Rosenthal compact spaces

Antonio Avilés

Universidad de Murcia, author supported by MINECO and FEDER (MTM2014-54182-P) and by Fundación Séneca - Región de Murcia (19275/PI/14).

Fruska Gora 2016

Metrizable compact spaces

Theorem
For compact K, TFAE

Metrizable compact spaces

Theorem
For compact K, TFAE
(1) K is metrizable.

Metrizable compact spaces

Theorem

For compact K, TFAE
(1) K is metrizable.
(2) K has a countable basis of open sets.

Metrizable compact spaces

Theorem

For compact K, TFAE
(1) K is metrizable.
(2) K has a countable basis of open sets.
(3) There is a countable family of open sets that disjointly separates the points of K.

Metrizable compact spaces

Theorem

For compact K, TFAE
(1) K is metrizable.
(2) K has a countable basis of open sets.
(3) There is a countable family of open sets that disjointly separates the points of K.
(1) $K \subset C(X)$ for some Polish X.
$C(X)=\{f: X \longrightarrow \mathbb{R}$ continuous $\}$

Rosenthal compact spaces

X is a Polish space.

Rosenthal compact spaces

X is a Polish space.
$f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x)=\lim f_{n}(x)$ with f_{n} continuous.

Rosenthal compact spaces

X is a Polish space.
$f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x)=\lim f_{n}(x)$ with f_{n} continuous.

Definition

A compact space K is Rosenthal if $K \subset \operatorname{Baire}_{1}(X)$ for some Polish X.

Rosenthal compact spaces

X is a Polish space.
$f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x)=\lim f_{n}(x)$ with f_{n} continuous.

Definition

A compact space K is Rosenthal if $K \subset \operatorname{Baire}_{1}(X)$ for some Polish X.

For the working mathematician:

Rosenthal compact spaces

X is a Polish space.
$f: X \longrightarrow \mathbb{R}$ is Baire-1 if $f(x)=\lim f_{n}(x)$ with f_{n} continuous.

Definition

A compact space K is Rosenthal if $K \subset \operatorname{Baire}_{1}(X)$ for some Polish X.

For the working mathematician:
If you construct a compact space without using any strange set-theoretic device (like AC), then most probably you got a Rosenthal compactum.

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)
For separable compact K, TFAE:

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)
For separable compact K, TFAE:

- $K \subset \operatorname{Baire}_{1}(X)$

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)
For separable compact K, TFAE:
(1) $K \subset \operatorname{Baire}_{1}(X)$
(2) $K \subset \operatorname{Borel}(X)$

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)
For separable compact K, TFAE:
(1) $K \subset \operatorname{Baire}_{1}(X)$
(2) $K \subset \operatorname{Borel}(X)$
(3) $K \subset \operatorname{Borel}(X)$ and $K=\overline{\left\{f_{n}\right\}}$ with $f_{n} \in C(X)$.

The Bourgain-Fremlin-Talagrand theorem

Theorem (Bourgain-Fremlin-Talagrand)
For separable compact K, TFAE:

- $K \subset \operatorname{Baire}_{1}(X)$
(2) $K \subset \operatorname{Borel}(X)$

0 $K \subset \operatorname{Borel}(X)$ and $K=\overline{\left\{f_{n}\right\}}$ with $f_{n} \in C(X)$.

- $K=\overline{\left\{f_{n}\right\}}$ with $f_{n} \in C(X)$, and $\beta \omega \not \subset K$.

Theorem (Bourgain-Fremlin-Talagrand)

For separable compact K, TFAE:
(1) $K \subset \operatorname{Baire}_{1}(X)$
(2) $K \subset \operatorname{Borel}(X)$
(3) $K \subset \operatorname{Borel}(X)$ and $K=\overline{\left\{f_{n}\right\}}$ with $f_{n} \in C(X)$.
(9) $K=\overline{\left\{f_{n}\right\}}$ with $f_{n} \in C(X)$, and $\beta \omega \not \subset K$.

+ every Rosenthal K is Fréchet-Urysohn space: every point in the closure of a set A is the limit of sequence from A.

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then
(1) either $K \supset A(c)$
(2) or $K \supset S$
(3) or $K \supset D$

- $A(\mathfrak{c})$ is the one-point compactification of the discrete set of size \mathbf{c}.
- S is the split Cantor set: $2^{\omega+1}$ ordered lexicographically, with the order topology.
- D is the Alexandroff duplicate of the Cantor set.

Theorem (Todorcevic)

If K is a nonmetrizable separable Rosenthal compactum, then
(1) either $K \supset A(c)$
(2) or $K \supset S$
(3) or $K \supset D$

- $A(\mathfrak{c})$ is the one-point compactification of the discrete set of size c .
- S is the split Cantor set: $2^{\omega+1}$ ordered lexicographically, with the order topology.
- D is the Alexandroff duplicate of the Cantor set.

