Union theorems for trees

Stevo Todorčević

S.A.S.A., Belgrade; C.N.R.S., Paris; University of Toronto

Novi Sad, August 18-21, 2014

Joint work with K. Tyros

Outline

Part I: Classical Union Theorems

(1) Folkman Theorem
(2) Carlson-Simpson Theorem
(3) Dual Ramsey Theorem

Outline

Part I: Classical Union Theorems

(1) Folkman Theorem
(2) Carlson-Simpson Theorem
(3) Dual Ramsey Theorem

Part II: Ramsey Theory of Trees
(4) Halpern-Läuchli Theorem
(5) Dense-set version
(6) Strong-subtree version

Outline

Part I: Classical Union Theorems

(1) Folkman Theorem
(2) Carlson-Simpson Theorem
(3) Dual Ramsey Theorem

Part II: Ramsey Theory of Trees
(4) Halpern-Läuchli Theorem
(5) Dense-set version
(6) Strong-subtree version

Part III: Dual Ramsey Theory of Trees
(7) Hales-Jewett Theorem for Trees
(8) Union Theorem for Trees
(9) Union Theorem for Trees in Dimension > 1
(10) Conjectures

Part I: Finite Union Theorem

Part I: Finite Union Theorem

Theorem (Folkman, 1969)
For every pair of positive integers k and c there is integer $F=F(k, c)$ such that for every c-coloring of the power-set $\mathcal{P}(X)$ of some set X of cardinality $\geq F$, there is a family $\mathbf{D}=\left(D_{i}\right)_{i=1}^{k}$ of pairwise disjoint nonempty subsets of X such that the family

$$
\mathcal{U}(\mathbf{D})=\left\{\bigcup_{i \in I} D_{i}: \emptyset \neq I \subseteq\{1,2, \ldots, k\}\right\}
$$

of unions is monochromatic.

Infinite Union Theorem

Infinite Union Theorem

Theorem (Carlson-Simpson, 1984)
For every finite Souslin measurable coloring of the power-set $\mathcal{P}(\omega)$ of ω, there is a sequence $\mathbf{D}=\left(D_{n}\right)_{n<\omega}$ of pairwise disjoint nonempty subsets of the natural numbers such that the set

$$
\mathcal{U}(\mathbf{D})=\left\{\bigcup_{n \in M} D_{n}: M \text { is a non-empty subset of } \omega\right\}
$$

is monochromatic.

Dual Ramsey Theorem

Dual Ramsey Theorem

Theorem (Carlson-Simpson, 1984)
For every finite Souslin-measurable coloring of the collection

$$
\mathcal{U}^{[\infty]}=\mathcal{U}^{[\infty]}(\omega)
$$

of all infinite families of pairwise disjoint nonempty subsets of ω, there is a family $\mathbf{D}=\left\{D_{n}: n<\omega\right\} \in \mathcal{U}^{[\infty]}$ such that

$$
\mathcal{U}^{[\infty]} \upharpoonright \mathbf{D}=\left\{\left\{E_{n}: n<\omega\right\} \in \mathcal{U}^{[\infty]}:(\forall n<\omega) E_{n} \in \mathcal{U}(\mathbf{D})\right\}
$$

is monochromatic.

Part II: Halpern-Läuchli Theorem

A tree is a partially ordered set $\left(T, \leq_{T}\right)$ such that

$$
\operatorname{Pred}_{t}(T)=\left\{s \in T: s<_{T} t\right\}
$$

is is finite and totally ordered.

Part II: Halpern-Läuchli Theorem

A tree is a partially ordered set $\left(T, \leq_{T}\right)$ such that

$$
\operatorname{Pred}_{t}(T)=\{s \in T: s<T t\}
$$

is is finite and totally ordered.
We consider only rooted and finitely branching trees with no maximal nodes.

For $n<\omega$, the nth level of T, is the set

$$
T(n)=\left\{t \in T: \mid \operatorname{Pred}_{\mathrm{t}}(\mathrm{~T} \mid=n\} .\right.
$$

For $n<\omega$, the nth level of T, is the set

$$
T(n)=\left\{t \in T: \mid \operatorname{Pred}_{\mathrm{t}}(\mathrm{~T} \mid=n\} .\right.
$$

For a subset D of T, we define its level set

$$
L_{T}(D)=\{n \in \omega: D \cap T(n) \neq \emptyset\}
$$

For a subset D of T, we define its level set

$$
L_{T}(D)=\{n \in \omega: D \cap T(n) \neq \emptyset\}
$$

From now on, fix an integer $d \geq 1$.

From now on, fix an integer $d \geq 1$.
A vector tree

$$
\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)
$$

is a d-sequence of rooted and finitely branching trees with no maximal nodes.

From now on, fix an integer $d \geq 1$.
A vector tree

$$
\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)
$$

is a d-sequence of rooted and finitely branching trees with no maximal nodes.

T_{1}

T_{2}

T_{d}

For a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ we define its level product as

$$
\otimes \mathbf{T}=\bigcup_{n<\omega} T_{1}(n) \times \ldots \times T_{d}(n)
$$

For a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ we define its level product as

$$
\otimes \mathbf{T}=\bigcup_{n<\omega} T_{1}(n) \times \ldots \times T_{d}(n)
$$

The n-th level of the level product of \mathbf{T} is

$$
\otimes \mathbf{T}(n)=T_{1}(n) \times \ldots \times T_{d}(n)
$$

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ a vector tree.

