Partition relations for linear orders in a non-choice context 03E02, 03E60, 05C63

Thilo Weinert

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel

Novi Sad Conference in Set Theory and General Topology, Monday, $17^{\text {th }}$ of August 2014, 16:00-16:25

Novi Sâd Conference in Set Thèory and Ger

Notation

$$
\begin{gathered}
\alpha \rightarrow(\beta, \gamma)^{n} \text { means } \\
\forall \chi:[\alpha]^{n} \longrightarrow 2\left(\exists B \in[\alpha]^{\beta} \forall t \in[B]^{n} \chi(t)=0\right. \\
\left.\vee \exists C \in[\alpha]^{\gamma} \forall t \in[C]^{n} \chi(t)=1\right) .
\end{gathered}
$$

Fact (ZFC)

There is no linear order φ such that $\varphi \rightarrow\left(\omega^{*}, \omega\right)^{2}$.

Proof.

Suppose $\varphi \rightarrow\left(\omega^{*}, \omega\right)^{2}$. Let $<_{w}$ be a well-order of φ. Let

$$
\begin{aligned}
& \chi:[\varphi]^{2} \longrightarrow 2 \\
& \{x, y\}_{<} \longmapsto\left\{\begin{array}{l}
0 \text { iff } x<_{w} y \\
1 \text { else. }
\end{array}\right.
\end{aligned}
$$

Notation

$$
\begin{aligned}
& \alpha \rightarrow(\beta \vee \gamma, \delta)^{n} \text { means } \\
& \forall \chi:[\alpha]^{n} \longrightarrow 2\left(\exists B \in[\alpha]^{\beta} \forall t \in[B]^{n} \chi(t)=0\right. \\
& \vee \exists C \in[\alpha]^{\gamma} \forall t \in[C]^{n} \chi(t)=0 \\
&\left.\vee \exists D \in[\alpha]^{\delta} \forall t \in[D]^{n} \chi(t)=1\right) .
\end{aligned}
$$

Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order φ such that $\varphi \rightarrow\left(\omega^{*}+\omega, 4\right)^{3}$.

Proof.

Well-order φ by $<_{w}$.

$$
\begin{aligned}
\chi:[\varphi]^{3} & \longrightarrow 2 \\
\{x, y, z\}_{<} & \longmapsto\left\{\begin{array}{l}
1 \text { iff } y<_{w} x, z \\
0 \text { else. }
\end{array}\right.
\end{aligned}
$$

Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order φ such that $\varphi \rightarrow\left(\omega+\omega^{*}, 4\right)^{3}$.

Proof.

Well-order φ by $<_{w}$.

$$
\begin{aligned}
\chi:[\varphi]^{3} & \longrightarrow 2 \\
\{x, y, z\}_{<} & \longmapsto\left\{\begin{array}{l}
1 \text { iff } x, z \ll_{w} y \\
0 \text { else. }
\end{array}\right.
\end{aligned}
$$

Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order φ such that $\varphi \rightarrow\left(\omega+\omega^{*} \vee \omega^{*}+\omega, 5\right)^{3}$.

Proof.

Well-order φ by $<_{w}$.

$$
\begin{aligned}
\chi:[\varphi]^{3} & \longrightarrow 2 \\
\{x, y, z\}_{<} & \longmapsto\left\{\begin{array}{l}
0 \text { iff } x<_{w} y<_{w} z \vee z<_{w} y<_{w} x \\
1 \text { else. }
\end{array}\right.
\end{aligned}
$$

Question (1971, Erdős, Milner, Rado, ZFC)

Is there an order φ such that $\varphi \rightarrow\left(\omega+\omega^{*} \vee \omega^{*}+\omega, 4\right)^{3}$?

Theorem (1981, Blass, ZF)

For every continuous colouring χ with $\operatorname{dom}(\chi)=\left[{ }^{\omega} 2\right]^{n}$ there is a perfect $P \subset{ }^{\omega} 2$ on which the value of χ at an n-tuple is decided by its splitting type.

Definition

The splitting type of an n-tuple $\left\{x_{0}, \ldots, x_{n-1}\right\}_{<\text {lex }}$ is given by the permutation π of $n-1$ such that $\left\langle\triangle\left(x_{\pi(i)}, x_{\pi(i)+1}\right) \mid i<n-1\right\rangle$ is ascending. $\triangle(x, y):=\min \{\alpha \mid x(\alpha) \neq y(\alpha)\}$.

Remark

For an n-tuple there are ($n-1$)! splitting types.

Theorem (1981, Blass, ZF)

For every Baire colouring χ with $\operatorname{dom}(\chi)=\left[{ }^{\omega} 2\right]^{n}$ there is a perfect $P \subset{ }^{\omega} 2$ on which the value of χ at an n-tuple is decided by its splitting type.

Definition

The splitting type of an n-tuple $\left\{x_{0}, \ldots, x_{n-1}\right\}_{<\text {lex }}$ is given by the permutation π of $n-1$ such that $\left\langle\triangle\left(x_{\pi(i)}, x_{\pi(i)+1}\right) \mid i<n-1\right\rangle$ is ascending. $\triangle(x, y):=\min \{\alpha \mid x(\alpha) \neq y(\alpha)\}$.