Our aim: Multidimensional versions of this result.

Finite-to-one preimages of metric spaces

$\varphi: K \longrightarrow L$ continuous.

Finite-to-one preimages of metric spaces
$\varphi: K \longrightarrow L$ continuous.

$$
D_{n}(\varphi)=K \cup L \times\{1, \ldots, n-1\}
$$

Finite-to-one preimages of metric spaces
$\varphi: K \longrightarrow L$ continuous.

$$
\begin{aligned}
& \quad D_{n}(\varphi)=K \cup L \times\{1, \ldots, n-1\} \\
& D_{n}=D_{n}\left(2^{\omega} \longrightarrow 2^{\omega}\right) \\
& S_{n}=D_{n-1}\left(S \longrightarrow 2^{\omega}\right)
\end{aligned}
$$

$\varphi: K \longrightarrow L$ continuous.

$$
\begin{aligned}
& \quad D_{n}(\varphi)=K \cup L \times\{1, \ldots, n-1\} \\
& D_{n}=D_{n}\left(2^{\omega} \longrightarrow 2^{\omega}\right) \\
& S_{n}=D_{n-1}\left(S \longrightarrow 2^{\omega}\right)
\end{aligned}
$$

Theorem (A. - Poveda - Todorcevic)
If K is an at most n-to- 1 continuous preimage of a metric space,
$\varphi: K \longrightarrow L$ continuous.

$$
\begin{aligned}
& \quad D_{n}(\varphi)=K \cup L \times\{1, \ldots, n-1\} \\
& D_{n}=D_{n}\left(2^{\omega} \longrightarrow 2^{\omega}\right) \\
& S_{n}=D_{n-1}\left(S \longrightarrow 2^{\omega}\right)
\end{aligned}
$$

Theorem (A. - Poveda - Todorcevic)
If K is an at most n-to- 1 continuous preimage of a metric space, but not $(n-1)$-to-1, then:
$\varphi: K \longrightarrow L$ continuous.

$$
D_{n}(\varphi)=K \cup L \times\{1, \ldots, n-1\}
$$

$D_{n}=D_{n}\left(2^{\omega} \longrightarrow 2^{\omega}\right)$
$S_{n}=D_{n-1}\left(S \longrightarrow 2^{\omega}\right)$

Theorem (A. - Poveda - Todorcevic)
If K is an at most n-to- 1 continuous preimage of a metric space, but not ($n-1$)-to-1, then:
(1) either $K \supset S_{n}$
(2) or $K \supset D_{n}$

Theorem (A. - Poveda - Todorcevic)
If K is an n-to- 1 continuous preimage of a metric space, but not an ($n-1$)-to- 1 preimage, then:
(1) either $K \supset S_{n}$
(2) or $K \supset D_{n}$

Handicaps:

Finite-to-one preimages of metric spaces

Theorem (A. - Poveda - Todorcevic)
If K is an n-to- 1 continuous preimage of a metric space, but not an ($n-1$)-to- 1 preimage, then:
(1) either $K \supset S_{n}$
(2) or $K \supset D_{n}$

Handicaps:

- It talks only about finite-to-one preimages of metric spaces

Finite-to-one preimages of metric spaces

Theorem (A. - Poveda - Todorcevic)
If K is an n-to- 1 continuous preimage of a metric space, but not an ($n-1$)-to- 1 preimage, then:
(1) either $K \supset S_{n}$
(2) or $K \supset D_{n}$

Handicaps:

- It talks only about finite-to-one preimages of metric spaces
- S_{n} and D_{n} are not separable (except S_{2}). So this is not a basis result.

The open degree

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_{0}, \ldots, x_{n} \in K$ there exist repective neighborhoods $V_{0}, \ldots, V_{n} \in \mathscr{F}$ such that $V_{0} \cap \cdots \cap V_{n}=\emptyset$.

The open degree

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_{0}, \ldots, x_{n} \in K$ there exist repective neighborhoods $V_{0}, \ldots, V_{n} \in \mathscr{F}$ such that $V_{0} \cap \cdots \cap V_{n}=\emptyset$.

- $\operatorname{odeg}(K) \leq 1$ if and only if K is metrizable.

Definition

A compact space K has open degree $\leq n$ iff there exists a countable family \mathscr{F} of open sets such that for every different $x_{0}, \ldots, x_{n} \in K$ there exist repective neighborhoods $V_{0}, \ldots, V_{n} \in \mathscr{F}$ such that $V_{0} \cap \cdots \cap V_{n}=\emptyset$.