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ a vector tree.
For $\mathbf{t}=\left(t_{1}, \ldots, t_{d}\right)$ and $\mathbf{s}=\left(s_{1}, \ldots, s_{d}\right)$ in $\otimes \mathbf{T}$, set $\mathbf{t} \leq_{\mathbf{T}} \mathbf{s}$ iff $t_{i} \leq T_{i} s_{i}$ for all $i=1, \ldots, d$.

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ a vector tree.
For $\mathbf{t}=\left(t_{1}, \ldots, t_{d}\right)$ and $\mathbf{s}=\left(s_{1}, \ldots, s_{d}\right)$ in $\otimes \mathbf{T}$, set

$$
\mathbf{t} \leq_{\mathbf{T}} \mathbf{s} \text { iff } t_{i} \leq_{T_{i}} s_{i} \text { for all } i=1, \ldots, d
$$

For $\mathbf{t}=\left(t_{1}, \ldots, t_{d}\right)$ in $\otimes \mathbf{T}$, we define

$$
\operatorname{Succ}_{\mathbf{t}}(\mathbf{T})=\left\{\mathbf{s} \in \otimes \mathbf{T}: \mathbf{t} \leq_{\mathbf{T}}^{\mathbf{s}}\right\}
$$

A sequence $\mathbf{D}=\left(D_{1}, \ldots, D_{d}\right)$ is called a vector subset of \mathbf{T} if

1. if D_{i} is a subset of T_{i} for all $i=1, \ldots, d$ and
2. $L_{T_{1}}\left(D_{1}\right)=\ldots=L_{T_{d}}\left(D_{d}\right)$.

A sequence $\mathbf{D}=\left(D_{1}, \ldots, D_{d}\right)$ is called a vector subset of \mathbf{T} if

1. if D_{i} is a subset of T_{i} for all $i=1, \ldots, d$ and
2. $L_{T_{1}}\left(D_{1}\right)=\ldots=L_{T_{d}}\left(D_{d}\right)$.

For a vector subset \mathbf{D} of \mathbf{T} we define its level product

$$
\otimes \mathbf{D}=\bigcup_{n<\omega}\left(T_{1}(n) \cap D_{1}\right) \times \ldots \times\left(T_{d}(n) \cap D_{d}\right)
$$

A sequence $\mathbf{D}=\left(D_{1}, \ldots, D_{d}\right)$ is called a vector subset of \mathbf{T} if

1. if D_{i} is a subset of T_{i} for all $i=1, \ldots, d$ and
2. $L_{T_{1}}\left(D_{1}\right)=\ldots=L_{T_{d}}\left(D_{d}\right)$.

For a vector subset \mathbf{D} of \mathbf{T} we define its level product

$$
\otimes \mathbf{D}=\bigcup_{n<\omega}\left(T_{1}(n) \cap D_{1}\right) \times \ldots \times\left(T_{d}(n) \cap D_{d}\right)
$$

For $\mathbf{t} \in \otimes \mathbf{T}$, a vector subset \mathbf{D} of \mathbf{T} is \mathbf{t}-dense ,

$$
(\forall n)(\exists m)\left(\forall \mathbf{s} \in \otimes \mathbf{T}(n) \cap \operatorname{Succ}_{\mathbf{T}}(\mathbf{t})\left(\exists \mathbf{s}^{\prime} \in \otimes \mathbf{T}(m) \cap \otimes \mathbf{D}\right) \mathbf{s} \leq_{\mathbf{T}} \mathbf{s}^{\prime}\right.
$$

A sequence $\mathbf{D}=\left(D_{1}, \ldots, D_{d}\right)$ is called a vector subset of \mathbf{T} if

1. if D_{i} is a subset of T_{i} for all $i=1, \ldots, d$ and
2. $L_{T_{1}}\left(D_{1}\right)=\ldots=L_{T_{d}}\left(D_{d}\right)$.

For a vector subset \mathbf{D} of \mathbf{T} we define its level product

$$
\otimes \mathbf{D}=\bigcup_{n<\omega}\left(T_{1}(n) \cap D_{1}\right) \times \ldots \times\left(T_{d}(n) \cap D_{d}\right)
$$

For $\mathbf{t} \in \otimes \mathbf{T}$, a vector subset \mathbf{D} of \mathbf{T} is \mathbf{t}-dense ,

$$
(\forall n)(\exists m)\left(\forall \mathbf{s} \in \otimes \mathbf{T}(n) \cap \operatorname{Succ}_{\mathbf{T}}(\mathbf{t})\left(\exists \mathbf{s}^{\prime} \in \otimes \mathbf{T}(m) \cap \otimes \mathbf{D}\right) \mathbf{s} \leq \mathbf{T} \mathbf{s}^{\prime}\right.
$$

\mathbf{D} is called dense if it is $\operatorname{root}(\otimes \mathbf{T})$-dense.

