \longrightarrow L$ continuous.

$$D_n(\varphi) = K \cup L \times \{1, \ldots, n-1\}$$

・ロト ・回 ・ モト ・ モー ・ うへで

 $\varphi: K \longrightarrow L$ continuous.

$$D_n(\varphi) = K \cup L \times \{1, \dots, n-1\}$$
$$D_n = D_n(2^{\omega} \longrightarrow 2^{\omega})$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ○ ◆

 $S_n = D_{n-1}(S \longrightarrow 2^{\omega})$

 $\varphi: K \longrightarrow L$ continuous.

$$D_n(\varphi) = K \cup L \times \{1, \dots, n-1\}$$

 $D_n = D_n(2^{\omega} \longrightarrow 2^{\omega})$ $S_n = D_{n-1}(S \longrightarrow 2^{\omega})$

Theorem (A. - Poveda - Todorcevic)

If K is an at most n-to-1 continuous preimage of a metric space,

 $\varphi: K \longrightarrow L$ continuous.

$$D_n(\varphi) = K \cup L \times \{1, \dots, n-1\}$$

 $D_n = D_n(2^{\omega} \longrightarrow 2^{\omega})$ $S_n = D_{n-1}(S \longrightarrow 2^{\omega})$

Theorem (A. - Poveda - Todorcevic)

If K is an at most n-to-1 continuous preimage of a metric space, but not (n-1)-to-1, then:

 $\varphi: K \longrightarrow L$ continuous.

$$D_n(\varphi) = K \cup L \times \{1, \dots, n-1\}$$

 $D_n = D_n(2^{\omega} \longrightarrow 2^{\omega})$ $S_n = D_{n-1}(S \longrightarrow 2^{\omega})$

Theorem (A. - Poveda - Todorcevic)

If K is an at most n-to-1 continuous preimage of a metric space, but not (n-1)-to-1, then:

• either
$$K \supset S_r$$

$$or \ K \supset D_n$$

Theorem (A. - Poveda - Todorcevic)

If K is an n-to-1 continuous preimage of a metric space, but not an (n-1)-to-1 preimage, then:

$$\bigcup either K \supset S_i$$

$$or \ K \supset D_n$$

Handicaps:

Theorem (A. - Poveda - Todorcevic)

If K is an n-to-1 continuous preimage of a metric space, but not an (n-1)-to-1 preimage, then: • either $K \supset S_n$

2 or
$$K \supset D_n$$

Handicaps:

• It talks only about finite-to-one preimages of metric spaces

Theorem (A. - Poveda - Todorcevic)

If K is an n-to-1 continuous preimage of a metric space, but not an (n-1)-to-1 preimage, then: • either $K \supset S_n$ • or $K \supset D_n$

Handicaps:

- It talks only about finite-to-one preimages of metric spaces
- *S_n* and *D_n* are not separable (except *S*₂). So this is not a *basis result*.

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_0, \ldots, x_n \in K$ there exist repective neighborhoods $V_0, \ldots, V_n \in \mathscr{F}$ such that $V_0 \cap \cdots \cap V_n = \emptyset$.

イロト (部) (日) (日) (日) (日)

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_0, \ldots, x_n \in K$ there exist repective neighborhoods $V_0, \ldots, V_n \in \mathscr{F}$ such that $V_0 \cap \cdots \cap V_n = \emptyset$.

イロト (部) (日) (日) (日) (日)

• $odeg(K) \leq 1$ if and only if K is metrizable.

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_0, \ldots, x_n \in K$ there exist repective neighborhoods $V_0, \ldots, V_n \in \mathscr{F}$ such that $V_0 \cap \cdots \cap V_n = \emptyset$.

- $odeg(K) \leq 1$ if and only if K is metrizable.
- If the open sets in \mathscr{F} are G_{δ} , then this means that K is an at most *n*-to-1 preimage of a metric space.

Theorem (A.-Todorcevic)

Given $n < \omega$, there is a finite list

$$K_1^{(n)},\ldots,K_{p_n}^{(n)}$$

of separable Rosenthal compacta of open degree n, such that every separable Rosenthal K with $odeg(K) \ge n$ contains one from the list.

