Luzin and Sierpiński sets

Marcin Michalski and Szymon Żeberski Wrocław University of Technology

SetTop, Novi Sad, 18-21.08.2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathcal{I} be a σ -ideal of subsets of \mathbb{R} (\mathbb{R}^2) and \mathcal{B} a family of Borel sets. We say that \mathcal{I} :

- ▶ is translation invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $x + I \in \mathcal{I}$,
- ▶ is scale invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $xI \in \mathcal{I}$,
- ▶ has Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$,
- ▶ has Steinhaus property if $Int(A B) \neq \emptyset$ for each $A, B \in B \setminus I$

Let \mathcal{I} be a σ -ideal of subsets of \mathbb{R} (\mathbb{R}^2) and \mathcal{B} a family of Borel sets. We say that \mathcal{I} :

- ▶ is translation invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $x + I \in \mathcal{I}$,
- ▶ is scale invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $xI \in \mathcal{I}$,
- ▶ has Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$,
- ▶ has Steinhaus property if $Int(A B) \neq \emptyset$ for each $A, B \in B \setminus I$

Example

Meager sets \mathcal{M} and null sets \mathcal{N} have these properties.

Definition

A is

- \mathcal{I} -nonmeasurable if $A \notin \sigma(\mathcal{B} \cup \mathcal{I})$,
- completely *I*-nonmeasurable if A ∩ B is *I*-nonmeasurable for every B ∈ B \ *I*,
- *I*-Luzin set if |A| = c and for every I ∈ I a set A ∩ I is countable,
- ► strong *I*-Luzin set if *A* is an *I*-Luzin and its intersection with every Borel *I*-positive set is uncountable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A is:

- ► a Luzin set if |L| = c and every intersection of L and a meager set is countable,
- ► a strong Luzin set if A is a Luzin set and every intersection of A and a *M*-positive Borel set is uncountable,
- ➤ a Sierpiński set if |S| = c and every intersection of S and a null set is countable,
- ► a strong Sierpiński set if A is a Sierpiński set and every intersection of A and a N-positive Borel set is uncountable,
- a Bernstein set if for each perfect set P we have A ∩ P ≠ Ø and A^c ∩ P ≠ Ø.

Fact

Let B be a Borel \mathcal{I} -positive set and let D be a countable dense set. Then B + D is an \mathcal{I} -residual set.

Corolary

Let *L* be a \mathcal{I} -Luzin set. Then $L + \mathbb{Q}$ is a strong \mathcal{I} -Luzin set.

Fact (CH)

There exists a partition of $\mathbb R$ into $\mathfrak c$ many strong $\mathcal I\text{-Luzin sets.}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong \mathcal{I} -Luzin set and each vertical slice A_x is a cocountable set. Such a set is \mathcal{M} and \mathcal{N} -nonmeasurable. Moreover, in the case $\mathcal{I} = \mathcal{M}$, A is completely \mathcal{M} -nonmeasurable, and in the case $\mathcal{I} = \mathcal{N}$, A is completely \mathcal{N} -nonmeasurable.

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong \mathcal{I} -Luzin set and each vertical slice A_x is a cocountable set. Such a set is \mathcal{M} and \mathcal{N} -nonmeasurable. Moreover, in the case $\mathcal{I} = \mathcal{M}$, A is completely \mathcal{M} -nonmeasurable, and in the case $\mathcal{I} = \mathcal{N}$, A is completely \mathcal{N} -nonmeasurable.

Theorem (CH)

There exists a set $A \subseteq \mathbb{R}^2$ such that each vertical slice A_x is cocountable and A is completely \mathcal{M} , \mathcal{N} -nonmeasurable.

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^{γ} is a strong Luzin set and each vertical slice A_x is strong Sierpiński set. Moreover, A is completely \mathcal{M} - and \mathcal{N} -nonmeasurable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^{γ} is a strong Luzin set and each vertical slice A_x is strong Sierpiński set. Moreover, A is completely \mathcal{M} - and \mathcal{N} -nonmeasurable.

Proof

Let $\{L_{\alpha} : \alpha < \mathfrak{c}\}$ and $\{S_{\alpha} : \alpha < \mathfrak{c}\}$ be a partition of \mathbb{R} into strong Luzin sets and strong Sierpiński sets respectively. Let us set:

$$\mathsf{A} = \bigcup_{\alpha < \mathfrak{c}} (\mathsf{L}_{\alpha} \times \mathsf{S}_{\alpha}).$$

Assume that a Luzin set exists. Then there exists a set A ⊆ ℝ² such that for each straight line I a set A ∩ I is a strong Luzin set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Assume that a Luzin set exists. Then there exists a set A ⊆ ℝ² such that for each straight line / a set A ∩ / is a strong Luzin set.
- (CH) There exists a set A ⊆ R² such that for each straight line I a set A ∩ I is a strong Luzin set and A is a Hamel basis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Assume that a Luzin set exists. Then there exists a set A ⊆ ℝ² such that for each straight line / a set A ∩ / is a strong Luzin set.
- (CH) There exists a set A ⊆ R² such that for each straight line *I* a set A ∩ *I* is a strong Luzin set and A is a Hamel basis.
- (CH) There exists a set A ⊆ R² such that for each homeomorphism h : R → R² on its image a set h(R) ∩ A is a strong Luzin set and A is a Hamel basis.

