Union theorems for trees

Stevo Todorčević

S.A.S.A., Belgrade; C.N.R.S., Paris; University of Toronto

Novi Sad, August 18-21, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Joint work with K. Tyros

Outline

Part I: Classical Union Theorems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- (1) Folkman Theorem
- (2) Carlson-Simpson Theorem
- (3) Dual Ramsey Theorem

Outline

Part I: Classical Union Theorems

- (1) Folkman Theorem
- (2) Carlson-Simpson Theorem
- (3) Dual Ramsey Theorem

Part II: Ramsey Theory of Trees

- (4) Halpern-Läuchli Theorem
- (5) Dense-set version
- (6) Strong-subtree version

Outline

Part I: Classical Union Theorems

- (1) Folkman Theorem
- (2) Carlson-Simpson Theorem
- (3) Dual Ramsey Theorem

Part II: Ramsey Theory of Trees

- (4) Halpern-Läuchli Theorem
- (5) Dense-set version
- (6) Strong-subtree version

Part III: Dual Ramsey Theory of Trees

- (7) Hales-Jewett Theorem for Trees
- (8) Union Theorem for Trees
- (9) Union Theorem for Trees in Dimension > 1

(10) Conjectures

Part I: Finite Union Theorem

Part I: Finite Union Theorem

Theorem (Folkman, 1969)

For every pair of positive integers k and c there is integer F = F(k, c) such that for every c-coloring of the power-set $\mathcal{P}(X)$ of some set X of cardinality $\geq F$, there is a family $\mathbf{D} = (D_i)_{i=1}^k$ of pairwise disjoint nonempty subsets of X such that the family

$$\mathcal{U}(\mathbf{D}) = \{\bigcup_{i \in I} D_i : \emptyset \neq I \subseteq \{1, 2, ..., k\}\}$$

of unions is monochromatic.

Infinite Union Theorem

Infinite Union Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of the power-set $\mathcal{P}(\omega)$ of ω , there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint nonempty subsets of the natural numbers such that the set

$$\mathcal{U}(\mathbf{D}) = \Big\{ \bigcup_{n \in M} D_n : M \text{ is a non-empty subset of } \omega \Big\}$$

is monochromatic.

Dual Ramsey Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - ∽��?

Dual Ramsey Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin-measurable coloring of the collection

 $\mathcal{U}^{[\infty]} = \mathcal{U}^{[\infty]}(\omega)$

of all infinite families of pairwise disjoint nonempty subsets of ω , there is a family $\mathbf{D} = \{D_n : n < \omega\} \in \mathcal{U}^{[\infty]}$ such that

$$\mathcal{U}^{[\infty]} \upharpoonright \mathbf{D} = \{ \{ E_n : n < \omega \} \in \mathcal{U}^{[\infty]} : (\forall n < \omega) E_n \in \mathcal{U}(\mathbf{D}) \}$$

is monochromatic.

Part II: Halpern-Läuchli Theorem

A tree is a partially ordered set (T, \leq_T) such that

$$\operatorname{Pred}_t(T) = \{s \in T : s <_T t\}$$

is is finite and totally ordered.

Part II: Halpern-Läuchli Theorem

A tree is a partially ordered set (T, \leq_T) such that

$$\operatorname{Pred}_t(T) = \{ s \in T : s <_T t \}$$

is is finite and totally ordered.

We consider only **rooted and finitely branching trees with no maximal nodes**.

For $n < \omega$, the *n*th level of *T*, is the set

$$T(n) = \{t \in T : |\operatorname{Pred}_{t}(T)| = n\}.$$

For $n < \omega$, the *n*th level of *T*, is the set

$$T(n) = \{t \in T : |\operatorname{Pred}_{t}(T)| = n\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For a subset D of T, we define its **level set**

$$L_T(D) = \{n \in \omega : D \cap T(n) \neq \emptyset\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For a subset D of T, we define its **level set**

$$L_T(D) = \{n \in \omega : D \cap T(n) \neq \emptyset\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From now on, fix an integer $d \ge 1$.

From now on, fix an integer $d \ge 1$. A **vector tree**

$$\mathbf{T}=\left(T_{1},...,\,T_{d}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a d-sequence of rooted and finitely branching trees with no maximal nodes.

From now on, fix an integer $d \ge 1$. A **vector tree**

$$\mathbf{\Gamma} = (T_1, ..., T_d)$$

is a d-sequence of rooted and finitely branching trees with no maximal nodes.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

For a vector tree $\mathbf{T} = (T_1, ..., T_d)$ we define its **level product** as

$$\otimes \mathbf{T} = \bigcup_{n < \omega} T_1(n) \times ... \times T_d(n)$$

<□ > < @ > < E > < E > E のQ @

For a vector tree $\mathbf{T} = (T_1, ..., T_d)$ we define its **level product** as

$$\otimes \mathbf{T} = \bigcup_{n < \omega} T_1(n) \times \ldots \times T_d(n)$$

The *n*-th level of the level product of T is

$$\otimes \mathbf{T}(n) = T_1(n) \times ... \times T_d(n).$$

Let $\mathbf{T} = (T_1, ..., T_d)$ a vector tree.