Theorem (Halpern-Läuchli, 1966)
Let \mathbf{T} be a vector tree. Then for every dense vector subset \mathbf{D} of \mathbf{T} and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}^{\prime} of \mathbf{D} such that either

Theorem (Halpern-Läuchli, 1966)
Let \mathbf{T} be a vector tree. Then for every dense vector subset \mathbf{D} of \mathbf{T} and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}^{\prime} of \mathbf{D} such that either
(i) $\otimes \mathbf{D}^{\prime}$ is a subset of \mathcal{P} and \mathbf{D}^{\prime} is a dense vector subset of \mathbf{T}, or

Theorem (Halpern-Läuchli, 1966)
Let \mathbf{T} be a vector tree. Then for every dense vector subset \mathbf{D} of \mathbf{T} and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}^{\prime} of \mathbf{D} such that either
(i) $\otimes \mathbf{D}^{\prime}$ is a subset of \mathcal{P} and \mathbf{D}^{\prime} is a dense vector subset of \mathbf{T}, or
(ii) $\otimes \mathbf{D}^{\prime}$ is a subset of \mathcal{P}^{c} and \mathbf{D}^{\prime} is a \mathbf{t}-dense vector subset \mathbf{D}^{\prime} of \mathbf{T} for some \mathbf{t} in $\otimes \mathbf{T}$.

Strong Subtree

Fix a rooted and finitely branching tree $\left(T, \leq_{T}\right)$ of height ω with no maximal nodes.

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_{T}) of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

Strong Subtree

Fix a rooted and finitely branching tree $\left(T, \leq_{T}\right)$ of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.

Strong Subtree

Fix a rooted and finitely branching tree $\left(T, \leq_{T}\right)$ of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.
2. Every level of S is subset of some level of T,

Strong Subtree

Fix a rooted and finitely branching tree $\left(T, \leq_{T}\right)$ of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.
2. Every level of S is subset of some level of T,
3. For every s in S and t^{\prime} in $\operatorname{ImmSucc}_{T}(s)$ there is unique s^{\prime} in ImmSuccs(s) with $t \leq_{T} s^{\prime}$.

Vector Strong subtree

Fix a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$.

Vector Strong subtree

Fix a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$. A vector subset $\mathbf{S}=\left(S_{1}, \ldots, S_{d}\right)$ of \mathbf{T} is called a vector strong subtree of \mathbf{T} whenever

Vector Strong subtree

Fix a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$. A vector subset $\mathbf{S}=\left(S_{1}, \ldots, S_{d}\right)$ of \mathbf{T} is called a vector strong subtree of \mathbf{T} whenever

1. S_{i} is a strong subtree of T_{i} for all $i=1, \ldots d$,

Vector Strong subtree

Fix a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$. A vector subset $\mathbf{S}=\left(S_{1}, \ldots, S_{d}\right)$ of \mathbf{T} is called a vector strong subtree of \mathbf{T} whenever

1. S_{i} is a strong subtree of T_{i} for all $i=1, \ldots d$,
2. $L_{T_{1}}\left(S_{1}\right)=\ldots=L_{T_{d}}\left(S_{d}\right)$.

Vector Strong subtree

Fix a vector tree $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$. A vector subset $\mathbf{S}=\left(S_{1}, \ldots, S_{d}\right)$ of \mathbf{T} is called a
vector strong subtree of \mathbf{T} whenever

1. S_{i} is a strong subtree of T_{i} for all $i=1, \ldots d$,
2. $L_{T_{1}}\left(S_{1}\right)=\ldots=L_{T_{d}}\left(S_{d}\right)$.

Theorem (Strong Subtree Version of HL)
Let \mathbf{T} be a vector tree. Then for every finite coloring of $\otimes \mathbf{T}$ there exists a vector strong subtree \mathbf{S} of \mathbf{T} such that $\otimes \mathbf{S}$ is monochromatic.

Part III: Union Theorem for Trees

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree.

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.
Let \mathbf{D} be a vector subset of \mathbf{T}.

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.
Let \mathbf{D} be a vector subset of \mathbf{T}.
A D-subspace of $\mathcal{U}(\mathbf{T})$ is a family

$$
\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}}
$$

such that

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.
Let \mathbf{D} be a vector subset of \mathbf{T}.
A D-subspace of $\mathcal{U}(\mathbf{T})$ is a family

$$
\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}}
$$

such that

1. $U_{\mathbf{t}} \in \mathcal{U}(\mathbf{T})$ for all $\mathbf{t} \in \otimes \mathbf{D}$,

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.
Let \mathbf{D} be a vector subset of \mathbf{T}.
A D-subspace of $\mathcal{U}(\mathbf{T})$ is a family

$$
\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}}
$$

such that

1. $U_{\mathbf{t}} \in \mathcal{U}(\mathbf{T})$ for all $\mathbf{t} \in \otimes \mathbf{D}$,
2. $U_{\mathbf{s}} \cap U_{\mathbf{t}}=\emptyset$ for $\mathbf{s} \neq \mathbf{t}$,

Part III: Union Theorem for Trees

Let \mathbf{T} be a vector tree. We define

$$
\mathcal{U}(\mathbf{T})=\{U \subseteq \otimes \mathbf{T}: U \text { has a minimum }\} .
$$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.
Let \mathbf{D} be a vector subset of \mathbf{T}.
A D-subspace of $\mathcal{U}(\mathbf{T})$ is a family

$$
\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}}
$$

such that

1. $U_{\mathbf{t}} \in \mathcal{U}(\mathbf{T})$ for all $\mathbf{t} \in \otimes \mathbf{D}$,
2. $U_{\mathbf{s}} \cap U_{\mathbf{t}}=\emptyset$ for $\mathbf{s} \neq \mathbf{t}$,
3. $\min U_{\mathbf{t}}=\mathbf{t}$ for all $\mathbf{t} \in \otimes \mathbf{D}$.

