Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences (Hungary) soukup@renyi.hu

Pinning Down versus Density

Joint work with I. Juhász, Z. Szentmiklóssy, J. van Mill

The pinning down number pd(X) of a topological space X is the smallest cardinal κ such that for any neighborhood assignment U: $X \to \tau_X$ there is a set $A \in [X]^{\kappa}$; with $A \cap U(x) \neq \emptyset$ for all $x \in X$. Clearly, $c(X) \leq pd(X) \leq d(X)$.

In a joint paper with Juhasz and Szentmiklossy we proved that the following statements are equivalent:

- (1) $2^{\kappa} < \kappa^{+\omega}$ for each cardinal κ ;
- (2) d(X) = pd(X) for each Hausdorff space X;
- (3) d(X) = pd(X) for each 0-dimensional Hausdorff space X.

This answersed two questions of Banakh and Ravsky.

The dispersion character $\Delta(X)$ of a space X is the smallest cardinality of a non-empty open subset of X. We also showed that the following three statements are *equiconsistent*:

- (i) There is a singular cardinal λ with $pp(\lambda) > \lambda^+$, i.e. Shelah's Strong Hypothesis fails;
- (ii) there is a 0-dimensional Hausdorff space X such that $|X| = \Delta(X)$ is a regular cardinal and pd(X) < d(X);
- (iii) there is a topological space X such that $|X| = \Delta(X)$ is a regular cardinal and pd(X) < d(X).

We also discuss some recent results concerning the pinning down numbers of connected and homogeneous spaces.

 I. Juhász, L. Soukup, Z. Szentmiklóssy: Pinning Down versus Density, Israel J. Math, to appear.