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X is a Polish space.

f: X — R is Baire-1 if f(x) = lim f,(x) with f, continuous.

Definition

A compact space K is Rosenthal if K C Baire;(X) for some Polish
X.

For the working mathematician:

If you construct a compact space without using any strange
set-theoretic device (like AC), then most probably you got a
Rosenthal compactum.
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The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:
Q K C Bairei(X)
Q@ K C Borel(X)
© K C Borel(X) and K = {f,} with f, € C(X).
Q@ K={fp} with f, € C(X), and Bo ¢ K.

+ every Rosenthal K is Fréchet-Urysohn space: every point in the
closure of a set A is the limit of sequence from A.
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Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then

o
2]
o

either K D A(¢)
orKDS
or KO D

A(c) is the one-point compactification of the discrete set of
size ¢.

S is the split Cantor set: 2?1 ordered lexicographically, with
the order topology.

D is the Alexandroff duplicate of the Cantor set.



Three Rosenthal compacta

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then
Q either K D A(c)
Q@ orKDS
©@ orKDD

@ A(c) is the one-point compactification of the discrete set of
size ¢.

e S is the split Cantor set: 2% ordered lexicographically, with
the order topology.

@ D is the Alexandroff duplicate of the Cantor set.

Our aim: Multidimensional versions of this result.
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Finite-to-one preimages of metric spaces

Theorem (A. - Poveda - Todorcevic)

If K is an n-to-1 continuous preimage of a metric space, but not
an (n—1)-to-1 preimage, then:

Q either KD S,

Q@ or KD D,

Handicaps:

o It talks only about finite-to-one preimages of metric spaces

e S, and D, are not separable (except Sp). So this is not a
basis result.
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The open degree

Definition

A compact space K has open degree < n iff there exists a
countable family % of open sets such that for every different
Xo,--.,Xn € K there exist repective neighborhoods V,...,V, € #
such that \Vpn---NV, =0.

e odeg(K) <1 if and only if K is metrizable.

@ If the open sets in .% are Gg, then this means that K is an at
most n-to-1 preimage of a metric space.
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Finite basis theorem

Theorem (A.-Todorcevic)

Given n < @, there is a finite list

K KD

of separable Rosenthal compacta of open degree n, such that every
separable Rosenthal K with odeg(K) > n contains one from the
list.

pr=1 p2=3 p3=4 ps=38, ...



How minimal spaces look like

Each of these minimal spaces has the following components:



How minimal spaces look like

Each of these minimal spaces has the following components:

@ A countable dense set of isolated points, identified with the
m-adic tree m<?.



How minimal spaces look like

Each of these minimal spaces has the following components:

@ A countable dense set of isolated points, identified with the
m-adic tree m<?.

@ A finite number of copies of m?®



How minimal spaces look like

Each of these minimal spaces has the following components:

@ A countable dense set of isolated points, identified with the
m-adic tree m<?.

@ A finite number of copies of m?®

© Only in some cases, an infinity point co.
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The game (simplified version)

Given n, K and a fix countable dense set D, two players play

o Player | plays elements from D

e Player Il plays numbers in {0,1,...,n—1}

Player |  dp di d>
Player Il io i 2

Player | wins if the sets {dx : ix = i} are pairwise disjoint.

If K is Rosenthal, we can use determinacy?.

1):%-determinacy in this game. Just Borel determinacy with a technical twist.



The game(simplified version)

The winning strategy of Player || means that odeg(K) < n.

The winning strategy of Player | produces a tree structure in K,
that we must reduce to a canonical form.
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Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains
either 2% or S.

A\

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a
copy of S.

Problems:
@ If € is a class of Rosenthal compacta, find its minimal
elements, if they exist.
@ ldentify the orthogonal class of a set of minimal compacta.

o {29 S}t = scattered
o {D,A(c)}* = hereditarily separable
o {S}t="7