For a subspace $\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}(\mathbf{U})}$ we define its span by

$$
[\mathbf{U}]=\left\{\bigcup_{\mathbf{t} \in \Gamma} U_{\mathbf{t}}: \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U})\right\} \cap \mathcal{U}(\mathbf{T})
$$

For a subspace $\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}(\mathbf{U})}$ we define its span by

$$
[\mathbf{U}]=\left\{\bigcup_{\mathbf{t} \in \Gamma} U_{\mathbf{t}}: \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U})\right\} \cap \mathcal{U}(\mathbf{T})
$$

If \mathbf{U} and \mathbf{U}^{\prime} are two subspaces of $\mathcal{U}(\mathbf{T})$, we say that
\mathbf{U}^{\prime} is a subspace of \mathbf{U}, and write $\mathbf{U}^{\prime} \leq \mathbf{U}$, if

For a subspace $\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}(\mathbf{U})}$ we define its span by

$$
[\mathbf{U}]=\left\{\bigcup_{\mathbf{t} \in \Gamma} U_{\mathbf{t}}: \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U})\right\} \cap \mathcal{U}(\mathbf{T})
$$

If \mathbf{U} and \mathbf{U}^{\prime} are two subspaces of $\mathcal{U}(\mathbf{T})$, we say that \mathbf{U}^{\prime} is a subspace of \mathbf{U}, and write $\mathbf{U}^{\prime} \leq \mathbf{U}$, if $\left[\mathbf{U}^{\prime}\right] \subseteq[\mathbf{U}]$.

For a subspace $\mathbf{U}=\left(U_{\mathbf{t}}\right)_{\mathbf{t} \in \otimes \mathbf{D}(\mathbf{U})}$ we define its span by

$$
[\mathbf{U}]=\left\{\bigcup_{\mathbf{t} \in \Gamma} U_{\mathbf{t}}: \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U})\right\} \cap \mathcal{U}(\mathbf{T})
$$

If \mathbf{U} and \mathbf{U}^{\prime} are two subspaces of $\mathcal{U}(\mathbf{T})$, we say that
\mathbf{U}^{\prime} is a subspace of \mathbf{U}, and write $\mathbf{U}^{\prime} \leq \mathbf{U}$, if
$\left[\mathbf{U}^{\prime}\right] \subseteq[\mathbf{U}]$.
Remark
$\mathbf{U}^{\prime} \leq \mathbf{U}$ implies that $\mathbf{D}\left(\mathbf{U}^{\prime}\right)$ is a vector subset of $\mathbf{D}(\mathbf{U})$.

Union Theorem for T

Union Theorem for \mathbf{T}

Theorem
Let \mathbf{T} be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$.

Union Theorem for \mathbf{T}

Theorem
Let \mathbf{T} be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let \mathbf{D} be a dense level vector subset of \mathbf{T} and \mathbf{U} a \mathbf{D}-subspace of $\mathcal{U}(\mathbf{T})$.

Union Theorem for \mathbf{T}

Theorem
Let \mathbf{T} be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let \mathbf{D} be a dense level vector subset of \mathbf{T} and \mathbf{U} a \mathbf{D}-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace \mathbf{U}^{\prime} of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}^{\prime} \leq \mathbf{U}$ such that either

Union Theorem for \mathbf{T}

Theorem
Let \mathbf{T} be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let \mathbf{D} be a dense level vector subset of \mathbf{T} and \mathbf{U} a \mathbf{D}-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace \mathbf{U}^{\prime} of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}^{\prime} \leq \mathbf{U}$ such that either
(i) $\left[\mathbf{U}^{\prime}\right]$ is a subset of \mathcal{P} and $\mathbf{D}\left(\mathbf{U}^{\prime}\right)$ is a dense vector subset of \mathbf{T}, or

Union Theorem for \mathbf{T}

Theorem
Let \mathbf{T} be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let \mathbf{D} be a dense level vector subset of \mathbf{T} and \mathbf{U} a \mathbf{D}-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace \mathbf{U}^{\prime} of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}^{\prime} \leq \mathbf{U}$ such that either
(i) $\left[\mathbf{U}^{\prime}\right]$ is a subset of \mathcal{P} and $\mathbf{D}\left(\mathbf{U}^{\prime}\right)$ is a dense vector subset of \mathbf{T}, or
(ii) $\left[\mathbf{U}^{\prime}\right]$ is a subset of \mathcal{P}^{c} and $\mathbf{D}\left(\mathbf{U}^{\prime}\right)$ is a t-dense vector subset of \mathbf{T} for some \mathbf{t} in $\otimes \mathbf{T}$.

Consequences

Consequences

Corollary
Let \mathbf{T} be a vector tree and let \mathbf{S} be a vector strong subtree of \mathbf{T}.

Consequences

Corollary
Let \mathbf{T} be a vector tree and let \mathbf{S} be a vector strong subtree of \mathbf{T}. Let \mathbf{U} be an \mathbf{S}-subspace of $\mathcal{U}(\mathbf{T})$.

Consequences

Corollary

Let \mathbf{T} be a vector tree and let \mathbf{S} be a vector strong subtree of \mathbf{T}. Let \mathbf{U} be an \mathbf{S}-subspace of $\mathcal{U}(\mathbf{T})$.
Then for every finite Souslin measurable coloring of $\mathcal{U}(\mathbf{T})$ there exist a vector strong subtree \mathbf{S}^{\prime} of \mathbf{S} and an \mathbf{S}^{\prime}-subspace \mathbf{U}^{\prime} of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}^{\prime} \leq \mathbf{U}$ such that $\left[\mathbf{U}^{\prime}\right]$ is monochromatic.

