Every ccc pseudocompact crowded space is resolvable

Jan van Mill

University of Amsterdam

SetTop 2014 August 18-22, 2014 Novi Sad (Serbia)

Outline

2 κ -resolvability

• All spaces under discussion are considered to be Tychonoff.

Definition

A space X is *resolvable* if there is a dense subset $A \subseteq X$ such that $X \setminus A$ is dense as well.

- A resolvable space has no isolated points.
- A space without isolated points is called *crowded*.
- The concept of resolvability is due to Hewitt (1943).
- Hewitt showed that every crowded metrizable space and every crowded locally compact space is resolvable.

Definition

A crowded space X is *irresolvable* if it is not resolvable.

Theorem (Hewitt (1943))

There is a crowded irresolvable space.

Proof.

Let τ denote the usual topology on \mathbb{Q} . Hence the collection \mathcal{P} of crowded Tychonoff topologies on \mathbb{Q} is not empty. The collection \mathcal{P} is partially ordered by inclusion. If \mathcal{T} is a chain in \mathcal{P} , then $\bigcup \mathcal{T}$ is the basis for a crowded Tychonoff topology on \mathbb{Q} . Hence there is a maximal element ρ in \mathcal{P} and we claim that (\mathbb{Q}, ρ) is irresolvable. Striving for a contradiction, assume that A and B are complementary dense subsets of \mathbb{Q} . We claim that A is crowded. If not, then there exists a nonempty open subset U in \mathbb{Q} such that $U \cap A$ is a singleton. Since ρ is crowded, U is infinite. Hence $U \setminus A$ is a nonempty open subset of \mathbb{Q} missing the dense set A, which is a contradiction. Hence A is crowded and so is B. Hence the topological sum topology on $A \cup B$ can be regarded as a proper strengthening of ρ in \mathcal{P} , which contradicts the maximality of ρ .

Theorem (Kunen, Szymański and Tall (1986))

Under V = L, every crowded Baire space is resolvable.

Theorem (Kunen, Szymański and Tall (1986))

If ZFC is consistent with the existence of a measurable cardinal, then ZFC is consistent with the existence of an irresolvable (zero-dimensional) Baire space.

Definition

A group G is called *strongly resolvable* if every crowded group topology on G is resolvable.

 Ol'shanski (1980) showed that there is a countably infinite group G with no group topology except the discrete topology. Hence such groups, and all finite groups, are strongly resolvable.

Theorem (Comfort and vM (1994))

Let G be an Abelian group. If G contains no isomorphic copy of $\bigoplus_{\omega} \{0,1\}$, then G is strongly resolvable.

Theorem (Comfort and vM (1994))

Under Martin's Axiom, if G be an Abelian containing an isomorphic copy of $\bigoplus_{\omega} \{0,1\}$, then G is not strongly resolvable.

• The proof of this last result depends heavily on a construction of crowded extremally disconnected topological groups by Malyhin (1975).

Problem (Arhangelskii, 1967)

Is there in ZFC *an example of a crowded extremally disconnected topological group?*

Definition

Let $\kappa \geq 2$ be a cardinal. A crowded space X is called κ -resolvable if there is a family of κ -many pairwise disjoint dense subsets of X.

Theorem (Illanes (1996))

If X is n-resolvable for every n, then X is ω -resolvable.

Definition

- A space X ps pseudocompact if every realvalued continuous function f: X → ℝ is bounded.
- A space X is countably compact if every countably infinite subset of X has an accumulation point.
 - A countably compact space is pseudocompact.
 - A normal space is pseudocompact if and only if it is countably compact.

Theorem (Comfort and García Ferreira (1996))

Every crowded countably compact space is ω -resolvable.

Theorem (Pytkeev (2002), Juhász, Soukup and Szentmiklóssy (2007))

Every countably compact crowded space is ω_1 -resolvable.

Questions

- (Comfort and García Ferreira (1996)) Is every pseudocompact crowded space resolvable?
- Q (Juhász, Soukup and Szentmiklóssy (2007)) Is every countably compact crowded space c-resolvable?
 - A space X is *ccc* is every family consisiting of pairwise disjoint nonempty open subsets of X is countable.

Theorem (vM 2013)

Every crowded ccc pseudocompact space is c-resolvable.

• Hence this answers the above questions in the class of ccc spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Let X be crowded ccc space, and let W be a nonempty open subset of X. Then there is a countably infinite family \mathcal{U} of open F_{σ} -subsets of X such that

- for every $U \in \mathcal{U}$, $\overline{U} \subseteq W$,
- 2 if $U, V \in \mathcal{U}$ are distinct, then $\overline{U} \cap \overline{V} = \emptyset$,
- $\bigcirc \bigcup \mathcal{U} \text{ is dense in } W.$
 - We let Z denote any compact crowded ccc space. To Z we will associate a certain inverse sequence of compact metrizable spaces. We do not know what the 'length' is of that sequence, but we do know that it is at most ω₁.
 - We assume that Z is a subspace of \mathbb{I}^{κ} , for some infinite cardinal κ .