(日) (同) (E) (E) (E)

Theorem (A.-Todorcevic)

Given $n < \omega$, there is a finite list

$$K_1^{(n)},\ldots,K_{p_n}^{(n)}$$

of separable Rosenthal compacta of open degree n, such that every separable Rosenthal K with $odeg(K) \ge n$ contains one from the list.

(日) (四) (王) (王) (王)

 $p_1 = 1, p_2 = 3, p_3 = 4, p_4 = 8, \ldots$

 A countable dense set of isolated points, identified with the m-adic tree m^{<ω}.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

 A countable dense set of isolated points, identified with the m-adic tree m^{<ω}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

2 A finite number of copies of m^{ω}

 A countable dense set of isolated points, identified with the m-adic tree m^{<ω}.

- **2** A finite number of copies of m^{ω}
- **③** Only in some cases, an infinity point ∞ .

 $^{^1\}Sigma^1_1\text{-}determinacy in this game. Just Borel determinacy with a technical twist.$ $<math display="inline">{\scriptstyle \texttt{sqc}}$

• Player I plays elements from D

 $^{{}^{1}\}Sigma_{1}^{1}$ -determinacy in this game. Just Borel determinacy with a technical twist. The second seco

- Player I plays elements from D
- Player II plays numbers in $\{0, 1, \dots, n-1\}$

 $^{{}^{1}\}Sigma_{1}^{1}$ -determinacy in this game. Just Borel determinacy with a technical twist. and

- Player I plays elements from D
- Player II plays numbers in $\{0, 1, \dots, n-1\}$

 $^{{}^{1}\}Sigma_{1}^{1}$ -determinacy in this game. Just Borel determinacy with a technical twist. The second seco

- Player I plays elements from D
- Player II plays numbers in $\{0, 1, \dots, n-1\}$

Player I
$$d_0$$
 d_1 d_2 \cdots Player II i_0 i_1 i_2 \cdots

Player I wins if the sets $\overline{\{d_k : i_k = i\}}$ are pairwise disjoint.

 $^{{}^{1}\}Sigma_{1}^{1}$ -determinacy in this game. Just Borel determinacy with a technical twist. and

- Player I plays elements from D
- Player II plays numbers in $\{0, 1, \dots, n-1\}$

Player I
$$d_0$$
 d_1 d_2 \cdots
Player II i_0 i_1 i_2 \cdots

Player I wins if the sets $\overline{\{d_k : i_k = i\}}$ are pairwise disjoint. If K is Rosenthal, we can use determinacy¹.

 $^{{}^{1}\}Sigma_{1}^{1}$ -determinacy in this game. Just Borel determinacy with a technical twist. And Σ_{1}^{1} -determinacy with a technical twist.

The winning strategy of Player II means that odeg(K) < n.

The winning strategy of Player I produces a tree structure in K, that we must reduce to a canonical form.

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Problems:

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

If *C* is a class of Rosenthal compacta, find its minimal elements, if they exist.

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

- If *C* is a class of Rosenthal compacta, find its minimal elements, if they exist.
- 2 Identify the orthogonal class of a set of minimal compacta.

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

- If *C* is a class of Rosenthal compacta, find its minimal elements, if they exist.
- 2 Identify the orthogonal class of a set of minimal compacta.

•
$$\{2^{\omega}, S\}^{\perp} = \text{ scattered}$$

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

- If *C* is a class of Rosenthal compacta, find its minimal elements, if they exist.
- 2 Identify the orthogonal class of a set of minimal compacta.

•
$$\{2^{\omega}, S\}^{\perp} = \text{ scattered}$$

• $\{D, A(\mathfrak{c})\}^{\perp} =$ hereditarily separable

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

- If *C* is a class of Rosenthal compacta, find its minimal elements, if they exist.
- 2 Identify the orthogonal class of a set of minimal compacta.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

•
$$\{2^{\omega}, S\}^{\perp} = \text{ scattered}$$

• $\{D, A(\mathfrak{c})\}^{\perp} =$ hereditarily separable

•
$$\{S\}^{\perp} = ?$$