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Metrizable compact spaces

Theorem

For compact K , TFAE

1 K is metrizable.

2 K has a countable basis of open sets.

3 There is a countable family of open sets that disjointly
separates the points of K .

4 K ⊂ C (X ) for some Polish X .

C (X ) = {f : X −→ R continuous }
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Rosenthal compact spaces

X is a Polish space.

f : X −→ R is Baire-1 if f (x) = lim fn(x) with fn continuous.

Definition

A compact space K is Rosenthal if K ⊂ Baire1(X ) for some Polish
X .

For the working mathematician:

If you construct a compact space without using any strange
set-theoretic device (like AC), then most probably you got a
Rosenthal compactum.
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The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K , TFAE:

1 K ⊂ Baire1(X )

2 K ⊂ Borel(X )

3 K ⊂ Borel(X ) and K = {fn} with fn ∈ C (X ).

4 K = {fn} with fn ∈ C (X ), and βω 6⊂ K .

+ every Rosenthal K is Fréchet-Urysohn space: every point in the
closure of a set A is the limit of sequence from A.
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+ every Rosenthal K is Fréchet-Urysohn space: every point in the
closure of a set A is the limit of sequence from A.



The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K , TFAE:

1 K ⊂ Baire1(X )

2 K ⊂ Borel(X )

3 K ⊂ Borel(X ) and K = {fn} with fn ∈ C (X ).

4 K = {fn} with fn ∈ C (X ), and βω 6⊂ K .
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Three Rosenthal compacta

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then

1 either K ⊃ A(c)

2 or K ⊃ S

3 or K ⊃ D

A(c) is the one-point compactification of the discrete set of
size c.

S is the split Cantor set: 2ω+1 ordered lexicographically, with
the order topology.

D is the Alexandroff duplicate of the Cantor set.

Our aim: Multidimensional versions of this result.



Three Rosenthal compacta

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then

1 either K ⊃ A(c)

2 or K ⊃ S

3 or K ⊃ D

A(c) is the one-point compactification of the discrete set of
size c.

S is the split Cantor set: 2ω+1 ordered lexicographically, with
the order topology.

D is the Alexandroff duplicate of the Cantor set.

Our aim: Multidimensional versions of this result.



Finite-to-one preimages of metric spaces

ϕ : K −→ L continuous.

Dn(ϕ) = K ∪ L×{1, . . . ,n−1}

Dn = Dn(2ω −→ 2ω )

Sn = Dn−1(S −→ 2ω )

Theorem (A. - Poveda - Todorcevic)

If K is an at most n-to-1 continuous preimage of a metric space,
but not (n−1)-to-1, then:
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The open degree

Definition

A compact space K has open degree ≤ n iff there exists a
countable family F of open sets such that for every different
x0, . . . ,xn ∈ K there exist repective neighborhoods V0, . . . ,Vn ∈F
such that V0∩·· ·∩Vn = /0.

odeg(K )≤ 1 if and only if K is metrizable.

If the open sets in F are Gδ , then this means that K is an at
most n-to-1 preimage of a metric space.
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Finite basis theorem

Theorem (A.-Todorcevic)

Given n < ω, there is a finite list

K
(n)
1 , . . . ,K

(n)
pn

of separable Rosenthal compacta of open degree n, such that every
separable Rosenthal K with odeg(K )≥ n contains one from the
list.

p1 = 1, p2 = 3, p3 = 4, p4 = 8, . . .
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How minimal spaces look like

Each of these minimal spaces has the following components:

1 A countable dense set of isolated points, identified with the
m-adic tree m<ω .

2 A finite number of copies of mω

3 Only in some cases, an infinity point ∞.



How minimal spaces look like

Each of these minimal spaces has the following components:

1 A countable dense set of isolated points, identified with the
m-adic tree m<ω .

2 A finite number of copies of mω

3 Only in some cases, an infinity point ∞.



How minimal spaces look like

Each of these minimal spaces has the following components:

1 A countable dense set of isolated points, identified with the
m-adic tree m<ω .

2 A finite number of copies of mω

3 Only in some cases, an infinity point ∞.



How minimal spaces look like

Each of these minimal spaces has the following components:

1 A countable dense set of isolated points, identified with the
m-adic tree m<ω .

2 A finite number of copies of mω

3 Only in some cases, an infinity point ∞.



The game (simplified version)

Given n, K and a fix countable dense set D, two players play

Player I plays elements from D

Player II plays numbers in {0,1, . . . ,n−1}

Player I d0 d1 d2 · · ·
Player II i0 i1 i2 · · ·

Player I wins if the sets {dk : ik = i} are pairwise disjoint.

If K is Rosenthal, we can use determinacy1.

1Σ1
1-determinacy in this game. Just Borel determinacy with a technical twist.
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The game(simplified version)

The winning strategy of Player II means that odeg(K ) < n.

The winning strategy of Player I produces a tree structure in K ,
that we must reduce to a canonical form.



Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains
either 2ω or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a
copy of S.

Problems:

1 If C is a class of Rosenthal compacta, find its minimal
elements, if they exist.

2 Identify the orthogonal class of a set of minimal compacta.

{2ω ,S}⊥ = scattered

{D,A(c)}⊥ = hereditarily separable

{S}⊥ = ?
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