Let
$$\mathbf{T} = (T_1, ..., T_d)$$
 a vector tree.
For $\mathbf{t} = (t_1, ..., t_d)$ and $\mathbf{s} = (s_1, ..., s_d)$ in $\otimes \mathbf{T}$, set
 $\mathbf{t} \leq_{\mathbf{T}} \mathbf{s}$ iff $t_i \leq_{T_i} s_i$ for all $i = 1, ..., d$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Let
$$\mathbf{T} = (T_1, ..., T_d)$$
 a vector tree.
For $\mathbf{t} = (t_1, ..., t_d)$ and $\mathbf{s} = (s_1, ..., s_d)$ in $\otimes \mathbf{T}$, set
 $\mathbf{t} \leq_{\mathbf{T}} \mathbf{s}$ iff $t_i \leq_{T_i} s_i$ for all $i = 1, ..., d$.

For $\mathbf{t} = (t_1, ..., t_d)$ in $\otimes \mathbf{T}$, we define

 $\operatorname{Succ}_t(T) = \{s \in \otimes T : t \leq_T s\}$

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if 1. if D_i is a subset of T_i for all i = 1, ..., d and 2. $L_{T_1}(D_1) = ... = L_{T_d}(D_d)$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if

1. if D_i is a subset of T_i for all i = 1, ..., d and

2.
$$L_{T_1}(D_1) = ... = L_{T_d}(D_d).$$

For a vector subset **D** of **T** we define its **level product**

$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if

1. if D_i is a subset of T_i for all i = 1, ..., d and

2.
$$L_{T_1}(D_1) = ... = L_{T_d}(D_d).$$

For a vector subset **D** of **T** we define its **level product**

$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

For $\mathbf{t} \in \otimes \mathbf{T}$, a vector subset \mathbf{D} of \mathbf{T} is **t-dense**,

 $(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \operatorname{Succ}_{T}(t)(\exists s' \in \otimes T(m) \cap \otimes D) \ s \leq_{T} s'.$

A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of **T** if

1. if D_i is a subset of T_i for all i = 1, ..., d and

2.
$$L_{T_1}(D_1) = ... = L_{T_d}(D_d).$$

For a vector subset **D** of **T** we define its **level product**

$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

For $\mathbf{t} \in \otimes \mathbf{T}$, a vector subset \mathbf{D} of \mathbf{T} is **t-dense**,

 $(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \operatorname{Succ}_{T}(t)(\exists s' \in \otimes T(m) \cap \otimes D) \ s \leq_{T} s'.$

D is called **dense** if it is $root(\otimes T)$ -**dense**.

T

Theorem (Halpern–Läuchli, 1966)

Let **T** be a vector tree. Then for every dense vector subset **D** of **T** and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}' of **D** such that either

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Halpern–Läuchli, 1966)

Let **T** be a vector tree. Then for every dense vector subset **D** of **T** and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}' of **D** such that either

(i) $\otimes D'$ is a subset of \mathcal{P} and D' is a dense vector subset of T, or

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Halpern–Läuchli, 1966)

Let **T** be a vector tree. Then for every dense vector subset **D** of **T** and every subset \mathcal{P} of $\otimes \mathbf{D}$, there exists a vector subset \mathbf{D}' of **D** such that either

(i) ⊗D' is a subset of P and D' is a dense vector subset of T, or
(ii) ⊗D' is a subset of P^c and D' is a t-dense vector subset D' of T for some t in ⊗T.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_T) of height ω with no maximal nodes.

(ロ)、(型)、(E)、(E)、 E) の(の)

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_T) of height ω with no maximal nodes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A subset S of T is called a strong subtree of T if,

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_T) of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_T) of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

- 1. S has a minimum.
- 2. Every level of S is subset of some level of T,

Strong Subtree

Fix a rooted and finitely branching tree (T, \leq_T) of height ω with no maximal nodes.

