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Let I be a σ-ideal of subsets of R (R2) and B a family of Borel
sets. We say that I:

I is translation invariant, if for each x ∈ R and I ∈ I we have
x + I ∈ I,

I is scale invariant, if for each x ∈ R and I ∈ I we have xI ∈ I,

I has Borel base if (∀I ∈ I)(∃B ∈ B ∩ I)(I ⊆ B),

I has Steinhaus property if Int(A−B) 6= ∅ for each A,B ∈ B \I

Example

Meager sets M and null sets N have these properties.
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Definition
A is

I I-nonmeasurable if A /∈ σ(B ∪ I),

I completely I-nonmeasurable if A ∩ B is I-nonmeasurable for
every B ∈ B \ I,

I I-Luzin set if |A| = c and for every I ∈ I a set A ∩ I is
countable,

I strong I-Luzin set if A is an I-Luzin and its intersection with
every Borel I-positive set is uncountable.



Definition
A is:

I a Luzin set if |L| = c and every intersection of L and a meager
set is countable,

I a strong Luzin set if A is a Luzin set and every intersection of
A and a M-positive Borel set is uncountable,

I a Sierpiński set if |S | = c and every intersection of S and a
null set is countable,

I a strong Sierpiński set if A is a Sierpiński set and every
intersection of A and a N -positive Borel set is uncountable,

I a Bernstein set if for each perfect set P we have A ∩ P 6= ∅
and Ac ∩ P 6= ∅.



Fact
Let B be a Borel I-positive set and let D be a countable dense set.
Then B + D is an I-residual set.

Corolary

Let L be a I-Luzin set. Then L + Q is a strong I-Luzin set.

Fact (CH)

There exists a partition of R into c many strong I-Luzin sets.



Theorem (CH)

There exists a set A ⊆ R2 such that each horizontal slice Ay is a
strong I-Luzin set and each vertical slice Ax is a cocountable set.
Such a set is M and N -nonmeasurable. Moreover, in the case
I =M, A is completely M-nonmeasurable, and in the case
I = N , A is completely N -nonmeasurable.

Theorem (CH)

There exists a set A ⊆ R2 such that each vertical slice Ax is
cocountable and A is completely M, N -nonmeasurable.
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Theorem (CH)

There exists a set A ⊆ R2 such that each horizontal slice Ay is a
strong Luzin set and each vertical slice Ax is strong Sierpiński set.
Moreover, A is completely M- and N -nonmeasurable.

Proof
Let {Lα : α < c} and {Sα : α < c} be a partition of R into strong
Luzin sets and strong Sierpiński sets respectively. Let us set:

A =
⋃
α<c

(Lα × Sα).
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Theorem

I Assume that a Luzin set exists. Then there exists a set
A ⊆ R2 such that for each straight line l a set A ∩ l is a
strong Luzin set.

I (CH) There exists a set A ⊆ R2 such that for each straight
line l a set A ∩ l is a strong Luzin set and A is a Hamel basis.

I (CH) There exists a set A ⊆ R2 such that for each
homeomorphism h : R→ R2 on its image a set h(R) ∩ A is a
strong Luzin set and A is a Hamel basis.
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Theorem (CH)

There exist a set A ⊆ R2 such that for every increasing continuous
function f A ∩ f is a strong Luzin set and for each decreasing
locally absolutely continuous function g A ∩ g is a strong Sierpiski
set and A is a Hamel basis.



Theorem

I Assume that a Sierpiński set exists. Then there exists a set
A ⊆ R2 such that for each straight line l a set A ∩ l is a
strong Sierpiński set.

I (CH) There exists a set A ⊆ R2 such that for each straight
line l on the plane a set l ∩ A is a strong Sierpiński set and A
is a Hamel basis.



Fact

I Let L be an I-Luzin set. Then there exists a linearly
independent I-Luzin set.

I Let L be an I-Luzin set. Then there exists a linearly
independent strong I-Luzin set.

Problem
Does the existence of an I-Luzin set imply the existence of an
I-Luzin set which is a Hamel base?



Fact (CH)

There is an I-Luzin set L such that L is a linear subspace of R.

Theorem
It is consistent that 2ω = ω2 and there is a Luzin set which is a
linear subspace of R.

Proof.
Let us work in a model V ′ obtained from a model V of CH by
adding ω2 Cohen reals {cα : α < ω2}. Set

L = spanQ({cα : α < ω2}).
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Problem
Does the existance of a Luzin set imply the existance of a Luzin set
which is a linear subspace of R?



Theorem (CH)

For each I-Luzin set L there exists an I-Luzin set X such that
{x + L : x ∈ X} is a partition of R.

Theorem (CH)

There exists an I-Luzin set L such that L + L is an I-Luzin set.

