Wrocław Univerity of Technology, Poland robert.ralowski@pwr.edu.pl

Regular familes of small subsets of Polish spaces

Joint work with Szymon Żeberski

We consider a nice parametrised families of sets from fixed σ -ideal \mathcal{I} defined on Polish space X. The covering number (i.e smallest size of family of sets from \mathcal{I} for which the union is a whole space X) of regular (in some sense) families from \mathcal{I} are equal to \mathfrak{c} . The last property can be used to obtain some ZFC results about nonmeasurability of unions of small subsets of Polish space.

Here we say that a subset $A \subseteq X$ is a completely \mathcal{I} -nonmeasurable if for any $B \in Bor(X) \setminus \mathcal{I}$ we have $A \cap B \neq \emptyset$ and $A^c \cap B \neq \emptyset$.

- If $\mathcal{I} = [X]^{\leq \omega}$ then completely \mathcal{I} -nonmeasurability of $A \subseteq X$ is equivalent to A is a Bernstein set.
- If *I* = *N*([0,1]) then A ⊆ [0,1] is completely *N*-nonmeasurable set iff λ_{*}(A) = 0 and λ^{*}(A) = 1 (where λ_{*}, λ^{*} denotes inner and outer Lebesgue measure respectively).
- If *I* = *M* then *A* ⊆ *X* is completely *M*-nonmeasurable iff *A* does not have Baire property in each nonempty open subset of *X*.

Theorem. Let X and Y be a Polish space and \mathcal{I} be an c.c.c. σ -ideal with a Borel base. Let $F \subseteq X \times Y$ be an analytic relation such that

- $X \setminus \{x \in X : (\exists y \in Y) \ ((x, y) \in F)\} \in \mathcal{I}$,
- $(\forall y \in Y) \ (\{x \in X : \ (x, y) \in F\} \in \mathcal{I}),$
- $(\forall x \in X) (|\{y \in Y : (x, y) \in F\}| < \aleph_0).$

Then there exists $Z \subseteq Y$ such that $\{x \in X : (\exists y \in Z) : (x, y) \in F\}$ is completely \mathcal{I} -nonmeasurable in X.

Theorem. Let X be a Polish space and be an \mathcal{I} σ -ideal with Borel base with the following property

$$(\forall B \in Bor(X) \setminus \mathcal{I})(\exists P \in Perf(X) \setminus \mathcal{I})(P \subseteq B).$$

Let $\mathcal{A} \subseteq \mathcal{I}$ be a partition of X such that

$$(\forall P \in Perf(X)) (\bigcup \{A \in \mathcal{A} : A \cap F \neq \emptyset\} \in Bor(X)).$$

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely \mathcal{I} -nonmeasurable set in space X.

 Rałowski, R., Żeberski, Sz., Complete nonmeasurability in regular families. Houston Journal of Mathematics, Vol. 34 No. 3 (2008), 773–780.