There exist a set $A \subseteq \mathbb{R}^2$ such that for every increasing continuous function $f \land \cap f$ is a strong Luzin set and for each decreasing locally absolutely continuous function $g \land \cap g$ is a strong Sierpiski set and A is a Hamel basis.

- Assume that a Sierpiński set exists. Then there exists a set A ⊆ ℝ² such that for each straight line I a set A ∩ I is a strong Sierpiński set.
- (CH) There exists a set A ⊆ ℝ² such that for each straight line *I* on the plane a set *I* ∩ A is a strong Sierpiński set and A is a Hamel basis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact

- ► Let *L* be an *I*-Luzin set. Then there exists a linearly independent *I*-Luzin set.
- ► Let *L* be an *I*-Luzin set. Then there exists a linearly independent strong *I*-Luzin set.

Problem

Does the existence of an \mathcal{I} -Luzin set imply the existence of an \mathcal{I} -Luzin set which is a Hamel base?

Fact (CH)

There is an \mathcal{I} -Luzin set L such that L is a linear subspace of \mathbb{R} .

Theorem

It is consistent that $2^{\omega} = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fact (CH)

There is an \mathcal{I} -Luzin set L such that L is a linear subspace of \mathbb{R} .

Theorem

It is consistent that $2^{\omega} = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R} .

Proof.

Let us work in a model V' obtained from a model V of CH by adding ω_2 Cohen reals $\{c_{\alpha}: \alpha < \omega_2\}$. Set

$$L = span_{\mathbb{Q}}(\{c_{\alpha}: \ \alpha < \omega_2\}).$$

Fact (CH)

There is an \mathcal{I} -Luzin set L such that L is a linear subspace of \mathbb{R} .

Theorem

It is consistent that $2^{\omega} = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R} .

Proof.

Let us work in a model V' obtained from a model V of CH by adding ω_2 Cohen reals $\{c_{\alpha}: \alpha < \omega_2\}$. Set

$$L = span_{\mathbb{Q}}(\{c_{\alpha}: \ \alpha < \omega_2\}).$$

Problem

Does the existance of a Luzin set imply the existance of a Luzin set which is a linear subspace of \mathbb{R} ?

For each \mathcal{I} -Luzin set L there exists an \mathcal{I} -Luzin set X such that $\{x + L : x \in X\}$ is a partition of \mathbb{R} .

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that L + L is an \mathcal{I} -Luzin set.

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that $L + L = \mathbb{R}$.

For each $n \in \mathbb{N} \setminus \{0\}$ There exists an \mathcal{I} -Luzin set L such that $\bigoplus^{n} L$ is an \mathcal{I} -Luzin set and $\bigoplus^{n+1} L = \mathbb{R}$.

Theorem (CH)

There exists an \mathcal{I} -Luzin set L such that span(L) is an \mathcal{I} -Luzin set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corolary (CH)

- 1. There exists an \mathcal{I} -Luzin set L such that $\bigoplus^{n+1} L$ is an \mathcal{I} -Luzin for each $n \in \mathbb{N}$,
- 2. There exists an \mathcal{I} -Luzin set L such that L + L = L,
- 3. There exists an \mathcal{I} -Luzin set L such that $\langle \bigoplus^{n+1} L : n \in \mathbb{N} \rangle$ is a ascending sequence of \mathcal{I} -Luzin sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There exists a Luzin set L such that L + L is a Bernstein set.
- There exists a Sierpiński set S such that S + S is a Bernstein set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- There exists a Luzin set L such that L + L is a Bernstein set.
- There exists a Sierpiński set S such that S + S is a Bernstein set.

Proof.

$$\begin{split} & \textit{Perf} = \{ P_{\alpha} : \alpha < \mathfrak{c} \}, \ \mathcal{M} \cap \mathcal{B} = \{ M_{\alpha} : \alpha < \mathfrak{c} \}. \\ & \text{We choose sequences } \{ I_{\alpha} : \alpha < \mathfrak{c} \}, \ \{ I'_{\alpha} : \alpha < \mathfrak{c} \} \text{ and } \{ p_{\alpha} : \alpha < \mathfrak{c} \} \\ & \text{such that for each } \xi < \mathfrak{c} : \end{split}$$

1.
$$l_{\xi}, l'_{\xi} \notin \bigcup_{\alpha < \xi} M_{\alpha},$$

2. $(\bigcup_{\alpha \le \xi} \{l_{\alpha}, l'_{\alpha}\} + \bigcup_{\alpha \le \xi} \{l_{\alpha}, l'_{\alpha}\}) \cap \{p_{\alpha} : \alpha < \xi\} = \emptyset,$
3. $l_{\xi} + l'_{\xi} \in P_{\xi},$
4. $p_{\xi} \in P_{\xi}.$

Proof...