A subset S of T is called a strong subtree of T if,

- 1. S has a minimum.
- 2. Every level of S is subset of some level of T,
- 3. For every s in S and t' in $\text{ImmSucc}_{\mathcal{T}}(s)$ there is unique s' in $\text{ImmSucc}_{\mathcal{S}}(s)$ with $t \leq_{\mathcal{T}} s'$.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Fix a vector tree $\mathbf{T} = (T_1, ..., T_d)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Fix a vector tree $\mathbf{T} = (T_1, ..., T_d)$. A vector subset $\mathbf{S} = (S_1, ..., S_d)$ of \mathbf{T} is called a **vector strong subtree of \mathbf{T}** whenever

Fix a vector tree $\mathbf{T} = (T_1, ..., T_d)$. A vector subset $\mathbf{S} = (S_1, ..., S_d)$ of \mathbf{T} is called a

vector strong subtree of T whenever

1. S_i is a strong subtree of T_i for all i = 1, ...d,

Fix a vector tree $\mathbf{T} = (T_1, ..., T_d)$. A vector subset $\mathbf{S} = (S_1, ..., S_d)$ of \mathbf{T} is called a

vector strong subtree of T whenever

- 1. S_i is a strong subtree of T_i for all i = 1, ...d,
- 2. $L_{T_1}(S_1) = ... = L_{T_d}(S_d).$

Fix a vector tree $\mathbf{T} = (T_1, ..., T_d)$. A vector subset $\mathbf{S} = (S_1, ..., S_d)$ of \mathbf{T} is called a

vector strong subtree of T whenever

1. S_i is a strong subtree of T_i for all i = 1, ...d,

2.
$$L_{T_1}(S_1) = ... = L_{T_d}(S_d).$$

Theorem (Strong Subtree Version of HL)

Let **T** be a vector tree. Then for every finite coloring of \otimes **T** there exists a vector strong subtree **S** of **T** such that \otimes **S** is monochromatic.

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Let \mathbf{T} be a vector tree.

Let ${\boldsymbol{\mathsf{T}}}$ be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

Let ${\boldsymbol{\mathsf{T}}}$ be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$.

Let ${\boldsymbol{\mathsf{T}}}$ be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0, 1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**.

Let ${\boldsymbol{\mathsf{T}}}$ be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**. A **D**-subspace of $\mathcal{U}(\mathbf{T})$ is a family

 $\mathbf{U} = (\mathit{U}_t)_{t \in \otimes \mathbf{D}}$

such that

Let \mathbf{T} be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**. A **D**-subspace of $\mathcal{U}(\mathbf{T})$ is a family

 $\mathbf{U} = (\mathit{U}_t)_{t \in \otimes \mathbf{D}}$

such that

1. $U_t \in \mathcal{U}(T)$ for all $t \in \otimes D$,

Let \mathbf{T} be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**. A **D**-subspace of $\mathcal{U}(\mathbf{T})$ is a family

 $U = (\mathit{U}_t)_{t \in \otimes D}$

such that

 $\begin{array}{ll} 1. & \textit{U}_t \in \mathcal{U}(\mathsf{T}) \text{ for all } \mathsf{t} \in \otimes \mathsf{D}, \\ 2. & \textit{U}_s \cap \textit{U}_t = \emptyset \text{ for } \mathsf{s} \neq \mathsf{t}, \end{array}$

Let \mathbf{T} be a vector tree.We define

 $\mathcal{U}(\mathbf{T}) = \{ U \subseteq \otimes \mathbf{T} : U \text{ has a minimum} \}.$

We let $\mathcal{U}(\mathbf{T})$ take its topology from $\{0,1\}^{\otimes \mathbf{T}}$. Let **D** be a vector subset of **T**. A **D**-subspace of $\mathcal{U}(\mathbf{T})$ is a family

 ${\boldsymbol{\mathsf{U}}}=(\mathit{U}_t)_{t\in\otimes {\boldsymbol{\mathsf{D}}}}$

such that

- 1. $U_{\mathbf{t}} \in \mathcal{U}(\mathbf{T})$ for all $\mathbf{t} \in \otimes \mathbf{D}$,
- 2. $U_{\mathbf{s}} \cap U_{\mathbf{t}} = \emptyset$ for $\mathbf{s} \neq \mathbf{t}$,
- 3. min $U_t = t$ for all $t \in \otimes D$.

- ・ロト ・ 御 ト ・ ヨト ・ ヨー ・ の へ ()

For a subspace $\bm{U} = (\mathit{U}_t)_{t \in \otimes \bm{D}(\bm{U})}$ we define its \bm{span} by

$$[\mathbf{U}] = \Big\{ \bigcup_{\mathbf{t} \in \Gamma} U_{\mathbf{t}} : \ \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U}) \Big\} \cap \mathcal{U}(\mathbf{T}).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

For a subspace $\bm{\mathsf{U}}=(\mathit{U}_t)_{t\in\otimes \mathsf{D}(\mathsf{U})}$ we define its span by

$$[\mathbf{U}] = \Big\{ \bigcup_{t \in \Gamma} \mathcal{U}_t : \ \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U}) \Big\} \cap \mathcal{U}(\mathbf{T}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If **U** and **U**' are two subspaces of $\mathcal{U}(\mathbf{T})$, we say that

