Institute of Mathematics, Polish Academy of Sciences, Poland damian.sobota@impan.pl

On subsets of ℓ_∞ deciding the norm convergence of sequences in ℓ_1

Recall that ℓ_1 and ℓ_∞ denote the space of all summable scalar-valued sequences and the space of all bounded scalar-valued sequences, respectively:

$$\ell_1 = \left\{ (\alpha_n)_{n \in \omega} : \left\| (\alpha_n)_{n \in \omega} \right\|_1 = \sum_{n \in \omega} |\alpha_n| < \infty \right\},$$
$$\ell_\infty = \left\{ (\beta_n)_{n \in \omega} : \left\| (\beta_n)_{n \in \omega} \right\|_\infty = \sup_{n \in \omega} |\beta_n| < \infty \right\}.$$

If $x = (\alpha_n)_{n \in \omega} \in \ell_1$ and $y = (\beta_n)_{n \in \omega} \in \ell_\infty$, then we define $y(x) = \sum_{n \in \omega} \alpha_n \cdot \beta_n$.

The classical Schur theorem states that if a sequence $(x_n)_{n\in\omega}$ of elements of ℓ_1 converges weakly to 0, i.e. $\lim_{n\to\infty} y(x_n) = 0$ for every $y \in \ell_{\infty}$, then it converges to 0 in norm, i.e. $\lim_{n\to\infty} ||x_n||_1 = 0$.

During my talk I will show that the Schur theorem can be strenghtened — I will show in ZFC that there exists a subset $D \subset \ell_{\infty}$ of cardinality equal to the cofinality $cof(\mathcal{N})$ of the Lebesgue null ideal \mathcal{N} such that if a sequence $(x_n)_{n\in\omega}$ of elements of ℓ_1 is such that $\lim_{n\to\infty} y(x_n) = 0$ for every $y \in D$, then it converges to 0 in norm. The cardinality of such D cannot be less than the pseudo-intersection number \mathfrak{p} . This implies that the existence of such D of cardinality strictly smaller than the continuum \mathfrak{c} is undecidable in ZFC+ \neg CH.