Theorem (CH)

There exists an I-Luzin set L such that L + L = R.



Theorem (CH)

For each n ∈ N \ {0} There exists an I-Luzin set L such that
⊕n L

is an I-Luzin set and
⊕n+1 L = R.

Theorem (CH)

There exists an I-Luzin set L such that span(L) is an I-Luzin set.



Corolary (CH)

1. There exists an I-Luzin set L such that
⊕n+1 L is an I-Luzin

for each n ∈ N,

2. There exists an I-Luzin set L such that L + L = L,

3. There exists an I-Luzin set L such that 〈
⊕n+1 L : n ∈ N〉 is a

ascending sequence of I-Luzin sets.



Theorem (CH)

I There exists a Luzin set L such that L + L is a Bernstein set.

I There exists a Sierpiński set S such that S + S is a Bernstein
set.

Proof.
Perf = {Pα : α < c}, M∩B = {Mα : α < c}.
We choose sequences {lα : α < c}, {l ′α : α < c} and {pα : α < c}
such that for each ξ < c:

1. lξ, l
′
ξ /∈

⋃
α<ξMα,

2. (
⋃
α≤ξ{lα, l ′α}+

⋃
α≤ξ{lα, l ′α}) ∩ {pα : α < ξ} = ∅,

3. lξ + l ′ξ ∈ Pξ,

4. pξ ∈ Pξ.
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Proof...
Let us denote:

M1 =
⋃

α<ξ
Mα,

M2 =
⋃

α<ξ
Mα ∪ ({pα}α<ξ − {lα, l ′α}α<ξ) ∪

1

2
{pα}α<ξ,

P = Pξ,

Does there exist l ′ ∈ Mc
2 such that a set Mc

1 ∩ (P − l ′) has
cardinality c?



Proof...
We extend our universe V (via generic extension) to V ′ such that
V ′ |= cov(M) ≥ ω2.
We will work in V ′. Let us now fix a set A ⊆ P of cardinality ω1.
Notice that for every a ∈ A a set {l : a− l ∈ Mc

1} = −Mc
1 + a is

comeager. Since cov(M) > ω1⋂
a∈A
{l : a− l ∈ Mc

1} ∩Mc
2 6= ∅.

It shows that V ′ |= ∃l ′ ∈ Mc
2 |Mc

1 ∩ (P − l ′)| ≥ ω1.
So, V ′ models the following sentence:

(∃l ′)R(∃T )Perf (∀x)R(l ′ ∈ Mc
2 ∧ (x ∈ T → x ∈ Mc

1 ∧ x + l ′ ∈ P))

By Shoenfield absoluteness theorem it is also true in V . �
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Theorem
There are no Luzin set L and Sierpiński set S such that L + S is a
Bernstein set.

Follows from
Babinkostova L., Sheepers M. Products and selection principles,
Topology Proceedings, Vol. 31 (2007), 431-443.
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Lemma
Let A be a null set. We can find a perfect set P such that for
every n

A + P + P + · · ·+ P︸ ︷︷ ︸
n

∈ N .

Proof of lemma
We can assume that A is Borel. Let V be our universe. We enlarge
it (via forcing) to V ′ satisfying V ′ |= add(N ) = ω3.
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Proof of lemma...
Let us work now in V ′. Take X ⊆ R of cardinality ω2. Then
A + X ∈ N , so we can find a null Borel set B, such that
A + X ⊆ B. Notice that {x : x + A ⊆ B} is a coanalytic set of
cardinality ω2, hence, it contains a perfect set P0.

Now, set A1 = A0 + P0. We want to find a perfect set P1 ⊆ P0

such that A1 + P1 ∈ N . Moreover, we require that the first
splitting node in P0 is still a splitting node in P1.
We procced by a simple induction on n-th step finding for a null
set An and a perfect set Pn a perfect set Pn+1 ⊆ Pn such that
An+1 = An + Pn+1 is null and all splitting nodes from first n + 1
levels in Pn remains splitting nodes in Pn+1.
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Proof of lemma...
We get a sequence of perfect sets (Pn, n ∈ ω) such that
P =

⋂
n∈ω Pn is a perfect set. Moreover, we can find a null Gδ B

such that B ⊇
⋃

n∈ω An. Notice that

V ′ |= (∃P ∈ Perf )(∃B)(∀n)(∀x)(∀a)(∀b)(B is null Gδ∧

(a ∈ A ∧ b /∈ B ∧ x0, x1, . . . , xn ∈ P → a + x0 + · · · xn 6= b)),

where x0, x1, . . . , xn are naturally coded by x e.g. by the formula
xi (k) = x(kn + i).
Above formula is Σ1

2. �
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