Consequences

Corollary

Let \mathbf{T} be a vector tree and let \mathbf{S} be a vector strong subtree of \mathbf{T}.
Let \mathbf{U} be an \mathbf{S}-subspace of $\mathcal{U}(\mathbf{T})$.
Then for every finite Souslin measurable coloring of $\mathcal{U}(\mathbf{T})$ there exist a vector strong subtree \mathbf{S}^{\prime} of \mathbf{S} and an \mathbf{S}^{\prime}-subspace \mathbf{U}^{\prime} of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}^{\prime} \leq \mathbf{U}$ such that $\left[\mathbf{U}^{\prime}\right]$ is monochromatic.

Corollary (Carlson-Simpson, 1984)
For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D}=\left(D_{n}\right)_{n<\omega}$ of pairwise disjoint subsets of ω such that the set

$$
\mathcal{U}(\mathbf{D})=\left\{\bigcup_{n \in M} D_{n}: M \text { is a non-empty subset of } \omega\right\}
$$

is monochromatic.

Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every integer $c \geq 1$ there is a number $\operatorname{HJ}(\Lambda, c)$ such that for every integer $N \geq H J(\Lambda, c)$ and every c-coloring of the set of Λ-words of length N, i.e., the cube Λ^{N} there is a variable word $x(v)$ of length N, an element of $(\Lambda \cup\{v\})^{N} \backslash \Lambda^{N}$ such that the set of all substitutions

$$
\{x[\lambda]: \lambda \in \Lambda\}
$$

is monochromatic.

Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every integer $c \geq 1$ there is a number $\operatorname{HJ}(\Lambda, c)$ such that for every integer $N \geq H J(\Lambda, c)$ and every c-coloring of the set of Λ-words of length N, i.e., the cube Λ^{N} there is a variable word $x(v)$ of length N, an element of $(\Lambda \cup\{v\})^{N} \backslash \Lambda^{N}$ such that the set of all substitutions

$$
\{x[\lambda]: \lambda \in \Lambda\}
$$

is monochromatic.

Theorem (Carlson-Simpson, 1984)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every finite coloring of the semigroup W_{Λ} of all Λ-words, there is an infinite sequence $\left(x_{n}(v)\right)$ of variable words such that the set

$$
\left\{x_{0}\left[\lambda_{0}\right] \frown \ldots \frown x_{n}\left[\lambda_{n}\right]: n<\omega, \lambda_{0}, \ldots, \lambda_{n} \in \Lambda\right\}
$$

is monochromatic.

Hales-Jewett Theorem for Trees

Hales-Jewett Theorem for Trees

We fix a vector tree \mathbf{T}.

Hales-Jewett Theorem for Trees

We fix a vector tree \mathbf{T}.
Fix a finite alphabet Λ.

Hales-Jewett Theorem for Trees

We fix a vector tree \mathbf{T}.
Fix a finite alphabet Λ.
For $m<n<\omega$, set

$$
\mathrm{W}(\Lambda, \mathbf{T}, m, n)=\Lambda^{\otimes \mathbf{T}}[m, n),
$$

where $\otimes \mathbf{T} \upharpoonright[m, n)=\bigcup_{j=m}^{n-1} \otimes \mathbf{T}(j)$.

Hales-Jewett Theorem for Trees

We fix a vector tree \mathbf{T}.
Fix a finite alphabet Λ.
For $m<n<\omega$, set

$$
\mathrm{W}(\Lambda, \mathbf{T}, m, n)=\Lambda_{\otimes \mathbf{T}} \stackrel{[m, n)}{ },
$$

where $\otimes \mathbf{T} \upharpoonright[m, n)=\bigcup_{j=m}^{n-1} \otimes \mathbf{T}(j)$.We also set

$$
\mathrm{W}(\Lambda, \mathbf{T})=\bigcup_{m \leq n} \mathrm{~W}(\Lambda, \mathbf{T}, m, n) .
$$

Let $\left(v_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathbf{T}}$ be a collection of distinct variables, set of symbols disjoint from Λ.

Let $\left(v_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathbf{T}}$ be a collection of distinct variables, set of symbols disjoint from Λ.

Fix a vector level subset \mathbf{D} of \mathbf{T}. Let

$$
\mathrm{W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)
$$

to be the set of all functions

$$
f: \otimes \mathbf{T} \upharpoonright[m, n) \rightarrow \Lambda \cup\left\{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\right\}
$$

such that

Let $\left(v_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathbf{T}}$ be a collection of distinct variables, set of symbols disjoint from Λ.

Fix a vector level subset \mathbf{D} of \mathbf{T}. Let

$$
\mathrm{W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)
$$

to be the set of all functions

$$
f: \otimes \mathbf{T} \upharpoonright[m, n) \rightarrow \Lambda \cup\left\{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\right\}
$$

such that

- The set $f^{-1}\left(\left\{u_{\mathbf{s}}\right\}\right)$ is nonempty and admits \mathbf{s} as a minimum in $\otimes \mathbf{T}$, for all $\mathbf{s} \in \otimes \mathbf{D}$.

Let $\left(v_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathbf{T}}$ be a collection of distinct variables, set of symbols disjoint from Λ.