- odeg $(K) \leq 1$ if and only if K is metrizable.
- If the open sets in \mathscr{F} are G_{δ}, then this means that K is an at most n-to- 1 preimage of a metric space.

Finite basis theorem

Theorem (A.-Todorcevic)

Given $n<\omega$, there is a finite list

$$
K_{1}^{(n)}, \ldots, K_{p_{n}}^{(n)}
$$

of separable Rosenthal compacta of open degree n, such that every separable Rosenthal K with odeg $(K) \geq n$ contains one from the list.

Finite basis theorem

Theorem (A.-Todorcevic)

Given $n<\omega$, there is a finite list

$$
K_{1}^{(n)}, \ldots, K_{p_{n}}^{(n)}
$$

of separable Rosenthal compacta of open degree n, such that every separable Rosenthal K with odeg $(K) \geq n$ contains one from the list.
$p_{1}=1, p_{2}=3, p_{3}=4, p_{4}=8, \ldots$

How minimal spaces look like

Each of these minimal spaces has the following components:

How minimal spaces look like

Each of these minimal spaces has the following components:
(1) A countable dense set of isolated points, identified with the m-adic tree $m^{<\omega}$.

How minimal spaces look like

Each of these minimal spaces has the following components:
(1) A countable dense set of isolated points, identified with the m-adic tree $m^{<\omega}$.
(2) A finite number of copies of m^{ω}

How minimal spaces look like

Each of these minimal spaces has the following components:
(1) A countable dense set of isolated points, identified with the m-adic tree $m^{<\omega}$.
(2) A finite number of copies of m^{ω}
(3) Only in some cases, an infinity point ∞.

The game (simplified version)

Given n, K and a fix countable dense set D, two players play
${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

The game (simplified version)

Given n, K and a fix countable dense set D, two players play

- Player I plays elements from D
${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

Given n, K and a fix countable dense set D, two players play

- Player I plays elements from D
- Player II plays numbers in $\{0,1, \ldots, n-1\}$
${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

Given n, K and a fix countable dense set D, two players play

- Player I plays elements from D
- Player II plays numbers in $\{0,1, \ldots, n-1\}$

${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

Given n, K and a fix countable dense set D, two players play

- Player I plays elements from D
- Player II plays numbers in $\{0,1, \ldots, n-1\}$

Player I wins if the sets $\overline{\left\{d_{k}: i_{k}=i\right\}}$ are pairwise disjoint.
${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

Given n, K and a fix countable dense set D, two players play

- Player I plays elements from D
- Player II plays numbers in $\{0,1, \ldots, n-1\}$

Player I wins if the sets $\overline{\left\{d_{k}: i_{k}=i\right\}}$ are pairwise disjoint.
If K is Rosenthal, we can use determinacy ${ }^{1}$.
${ }^{1} \Sigma_{1}^{1}$-determinacy in this game. Just Borel determinacy with a technical twist.

The winning strategy of Player II means that $\operatorname{odeg}(K)<n$.
The winning strategy of Player I produces a tree structure in K, that we must reduce to a canonical form.

Other facts

Theorem (A.-Todorcevic)
If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:
(1) If \mathscr{C} is a class of Rosenthal compacta, find its minimal elements, if they exist.

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:
(1) If \mathscr{C} is a class of Rosenthal compacta, find its minimal elements, if they exist.
(2) Identify the orthogonal class of a set of minimal compacta.

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:
(1) If \mathscr{C} is a class of Rosenthal compacta, find its minimal elements, if they exist.
(2) Identify the orthogonal class of a set of minimal compacta.

- $\left\{2^{\omega}, S\right\}^{\perp}=$ scattered

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:
(1) If \mathscr{C} is a class of Rosenthal compacta, find its minimal elements, if they exist.
(2) Identify the orthogonal class of a set of minimal compacta.

- $\left\{2^{\omega}, S\right\}^{\perp}=$ scattered
- $\{D, A(\mathfrak{c})\}^{\perp}=$ hereditarily separable

Other facts

Theorem (A.-Todorcevic)

If K is separable Rosenthal and not scattered, then K contains either 2^{ω} or S.

Theorem (A.-Todorcevic)

If a Rosenthal compact space K maps onto S, then it contains a copy of S.

Problems:
(1) If \mathscr{C} is a class of Rosenthal compacta, find its minimal elements, if they exist.
(2) Identify the orthogonal class of a set of minimal compacta.

- $\left\{2^{\omega}, S\right\}^{\perp}=$ scattered
- $\{D, A(\mathfrak{c})\}^{\perp}=$ hereditarily separable
- $\{S\}^{\perp}=$?

