University of South Carolina, Columbia, SC USA nyikos@math.sc.edu

Large cardinals, small uncountable cardinals, and locally compact spaces of countable extent

A space of countable extent, also called an ω_1 -compact space, is one in which every closed discrete subspace is countable.

Theorem. [2] In MM(S)[S] models, every locally compact, hereditarily normal, ω_1 -compact space is σ -countably compact, i.e., the union of countably many countably compact subspaces.

In stark contrast, we also have:

Theorem. [2] If \clubsuit , then there exists a locally compact, locally countable (hence first countable) ω_1 -compact, monotonically normal space of cardinality \aleph_1 that is not σ -countably compact.

MM(S)[S] models require large cardinal axioms, whereas \clubsuit does not, and monotonically normal spaces are hereditarily collectionwise normal and hereditarily countably paracompact. The questions suggested by the following problem are all unanswered:

Problem 1. Which of the numerous independence results implied by these two theorems requires large cardinal axioms?

The following related problems are also unsolved:

Problem 2. Is there a ZFC example of a locally compact, ω_1 -compact space of cardinality \aleph_1 that is not σ -countably compact? one that is normal?

More generally, there is the question of what is the minimum cardinality of such spaces. Examples of cardinality \mathfrak{c} were obtained in 1975 by Erik van Douwen [1] but the following improvement (\mathfrak{b} instead of \mathfrak{c}) seems to be new:

Theorem. [3] Every stationary, co-stationary subset of ω_1 has a locally compact normal quasi-perfect preimage of cardinality \mathfrak{b} .

Quasi-perfect functions inversely preserve both ω_1 -compactness and lack of σ -countable compactness, and every such subset of ω_1 has both properties.

- van Douwen, E.K., A technique for constructing honest locally compact submetrizable examples, Topology Appl. 47 (1992), no. 3, 179–201.
- [2] Nyikos, P., Locally compact, ω_1 -compact spaces, submitted to Proceedings AMS.
- [3] Nyikos, P., The structure of locally compact normal spaces: some quasi-perfect preimages, submitted to Topology and its Applications.