Fix a vector level subset \mathbf{D} of \mathbf{T}. Let

$$
\mathrm{W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)
$$

to be the set of all functions

$$
f: \otimes \mathbf{T} \upharpoonright[m, n) \rightarrow \Lambda \cup\left\{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\right\}
$$

such that

- The set $f^{-1}\left(\left\{u_{\mathbf{s}}\right\}\right)$ is nonempty and admits \mathbf{s} as a minimum in $\otimes \mathbf{T}$, for all $\mathbf{s} \in \otimes \mathbf{D}$.
- For every \mathbf{s} and \mathbf{s}^{\prime} in $\otimes \mathbf{D}$, we have $L_{\otimes \mathbf{T}}\left(f^{-1}\left(\left\{u_{\mathbf{s}}\right\}\right)\right)=L_{\otimes \mathbf{T}}\left(f^{-1}\left(\left\{u_{\mathbf{s}^{\prime}}\right\}\right)\right)$.

For $f \in \mathrm{~W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$, set

$$
\operatorname{ws}(f)=\mathbf{D}, \operatorname{bot}(f)=m \text { and } \operatorname{top}(f)=n .
$$

For $f \in \mathrm{~W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$, set

$$
\operatorname{ws}(f)=\mathbf{D}, \operatorname{bot}(f)=m \text { and } \operatorname{top}(f)=n .
$$

Moreover, we set
$\mathrm{W}_{\nu}(\Lambda, \mathbf{T})=\bigcup\left\{\mathrm{W}_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n): m \leq n\right.$ and
\mathbf{D} is a vector level subset of \mathbf{T} with $\left.L_{\mathbf{T}}(\mathbf{D}) \subset[m, n)\right\}$.

The elements of $\mathrm{W}_{v}(\Lambda, \mathbf{T})$ are viewed as variable words over the alphabet Λ.

For variable words f in $\mathrm{W}_{v}(\Lambda, \mathbf{T})$ we take substitutions:
For every family $\mathbf{a}=\left(a_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathrm{ws}(f)} \subseteq \Lambda$, let
$f(\mathbf{a}) \in \mathrm{W}(\Lambda, \mathbf{T})$ be the result of substituting for every \mathbf{s} in $\otimes \mathrm{ws}(f)$ each occurrence of v_{s} by a_{s}.

For variable words f in $\mathrm{W}_{v}(\Lambda, \mathbf{T})$ we take substitutions:
For every family $\mathbf{a}=\left(a_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathrm{ws}(f)} \subseteq \Lambda$, let
$f(\mathbf{a}) \in \mathrm{W}(\Lambda, \mathbf{T})$ be the result of substituting for every \mathbf{s} in $\otimes \mathrm{ws}(f)$ each occurrence of v_{s} by a_{s}.

Moreover, we set

$$
[f]_{\Lambda}=\left\{f(\mathbf{a}): \mathbf{a}=\left(a_{\mathbf{s}}\right)_{\mathbf{s} \in \otimes \mathrm{ws}(f)} \subseteq \Lambda\right\},
$$

the constant span of \mathbf{f}.

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

1. $\operatorname{bot}\left(f_{0}\right)=0$,

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

1. $\operatorname{bot}\left(f_{0}\right)=0$,
2. $\operatorname{bot}\left(f_{n+1}\right)=\operatorname{top}\left(f_{n}\right)$ for all $n<\omega$,

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

1. $\operatorname{bot}\left(f_{0}\right)=0$,
2. $\operatorname{bot}\left(f_{n+1}\right)=\operatorname{top}\left(f_{n}\right)$ for all $n<\omega$,
3. Setting $D_{i}=\bigcup_{n<\omega} \mathrm{ws}_{i}(f)$ for all $i=1, \ldots, d$, where $\mathrm{ws}(f)=\left(\mathrm{ws}_{1}(f), \ldots, \mathrm{ws}_{d}(f)\right)$, we have that $\left(D_{1}, \ldots, D_{d}\right)$ forms a dense vector subset of \mathbf{T}.

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

1. $\operatorname{bot}\left(f_{0}\right)=0$,
2. $\operatorname{bot}\left(f_{n+1}\right)=\operatorname{top}\left(f_{n}\right)$ for all $n<\omega$,
3. Setting $D_{i}=\bigcup_{n<\omega} \mathrm{ws}_{i}(f)$ for all $i=1, \ldots, d$, where $\mathrm{ws}(f)=\left(\mathrm{ws}_{1}(f), \ldots, \mathrm{ws}_{d}(f)\right)$, we have that $\left(D_{1}, \ldots, D_{d}\right)$ forms a dense vector subset of \mathbf{T}.

For a subspace $X=\left(f_{n}\right)_{n<\omega}$ we define

$$
[X]_{\Lambda}=\left\{\bigcup_{q=0}^{n} g_{q}: n<\omega \text { and } g_{q} \in\left[f_{q}\right]_{\Lambda} \text { for all } q=0, \ldots, n\right\}
$$

Subspaces

An infinite sequence $X=\left(f_{n}\right)_{n<\omega}$ in $\mathrm{W}_{\nu}(\Lambda, \mathbf{T})$ is a subspace, if:

1. $\operatorname{bot}\left(f_{0}\right)=0$,
2. $\operatorname{bot}\left(f_{n+1}\right)=\operatorname{top}\left(f_{n}\right)$ for all $n<\omega$,
3. Setting $D_{i}=\bigcup_{n<\omega} \mathrm{ws}_{i}(f)$ for all $i=1, \ldots, d$, where $\mathrm{ws}(f)=\left(\mathrm{ws}_{1}(f), \ldots, \mathrm{ws}_{d}(f)\right)$, we have that $\left(D_{1}, \ldots, D_{d}\right)$ forms a dense vector subset of \mathbf{T}.

