Partition relations for linear orders in a non-choice context 03E02, 03E60, 05C63

> Thilo Weinert Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel

Novi Sad Conference in Set Theory and General Topology, Monday, 17th of August 2014, 16:00-16:25

Notation

$$\alpha \to (\beta, \gamma)^n \text{ means}$$

$$\forall \chi : [\alpha]^n \longrightarrow 2(\exists B \in [\alpha]^\beta \forall t \in [B]^n \chi(t) = 0$$

$$\forall \exists C \in [\alpha]^\gamma \forall t \in [C]^n \chi(t) = 1)$$

Fact (ZFC)

There is no linear order φ such that $\varphi \to (\omega^*, \omega)^2$.

Proof.

Suppose $\varphi \to (\omega^*, \omega)^2$. Let $<_w$ be a well-order of φ . Let

$$\begin{split} \chi : [\varphi]^2 &\longrightarrow 2\\ \{x, y\}_< &\longmapsto \begin{cases} 0 \text{ iff } x <_w y\\ 1 \text{ else.} \end{cases} \end{split}$$

Notation

$$\alpha \to (\beta \lor \gamma, \delta)^n \text{ means}$$

$$\forall \chi : [\alpha]^n \longrightarrow 2(\exists B \in [\alpha]^\beta \forall t \in [B]^n \chi(t) = 0$$

$$\forall \exists C \in [\alpha]^\gamma \forall t \in [C]^n \chi(t) = 0$$

$$\forall \exists D \in [\alpha]^\delta \forall t \in [D]^n \chi(t) = 1).$$

Thilo Weinert, HUJI

Theorem (1971, Erdős, Milner, Rado, ZFC) There is no order φ such that $\varphi \rightarrow (\omega^* + \omega, 4)^3$.

Proof.

Well-order φ by $<_w$.

$$\begin{split} \chi : [\varphi]^3 &\longrightarrow 2\\ \{x, y, z\}_< &\longmapsto \begin{cases} 1 \text{ iff } y <_w x, z\\ 0 \text{ else.} \end{cases} \end{split}$$

Thilo Weinert, HUJI

Partition relations for linear orders in a non-

Theorem (1971, Erdős, Milner, Rado, ZFC) There is no order φ such that $\varphi \rightarrow (\omega + \omega^*, 4)^3$.

Proof.

Well-order φ by $<_w$.

$$\begin{split} \chi : [\varphi]^3 &\longrightarrow 2\\ \{x, y, z\}_< &\longmapsto \begin{cases} 1 \text{ iff } x, z <_w y\\ 0 \text{ else.} \end{cases} \end{split}$$

Thilo Weinert, HUJI

Partition relations for linear orders in a non-

Theorem (1971, Erdős, Milner, Rado, ZFC) There is no order φ such that $\varphi \rightarrow (\omega + \omega^* \vee \omega^* + \omega, 5)^3$.

Proof.

Well-order φ by $<_w$.

$$\begin{split} \chi : [\varphi]^3 &\longrightarrow 2 \\ \{x, y, z\}_< &\longmapsto \begin{cases} 0 \text{ iff } x <_w y <_w z \lor z <_w y <_w x \\ 1 \text{ else.} \end{cases} \end{split}$$

Question (1971, Erdős, Milner, Rado, ZFC) Is there an order φ such that $\varphi \rightarrow (\omega + \omega^* \lor \omega^* + \omega, 4)^3$?

Theorem (1981, Blass, ZF)

For every continuous colouring χ with dom $(\chi) = [{}^{\omega}2]^n$ there is a perfect $P \subset {}^{\omega}2$ on which the value of χ at an n-tuple is decided by its splitting type.

Definition

The splitting type of an *n*-tuple $\{x_0, \ldots, x_{n-1}\}_{\leq_{\text{lex}}}$ is given by the permutation π of n-1 such that $\langle \triangle(x_{\pi(i)}, x_{\pi(i)+1}) | i < n-1 \rangle$ is ascending. $\triangle(x, y) := \min\{\alpha | x(\alpha) \neq y(\alpha)\}.$

Remark

For an n-tuple there are (n-1)! splitting types.