Let us denote:

$$\begin{aligned} M_1 &= \bigcup_{\alpha < \xi} M_{\alpha}, \\ M_2 &= \bigcup_{\alpha < \xi} M_{\alpha} \cup (\{p_{\alpha}\}_{\alpha < \xi} - \{l_{\alpha}, l_{\alpha}'\}_{\alpha < \xi}) \cup \frac{1}{2} \{p_{\alpha}\}_{\alpha < \xi}, \\ P &= P_{\xi}, \end{aligned}$$

Does there exist $l' \in M_2^c$ such that a set $M_1^c \cap (P - l')$ has cardinality \mathfrak{c} ?

Proof...

We extend our universe V (via generic extension) to V' such that $V' \models cov(\mathcal{M}) \ge \omega_2$.

We will work in V'. Let us now fix a set $A \subseteq P$ of cardinality ω_1 . Notice that for every $a \in A$ a set $\{I : a - I \in M_1^c\} = -M_1^c + a$ is comeager. Since $cov(\mathcal{M}) > \omega_1$

$$\bigcap_{a\in A} \{I: a-I\in M_1^c\}\cap M_2^c\neq \emptyset.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof...

We extend our universe V (via generic extension) to V' such that $V' \models cov(\mathcal{M}) \ge \omega_2$.

We will work in V'. Let us now fix a set $A \subseteq P$ of cardinality ω_1 . Notice that for every $a \in A$ a set $\{I : a - I \in M_1^c\} = -M_1^c + a$ is comeager. Since $cov(\mathcal{M}) > \omega_1$

$$\bigcap_{a\in A} \{I: a-I\in M_1^c\}\cap M_2^c\neq \emptyset.$$

It shows that $V' \models \exists I' \in M_2^c |M_1^c \cap (P - I')| \ge \omega_1$. So, V' models the following sentence:

 $(\exists I')_{\mathbb{R}}(\exists T)_{Perf}(\forall x)_{\mathbb{R}}(I' \in M_2^c \land (x \in T \to x \in M_1^c \land x + I' \in P))$

By Shoenfield absoluteness theorem it is also true in V.

There are no Luzin set L and Sierpiński set S such that L + S is a Bernstein set.

There are no Luzin set L and Sierpiński set S such that L + S is a Bernstein set.

Follows from Babinkostova L., Sheepers M. Products and selection principles, Topology Proceedings, Vol. 31 (2007), 431-443.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$A+\underbrace{P+P+\cdots+P}_{n}\in\mathcal{N}.$$

Lemma

Let A be a null set. We can find a perfect set P such that for every n

$$A+\underbrace{P+P+\cdots+P}_{n}\in\mathcal{N}.$$

Proof of lemma

We can assume that A is Borel. Let V be our universe. We enlarge it (via forcing) to V' satisfying $V' \models add(\mathcal{N}) = \omega_3$.

Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2 . Then $A + X \in \mathcal{N}$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2 , hence, it contains a perfect set P_0 .

Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2 . Then $A + X \in \mathcal{N}$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2 , hence, it contains a perfect set P_0 . Now, set $A_1 = A_0 + P_0$. We want to find a perfect set $P_1 \subseteq P_0$ such that $A_1 + P_1 \in \mathcal{N}$. Moreover, we require that the first splitting node in P_0 is still a splitting node in P_1 .

(日) (同) (三) (三) (三) (○) (○)

Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2 . Then $A + X \in \mathcal{N}$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2 , hence, it contains a perfect set P_0 . Now, set $A_1 = A_0 + P_0$. We want to find a perfect set $P_1 \subseteq P_0$ such that $A_1 + P_1 \in \mathcal{N}$. Moreover, we require that the first splitting node in P_0 is still a splitting node in P_1 . We proceed by a simple induction on n-th step finding for a null set A_n and a perfect set P_n a perfect set $P_{n+1} \subseteq P_n$ such that $A_{n+1} = A_n + P_{n+1}$ is null and all splitting nodes from first n+1levels in P_n remains splitting nodes in P_{n+1} .

We get a sequence of perfect sets $(P_n, n \in \omega)$ such that $P = \bigcap_{n \in \omega} P_n$ is a perfect set. Moreover, we can find a null G_{δ} B such that $B \supseteq \bigcup_{n \in \omega} A_n$. Notice that

$$V' \models (\exists P \in Perf)(\exists B)(\forall n)(\forall x)(\forall a)(\forall b)(B \text{ is null } G_{\delta} \land$$

$$(a \in A \land b \notin B \land x_0, x_1, \ldots, x_n \in P \rightarrow a + x_0 + \cdots + x_n \neq b)),$$

where x_0, x_1, \ldots, x_n are naturally coded by x e.g. by the formula $x_i(k) = x(kn + i)$. Above formula is Σ_2^1 . Marcin Michalski, Szymon Żeberski, "Luzin and Sierpiński sets, some nonmeasurable subsets of the plane", arXiv.org/abs/1406.3062