University of Gdańsk, Poland Adam.Kwela@ug.edu.pl

Additivity of the ideal of microscopic sets

Following J. Appell, we call a set $M \subseteq \mathbb{R}$ microscopic if for each $\varepsilon > 0$ there exists a sequence of intervals $(J_n)_{n \in \omega}$ covering M and such that $|J_n| \leq \varepsilon^{n+1}$ for each $n \in \omega$ (cf. [1]).

During the talk I will consider the family \mathcal{M} of all microscopic sets as well as two of its generalizations – families of picoscopic sets (\mathcal{P}) and nanoscopic sets (\mathcal{N}). In particular, I will show that, in contrast to \mathcal{M} , families \mathcal{N} and \mathcal{P} do not form ideals. This will lead us to the main result showing (in ZFC) that the additivity of \mathcal{M} is exactly ω_1 .

 J. Appell, Insiemi ed operatori "piccoli" in analisi funzionale, Rend. Instit. Mat. Univ. Trieste, 33, (2001), 127–199.