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Notation

α→ (β, γ)n means

∀χ : [α]n −→ 2(∃B ∈ [α]β∀t ∈ [B]nχ(t) = 0

∨∃C ∈ [α]γ∀t ∈ [C ]nχ(t) = 1).
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Fact (ZFC)

There is no linear order ϕ such that ϕ→ (ω∗, ω)2.

Proof.
Suppose ϕ→ (ω∗, ω)2. Let <w be a well-order of ϕ. Let

χ : [ϕ]2 −→ 2

{x , y}< 7−→

{
0 iff x <w y

1 else.

a
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Notation

α→ (β ∨ γ, δ)n means

∀χ : [α]n −→ 2(∃B ∈ [α]β∀t ∈ [B]nχ(t) = 0

∨∃C ∈ [α]γ∀t ∈ [C ]nχ(t) = 0

∨∃D ∈ [α]δ∀t ∈ [D]nχ(t) = 1).
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Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order ϕ such that ϕ→ (ω∗ + ω, 4)3.

Proof.
Well-order ϕ by <w .

χ : [ϕ]3 −→ 2

{x , y , z}< 7−→

{
1 iff y <w x , z

0 else.

a
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Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order ϕ such that ϕ→ (ω + ω∗, 4)3.

Proof.
Well-order ϕ by <w .

χ : [ϕ]3 −→ 2

{x , y , z}< 7−→

{
1 iff x , z <w y

0 else.

a
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Theorem (1971, Erdős, Milner, Rado, ZFC)

There is no order ϕ such that ϕ→ (ω + ω∗ ∨ ω∗ + ω, 5)3.

Proof.
Well-order ϕ by <w .

χ : [ϕ]3 −→ 2

{x , y , z}< 7−→

{
0 iff x <w y <w z ∨ z <w y <w x

1 else.

a
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Question (1971, Erdős, Milner, Rado, ZFC)

Is there an order ϕ such that ϕ→ (ω + ω∗ ∨ ω∗ + ω, 4)3?

Thilo Weinert, HUJI Partition relations for linear orders in a non-choice context
Novi Sad Conference in Set Theory and General Topology, Monday, 17th of August 2014, 16:00-16:25 9

/ 1



Theorem (1981, Blass, ZF)

For every continuous colouring χ with dom(χ) = [ω2]n there is a
perfect P ⊂ ω2 on which the value of χ at an n-tuple is decided by
its splitting type.

Definition
The splitting type of an n-tuple {x0, . . . , xn−1}<lex

is given by the
permutation π of n − 1 such that 〈4(xπ(i), xπ(i)+1)|i < n − 1〉 is
ascending. 4(x , y) := min{α|x(α) 6= y(α)}.

Remark
For an n-tuple there are (n − 1)! splitting types.
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Theorem (1981, Blass, ZF)

For every Baire colouring χ with dom(χ) = [ω2]n there is a
perfect P ⊂ ω2 on which the value of χ at an n-tuple is decided by
its splitting type.

Definition
The splitting type of an n-tuple {x0, . . . , xn−1}<lex

is given by the
permutation π of n − 1 such that 〈4(xπ(i), xπ(i)+1)|i < n − 1〉 is
ascending. 4(x , y) := min{α|x(α) 6= y(α)}.

Remark
For an n-tuple there are (n − 1)! splitting types.
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Observation (ZF)

There is no ordinal number α such that 〈α2, <lex〉 → (ω∗, ω)3.
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Theorem (2013, W., ZF)

There is no ordinal number α such that 〈α2, <lex〉 → (ω∗ + ω, 5)4.

Proof.

a
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Theorem (2013, W., ZF)

There is no ordinal number α such that 〈α2, <lex〉 → (ω + ω∗, 5)4.

Proof.

a
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Theorem (2013, W., ZF)

There is no ordinal number α such that
〈α2, <lex〉 → (ω + ω∗ ∨ ω∗ + ω, 7)4.

Proof.

a
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Theorem (2013, W., BP)

〈ω2, <lex〉 → (ω + 1 + ω∗ ∨ 1 + ω∗ + ω + 1, 5)4.

Proof.

a
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Theorem (2013, W., ZF)

There is no countable ordinal number α such that

〈α2, <lex〉 → (ω + ω∗ ∨ ω∗ + ω, 6)4.
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Theorem (2013, W., ZF)

There is no countable ordinal number α such that

〈α2, <lex〉 → (ω + 2 + ω∗ ∨ ω∗ + ω, 5)4.
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Theorem (2013, W., ZF)

There is no countable ordinal number α such that

〈α2, <lex〉 → (ω + ω∗ ∨ 2 + ω∗ + ω, 5)4.
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Axiom (1962, Mycielski, Steinhaus)

(AD): Every two-player-game with natural-number-moves and perfect
information of length ω is determined.

Axiom (1962, Mycielski, Steinhaus)

(ADR): Every two-player-game with real-number-moves and perfect
information of length ω is determined.
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Theorem (1964, Mycielski, ZF + AD)

BP.

Theorem (Martin, ZF + AD)

ω1 → (ω1)ω1

2ℵ0
.

Theorem (1976, Prikry, ZF + ADR)

ω → (ω)ω2
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Conjecture (2013, W., ZF + ADR)

〈ω12, <lex〉 → (ω + ω∗ ∨ ω∗ + ω, 6)4.

Conjecture (2013, W., ZF + ADR)

〈ω12, <lex〉 → (ω + 2 + ω∗ ∨ ω∗ + ω, 5)4.

Conjecture (2013, W., ZF + ADR)

〈ω12, <lex〉 → (ω + ω∗ ∨ 2 + ω∗ + ω, 5)4.
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Thank you very much
for your attention!
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