For a subspace $X=\left(f_{n}\right)_{n<\omega}$ we define

$$
[X]_{\Lambda}=\left\{\bigcup_{q=0}^{n} g_{q}: n<\omega \text { and } g_{q} \in\left[f_{q}\right]_{\Lambda} \text { for all } q=0, \ldots, n\right\}
$$

For two subspaces X and Y, we write $X \leq Y$ if $[X]_{\Lambda} \subseteq[Y]_{\Lambda}$.

An infinite Hales-Jewett theorem for trees

Theorem
Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite coloring of the set of the constant words $\mathrm{W}(\Lambda, \mathbf{T})$ over Λ and every subspace X of $\mathrm{W}(\Lambda, \mathbf{T})$ there exists a subspace X^{\prime} of $\mathrm{W}(\Lambda, \mathbf{T})$ with $X^{\prime} \leq X$ such that the set $\left[X^{\prime}\right]_{\Lambda}$ is monochromatic.

An infinite Hales-Jewett theorem for trees

Theorem
Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite coloring of the set of the constant words $\mathrm{W}(\Lambda, \mathbf{T})$ over Λ and every subspace X of $\mathrm{W}(\Lambda, \mathbf{T})$ there exists a subspace X^{\prime} of $\mathrm{W}(\Lambda, \mathbf{T})$ with $X^{\prime} \leq X$ such that the set $\left[X^{\prime}\right]_{\Lambda}$ is monochromatic.

Remark

This will be used as a pigeonhole principle for its infinite-dimensional version.

A Ramsey space of sequences of words

Let $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $\left(g_{n}\right)_{n<\omega}$ in $\mathrm{W}(\Lambda, \mathbf{T})$ such that:

A Ramsey space of sequences of words

Let $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $\left(g_{n}\right)_{n<\omega}$ in $\mathrm{W}(\Lambda, \mathbf{T})$ such that:

1. $\operatorname{bot}\left(g_{0}\right)=0$ and

A Ramsey space of sequences of words

Let $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $\left(g_{n}\right)_{n<\omega}$ in $\mathrm{W}(\Lambda, \mathbf{T})$ such that:

1. $\operatorname{bot}\left(g_{0}\right)=0$ and
2. $\operatorname{bot}\left(g_{n+1}\right)=\operatorname{top} g_{n}$ for all $n<\omega$.

A Ramsey space of sequences of words

Let $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $\left(g_{n}\right)_{n<\omega}$ in $\mathrm{W}(\Lambda, \mathbf{T})$ such that:

1. $\operatorname{bot}\left(g_{0}\right)=0$ and
2. $\operatorname{bot}\left(g_{n+1}\right)=\operatorname{top} g_{n}$ for all $n<\omega$.

For a subspace X, we set

$$
[X]_{\Lambda}^{\infty}=\left\{\left(g_{n}\right)_{n<\omega} \in \mathrm{W}^{\infty}(\Lambda, \mathbf{T}):(\forall n<\omega) \bigcup_{q=0}^{n} g_{q} \in[X]_{\Lambda}\right.
$$

A Ramsey space of sequences of words

Let $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $\left(g_{n}\right)_{n<\omega}$ in $\mathrm{W}(\Lambda, \mathbf{T})$ such that:

1. $\operatorname{bot}\left(g_{0}\right)=0$ and
2. $\operatorname{bot}\left(g_{n+1}\right)=\operatorname{top} g_{n}$ for all $n<\omega$.

For a subspace X, we set

$$
[X]_{\Lambda}^{\infty}=\left\{\left(g_{n}\right)_{n<\omega} \in \mathrm{W}^{\infty}(\Lambda, \mathbf{T}):(\forall n<\omega) \bigcup_{q=0}^{n} g_{q} \in[X]_{\Lambda}\right.
$$

Theorem
Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite Souslin measurable coloring of the set $\mathrm{W}^{\infty}(\Lambda, \mathbf{T})$ and every subspace X of $\mathrm{W}(\Lambda, \mathbf{T})$ there exists a subspace X^{\prime} of $\mathrm{W}(\Lambda, \mathbf{T})$ with $X^{\prime} \leq X$ such that the set $\left[X^{\prime}\right]_{\Lambda}^{\infty}$ is monochromatic.

Higher Dimensions

Higher Dimensions

Theorem (Graham-Rothschild)

For every triple of positive integers k, I, and c there is integer $G R=G R(k, l, c)$ such that for every set X of cardinality $\geq G R$ and every c-coloring of the family

$$
\binom{\mathcal{P}(X)}{k}
$$

of all k-families of pairwise disjoint subsets of X there is a family $\mathbf{D}=\left(D_{i}\right)_{i=1}^{\prime}$ of pairwise disjoint nonempty subsets of X such that the family

$$
\binom{\mathcal{U}(\mathbf{D})}{k}
$$

of k-families of pairwise disjoint subsets of
$\mathcal{U}(\mathbf{D})=\left\{\bigcup_{i \in I} D_{i}: \emptyset \neq I \subseteq\{1,2, \ldots, I\}\right\}$ is monochromatic.