Theorem (1981, Blass, ZF)

For every Baire colouring χ with dom $(\chi) = [{}^{\omega}2]^n$ there is a perfect $P \subset {}^{\omega}2$ on which the value of χ at an n-tuple is decided by its splitting type.

Definition

The splitting type of an *n*-tuple $\{x_0, \ldots, x_{n-1}\}_{\leq_{\text{lex}}}$ is given by the permutation π of n-1 such that $\langle \triangle(x_{\pi(i)}, x_{\pi(i)+1}) | i < n-1 \rangle$ is ascending. $\triangle(x, y) := \min\{\alpha | x(\alpha) \neq y(\alpha)\}.$

Remark

For an n-tuple there are (n-1)! splitting types.

Observation (ZF)

There is no ordinal number α such that $\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega^*, \omega)^3$.

There is no ordinal number α such that $\langle \alpha 2, <_{lex} \rangle \rightarrow (\omega^* + \omega, 5)^4$.

Partition relations for linear orders in a non-

There is no ordinal number α such that $\langle \alpha 2, <_{lex} \rangle \rightarrow (\omega + \omega^*, 5)^4$.

Partition relations for linear orders in a non-

There is no ordinal number α such that $\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega + \omega^* \lor \omega^* + \omega, 7)^4.$

Thilo Weinert, HUJI

Partition relations for linear orders in a non-

Thilo Weinert, HUJI

Partition relations for linear orders in a non-

There is no countable ordinal number α such that

$$\langle {}^{\alpha}2, <_{lex} \rangle \rightarrow (\omega + \omega^* \vee \omega^* + \omega, 6)^4.$$

There is no countable ordinal number α such that

$$\langle {}^{\alpha}2, <_{\textit{lex}} \rangle \rightarrow (\omega + 2 + \omega^* \lor \omega^* + \omega, 5)^4.$$

There is no countable ordinal number α such that

$$\langle {}^{\alpha}2, <_{\textit{lex}} \rangle \rightarrow (\omega + \omega^* \vee 2 + \omega^* + \omega, 5)^4.$$

Axiom (1962, Mycielski, Steinhaus)

(AD): Every two-player-game with natural-number-moves and perfect information of length ω is determined.

Axiom (1962, Mycielski, Steinhaus)

 $(AD_{\mathbb{R}})$: Every two-player-game with real-number-moves and perfect information of length ω is determined.

Theorem (1964, Mycielski, ZF + AD) BP.

Theorem (Martin, ZF + AD) $\omega_1 \rightarrow (\omega_1)_{2^{\aleph_0}}^{\omega_1}$.

Theorem (1976, Prikry, $ZF + AD_{\mathbb{R}}$) $\omega \rightarrow (\omega)_2^{\omega}$

Conjecture (2013, W.,
$$ZF + AD_{\mathbb{R}}$$
)
 $\langle \omega_1 2, \langle \omega_1 2, \langle \omega_1 2, \langle \omega_2 \rangle \rangle \rightarrow (\omega + \omega^* \vee \omega^* + \omega, 6)^4.$

Conjecture (2013, W.,
$$ZF + AD_{\mathbb{R}}$$
)
 $\langle \omega_1 2, \langle \omega_1 2, \langle \omega_1 2, \langle \omega_2 + \omega_1 \rangle \rangle \rightarrow (\omega + 2 + \omega^* \vee \omega^* + \omega, 5)^4.$

Conjecture (2013, W.,
$$ZF + AD_{\mathbb{R}}$$
)
 $\langle \omega_1 2, <_{lex} \rangle \rightarrow (\omega + \omega^* \vee 2 + \omega^* + \omega, 5)^4.$

Thank you very much for your attention!