Remark

For an n-tuple there are ($n-1$)! splitting types.

$$
V V
$$

WVYVV V V $\mathbb{V} \mathbb{V} V Y V$

Observation (ZF)

There is no ordinal number α such that $\left\langle{ }^{\alpha} 2,\left\langle{ }_{\text {lex }}\right\rangle \rightarrow\left(\omega^{*}, \omega\right)^{3}\right.$.

Theorem (2013, W., ZF)

There is no ordinal number α such that $\left\langle{ }^{\alpha} 2,<_{\text {lex }}\right\rangle \rightarrow\left(\omega^{*}+\omega, 5\right)^{4}$.

Proof.

Theorem (2013, W., ZF)

There is no ordinal number α such that $\left\langle{ }^{\alpha} 2,<_{\text {lex }}\right\rangle \rightarrow\left(\omega+\omega^{*}, 5\right)^{4}$.

Proof.

Theorem (2013, W., ZF)

There is no ordinal number α such that $\left\langle{ }^{\alpha} 2,<{ }_{\text {lex }}\right\rangle \rightarrow\left(\omega+\omega^{*} \vee \omega^{*}+\omega, 7\right)^{4}$.

Proof.

Novi Sād Conference in Set Thēory and Ger

Theorem (2013, W., BP)

$$
\left\langle\omega^{2} 2,\langle\operatorname{lex}\rangle \rightarrow\left(\omega+1+\omega^{*} \vee 1+\omega^{*}+\omega+1,5\right)^{4} .\right.
$$

Proof.

Novi_Sad Conference in Set Theory and Ger

Theorem (2013, W., ZF)

There is no countable ordinal number α such that

$$
\left\langle{ }^{\alpha} 2,<_{\text {lex }}\right\rangle \rightarrow\left(\omega+\omega^{*} \vee \omega^{*}+\omega, 6\right)^{4} .
$$

$b(\gamma)<b(\delta)$

$b(\delta)<b(\gamma)$

$b(\gamma)<b(\delta)$

$$
b(\delta)<b(\gamma)
$$

$b(\delta)<b(\gamma)$

Theorem (2013, W., ZF)

There is no countable ordinal number α such that

$$
\left\langle{ }^{\alpha} 2,\langle\text { lex }\rangle \rightarrow\left(\omega+2+\omega^{*} \vee \omega^{*}+\omega, 5\right)^{4} .\right.
$$

$\min (b(\delta), b(\varepsilon))<b(\gamma)$

$$
b(\gamma)<b(\delta)
$$

$$
b(\delta)<b(\gamma) \quad b(\gamma)<\min (b(\delta), b(\varepsilon)) \quad b(\delta)<b(\gamma) \quad b(\gamma)<\min (b(\delta), b(\varepsilon))
$$

Theorem (2013, W., ZF)

There is no countable ordinal number α such that

$$
\left\langle{ }^{\alpha} 2,\left\langle_{\text {lex }}\right\rangle \rightarrow\left(\omega+\omega^{*} \vee 2+\omega^{*}+\omega, 5\right)^{4} .\right.
$$

$b(\delta)<b(\gamma)$
$b(\delta)<\max (b(\gamma), b(\varepsilon))$

$$
\max (b(\gamma), b(\varepsilon))<b(\delta) \quad b(\gamma)<b(\delta) \quad b(\gamma)<b(\delta)
$$

Axiom (1962, Mycielski, Steinhaus)

(AD): Every two-player-game with natural-number-moves and perfect information of length ω is determined.

Axiom (1962, Mycielski, Steinhaus)
$\left(\mathrm{AD}_{\mathbb{R}}\right)$: Every two-player-game with real-number-moves and perfect information of length ω is determined.

Theorem (1964, Mycielski, ZF + AD) BP.

Theorem (Martin, ZF + AD)
$\omega_{1} \rightarrow\left(\omega_{1}\right)_{2^{\otimes_{0}}}^{\omega_{1}}$.
Theorem (1976, Prikry, ZF + AD $_{\mathbb{R}}$)
$\omega \rightarrow(\omega)_{2}^{\omega}$

Conjecture (2013, W., ZF + AD $_{\mathbb{R}}$) $\left\langle\omega_{1} 2,<_{\text {lex }}\right\rangle \rightarrow\left(\omega+\omega^{*} \vee \omega^{*}+\omega, 6\right)^{4}$.

Conjecture (2013, W., ZF + AD $_{\mathbb{R}}$)

$$
\left.\left\langle\omega_{1} 2,<\right| \text { lex }\right\rangle \rightarrow\left(\omega+2+\omega^{*} \vee \omega^{*}+\omega, 5\right)^{4} .
$$

Conjecture (2013, W., ZF + AD $_{\mathbb{R}}$)

$$
\left\langle{ }^{\omega_{1}} 2,<\text { lex }\right\rangle \rightarrow\left(\omega+\omega^{*} \vee 2+\omega^{*}+\omega, 5\right)^{4} .
$$

Novi Sâd Conference in Set Thèory and Ger

Thank you very much for your attention!

Novi Sâd Conference in Set Thèory and Ger

