Institute of Mathematics of the Czech Academy of Sciences chodounsky@math.cas.cz

Mathias forcing and generic ultrafilters

I will analyze the Mathias–Prikry forcing $M(\mathcal{F})$ where \mathcal{F} is a filter on ω and derive a condition for reals which is sufficient for genericity in this poset. As an application, I will present a characterization of certain ultrafilters on ω generic over $L(\mathbb{R})$ (due to J. Zapletal).

Theorem. Suppose there are large cardinals. Let \mathcal{I} be an F_{σ} on ω and \mathcal{U} be an ultrafilter on ω . The following are equivalent:

- 1. \mathcal{U} is Q-generic over $L(\mathbb{R})$ where Q is the poset of \mathcal{I} -positive sets ordered by modulo finite inclusion,
- 2. \mathcal{U} is a P-point, $\mathcal{U} \cap \mathcal{I} = \emptyset$, and whenever $E \subset \mathcal{P}(\omega)$ is a closed set disjoint from \mathcal{U} , then there is a set $e \in \mathcal{P}(\omega) \setminus \mathcal{U}$ such that $E \subset \langle \mathcal{I}, \{e\} \rangle$.