Finite Union Theorem for Trees in Dim >1

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.
A subset subset T of $b^{<n}$ is a skew subtree of height k if

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.
A subset subset T of $b^{<n}$ is a skew subtree of height k if

1. T has a minimum,

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.
A subset subset T of $b^{<n}$ is a skew subtree of height k if

1. T has a minimum,
2. Every maximal chain in T is of size k,

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.
A subset subset T of $b^{<n}$ is a skew subtree of height k if

1. T has a minimum,
2. Every maximal chain in T is of size k,
3. For every non maximal t in T and every $s \in \operatorname{ImmSucc}_{b<n}(t)$ there exists unique $s^{\prime} \in \operatorname{ImmSucc}_{T}(t)$ satisfying $s \sqsubseteq s^{\prime}$.

Finite Union Theorem for Trees in Dim >1

Fix a positive integers b and n.
Let $b^{<n}$ denote the uniformly b-branching tree of height n, the set of all sequences of length less than n taking values from the set $b=\{0, \ldots, b-1\}$ ordered by the relation \sqsubseteq of end-extension.

Let k be another positive integer.
A subset subset T of $b^{<n}$ is a skew subtree of height k if

1. T has a minimum,
2. Every maximal chain in T is of size k,
3. For every non maximal t in T and every $s \in \operatorname{ImmSucc}_{b<n}(t)$ there exists unique $s^{\prime} \in \operatorname{ImmSucc}_{T}(t)$ satisfying $s \sqsubseteq s^{\prime}$.
4. For every $\ell<k$ and $s, t \in T(\ell)$, we have that $s<_{\text {lex }} t$ iff $|s|<|t|$.

Skew subtree of height 3

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

A k-dimensional subspace of $\mathcal{U}\left(b^{<n}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<n}\right)
$$

such that

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

A k-dimensional subspace of $\mathcal{U}\left(b^{<n}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<n}\right)
$$

such that

1. T is a skew subtree of $b^{<n}$ height k,

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

A k-dimensional subspace of $\mathcal{U}\left(b^{<n}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<n}\right)
$$

such that

1. T is a skew subtree of $b^{<n}$ height k,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

A k-dimensional subspace of $\mathcal{U}\left(b^{<n}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<n}\right)
$$

such that

1. T is a skew subtree of $b^{<n}$ height k,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,
3. $\min U_{t}=t$ for all $t \in T$.

Subspaces of finite dimension >1

Let

$$
\mathcal{U}\left(b^{<n}\right)=\left\{U \subseteq b^{<n}: U \text { has a minimum }\right\} .
$$

A k-dimensional subspace of $\mathcal{U}\left(b^{<n}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<n}\right)
$$

such that

1. T is a skew subtree of $b^{<n}$ height k,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,
3. $\min U_{t}=t$ for all $t \in T$.

A subspace $\left(V_{s}\right)_{s \in S}$ is a further subspace of $\left(U_{t}\right)_{t \in T}$ if

$$
(\forall s \in S) \quad V_{s} \in\left\{\bigcup_{t \in A} U_{t}: A \subseteq T\right\}
$$

Finite Union Theorem for Trees in Dimension k

Finite Union Theorem for Trees in Dimension k

Theorem
For every positive integers c, k, I, b with $k \leq I$ there exists a positive integer $n_{0}=T T(c, k, l, b)$ such that
for every integer $n \geq n_{0}$ and every r-coloring of the k-dimensional subspaces of $\mathcal{U}\left(b^{<n}\right)$,
there exists a l-dimensional subspace \mathbf{U} such that
the set of all further k-dimensional subspaces of \mathbf{U} is monochromatic.

Finite Union Theorem for Trees in Dimension k

Theorem
For every positive integers c, k, I, b with $k \leq I$ there exists a positive integer $n_{0}=T T(c, k, l, b)$ such that for every integer $n \geq n_{0}$ and every r-coloring of the k-dimensional subspaces of $\mathcal{U}\left(b^{<n}\right)$,
there exists a l-dimensional subspace \mathbf{U} such that
the set of all further k-dimensional subspaces of \mathbf{U} is monochromatic.

Remark

The Graham-Rotschild Finite Union Theorem is the case $b=1$ of this result.

Further work

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω,

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,
3. $\min U_{t}=t$ for all $t \in T$.

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,
3. $\min U_{t}=t$ for all $t \in T$.

As before an ω-dimensional subspace $\left(V_{s}\right)_{s \in S}$ is a further subspace of $\left(U_{t}\right)_{t \in T}$ if

$$
(\forall s \in S) \quad V_{s} \in\left\{\bigcup_{t \in A} U_{t}: A \subseteq T\right\}
$$

Further work

An ω-dimensional subspace of $\mathcal{U}\left(b^{<\omega}\right)$ is a family of of the form

$$
\left(U_{t}\right)_{t \in T} \subseteq \mathcal{U}\left(b^{<\omega}\right)
$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω,
2. $U_{s} \cap U_{t}=\emptyset$ for $s \neq t \in T$,
3. $\min U_{t}=t$ for all $t \in T$.

As before an ω-dimensional subspace $\left(V_{s}\right)_{s \in S}$ is a further subspace of $\left(U_{t}\right)_{t \in T}$ if

$$
(\forall s \in S) \quad V_{s} \in\left\{\bigcup_{t \in A} U_{t}: A \subseteq T\right\}
$$

Conjecture

For every finite Souslin-measurable coloring of the family of all ω-dimensional subspaces of $\mathcal{U}\left(b^{<\omega}\right)$ there is an ω-dimensional subspace $\left(U_{t}\right)_{t \in T}$ all of whose further ω-dimensional subspaces are of the same color.