Lemma

For every nonempty open F_{σ} -subset U of Z there are a countable $A(U) \subseteq \kappa$ and an open subset V of \mathbb{I}^A such that $\pi_{A(U)}^{-1}(V) \cap Z = U$.

- Now let \mathcal{U}_0 be a family of open F_{σ} -subsets of Z given by the lemma in the previous slide with W = Z. For every $U \in \mathcal{U}_0$, let A(U) be the countable subset of κ we get from the lemma in this slide, and put $A_0 = \bigcup_{U \in \mathcal{U}_0} A(U)$. Let $Y_0 = \pi_{A_0}(Z)$, and let $f_0 \colon Z \to Y_0$ denote the restriction of the projection π_{A_0} to Z.
- Observe that Y_0 is compact metrizable. Observe that if we enlarge A_0 to a countable subset B of κ , then $\pi_B(Z)$ and the restriction of the projection π_B to Z have the same properties.

Every ccc pseudocompact crowded space is resolvable Sketch of the proof

• Now do the same thing for every $U \in \mathcal{U}_0$, thus obtaining \mathcal{U}_1 , $A_1 \supseteq A_0$, Y_1 , and a continuous surjection $f_0^1 \colon Y_1 \to Y_0$ such that the diagram

commutes.

 We continue this process in exactly the same way for all n < ω, thus obtaining an increasing sequence of countable subsets A₀ ⊆ A₁ ⊆ ··· ⊆ A_n ⊆ ··· of κ, corresponding spaces Y₀, Y₁,..., and mappings such that all subdiagrams of the following diagram commute:

- Put A = U_{n<ω} A_n, and let Y^ω = π_A(Z). Observe that Y^ω is the inverse limit of the sequence {Y_n : n < ω} and hence the projections give us all mappings that are needed to 'complete' the diagram.
- The collections U_n for n < ω form an ω-branching tree under reverse inclusion. The intersection of each path trough the tree is a closed G_δ-subset of Z.
- By ccc, there are at most countably many of them that have nonempty interior.
- If there are no such paths, the process stops and we put $Y_{\omega}=Y^{\omega}.$
- If there are such paths, we continue the construction exactly in the same way with each of the countably many nonempty interiors.
- Continue in this way.

 By ccc, the process stops at an infinite limit ordinal λ ≤ ω₁. This brings us to the following inverse system:

and the corresponding tree of open subsets $\mathbb{T} = \{U : (\exists \alpha < \lambda) (U \in \mathcal{U}_{\alpha})\}, \text{ ordered in the obvious way.} \\ \text{Observe that } \mathbb{T} \text{ does not have uncountable chains nor anti-chains.} \\ \text{Also observe that } Y_{\alpha} \text{ for } \alpha < \lambda \text{ is compact metrizable, and that } Y_{\lambda} \text{ may have weight } \omega_1.$

- Let $Z = \beta X$ for some crowded pseudocompact ccc space, and assume that $\lambda = \omega_1$.
- As before, for every α < λ and U ∈ U_α, let V_U in Y_α be open such that f⁻¹_α(V_U) = U, and put F_α = Y_α \ ⋃_{U∈U_α} V_U. Observe that f⁻¹_α(F_α) = Z \ ⋃U_α, and that (f^α_β)⁻¹(F_β) ⊆ F_α if α > β.

Lemma

If
$$\lambda = \omega_1$$
, then $\{f_{\alpha}^{-1}(F_{\alpha}) : \alpha < \lambda\}$ covers Z.

 For every α < ω₁, let {A^α_ξ : ξ < c} be a partition of F_α \ ∪_{β<α}(f^α_β)⁻¹(F_β) in c Bernstein sets in F_α \ ∪_{β<α}(f^α_β)⁻¹(F_β) (some members of this family may be empty). For ξ < c, put

$$B_{\xi} = \bigcup_{\alpha < \omega_1} f_{\alpha}^{-1}(A_{\xi}^{\alpha}) \cap X.$$

Then $\mathcal{B} = \{B_{\xi} : \xi < \mathfrak{c}\}$ partitions X by the previous result.

- Every B_{ξ} is dense. Here the pseudocompactness of X is used.
- Every nonempty G_δ of Z intersects X. That is enough to prove that for every nonempty open subset V of X there exists α < λ such that f_α(V) \ U_{β<α}(f^α_β)⁻¹(F_β) contains a Cantor set and hence meets A^α_ξ.

Problem

How about pseudocompact spaces of cellularity ω_1 ?

・ロト ・西ト ・ヨト ・ヨー うらぐ