U' is a subspace of U, and write $U' \leq U$, if

For a subspace $\boldsymbol{\mathsf{U}}=(\mathit{U}_t)_{t\in\otimes\mathsf{D}(\mathsf{U})}$ we define its span by

$$[\mathbf{U}] = \Big\{ \bigcup_{t \in \Gamma} \mathcal{U}_t: \ \Gamma \subseteq \otimes \mathbf{D}(\mathbf{U}) \Big\} \cap \mathcal{U}(\mathbf{T}).$$

If U and U' are two subspaces of $\mathcal{U}(\mathsf{T}),$ we say that

U' is a subspace of U, and write $U' \leq U,$ if $[U'] \subseteq [U].$

For a subspace $\bm{\mathsf{U}}=(\mathit{U}_t)_{t\in\otimes \bm{\mathsf{D}}(\bm{\mathsf{U}})}$ we define its $\bm{\mathsf{span}}$ by

$$[\mathbf{U}] = \Big\{\bigcup_{t\in\Gamma} \mathcal{U}_t:\ \Gamma\subseteq\otimes \mathbf{D}(\mathbf{U})\Big\}\cap \mathcal{U}(\mathbf{T}).$$

If U and U' are two subspaces of $\mathcal{U}(\mathsf{T}),$ we say that

U' is a subspace of U, and write $U' \leq U,$ if $[U'] \subseteq [U].$

Remark

 $U' \leq U$ implies that D(U') is a vector subset of D(U).

Union Theorem for ${\boldsymbol{\mathsf{T}}}$

Union Theorem for \mathbf{T}

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$.

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let **D** be a dense level vector subset of **T** and **U** a **D**-subspace of $\mathcal{U}(\mathbf{T})$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let **D** be a dense level vector subset of **T** and **U** a **D**-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace **U**' of $\mathcal{U}(\mathbf{T})$ with **U**' \leq **U** such that either

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let **D** be a dense level vector subset of **T** and **U** a **D**-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace **U**' of $\mathcal{U}(\mathbf{T})$ with **U**' \leq **U** such that either

(i) $[\mathbf{U}']$ is a subset of \mathcal{P} and $\mathbf{D}(\mathbf{U}')$ is a dense vector subset of \mathbf{T} , or

Theorem

Let **T** be a vector tree and \mathcal{P} a Souslin measurable subset of $\mathcal{U}(\mathbf{T})$. Also let **D** be a dense level vector subset of **T** and **U** a **D**-subspace of $\mathcal{U}(\mathbf{T})$. Then there exists a subspace **U**' of $\mathcal{U}(\mathbf{T})$ with **U**' \leq **U** such that either

- (i) $[\mathbf{U}']$ is a subset of \mathcal{P} and $\mathbf{D}(\mathbf{U}')$ is a dense vector subset of \mathbf{T} , or
- (ii) $[\mathbf{U}']$ is a subset of \mathcal{P}^c and $\mathbf{D}(\mathbf{U}')$ is a t-dense vector subset of \mathbf{T} for some t in $\otimes \mathbf{T}$.

<ロ> <@> < E> < E> E のQの

Corollary

Let T be a vector tree and let S be a vector strong subtree of T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary

Let **T** be a vector tree and let **S** be a vector strong subtree of **T**. Let **U** be an **S**-subspace of $\mathcal{U}(\mathbf{T})$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Corollary

Let **T** be a vector tree and let **S** be a vector strong subtree of **T**. Let **U** be an **S**-subspace of $\mathcal{U}(\mathbf{T})$. Then for every finite Souslin measurable coloring of $\mathcal{U}(\mathbf{T})$ there exist a vector strong subtree **S**' of **S** and an **S**'-subspace **U**' of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}' \leq \mathbf{U}$ such that $[\mathbf{U}']$ is monochromatic.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Let **T** be a vector tree and let **S** be a vector strong subtree of **T**. Let **U** be an **S**-subspace of $\mathcal{U}(\mathbf{T})$. Then for every finite Souslin measurable coloring of $\mathcal{U}(\mathbf{T})$ there exist a vector strong subtree **S**' of **S** and an **S**'-subspace **U**' of $\mathcal{U}(\mathbf{T})$ with $\mathbf{U}' \leq \mathbf{U}$ such that $[\mathbf{U}']$ is monochromatic.

Corollary (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $\mathbf{D} = (D_n)_{n < \omega}$ of pairwise disjoint subsets of ω such that the set

$$\mathcal{U}(\mathbf{D}) = \Big\{ \bigcup_{n \in M} D_n : M \text{ is a non-empty subset of } \omega \Big\}$$

is monochromatic.

Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every integer $c \ge 1$ there is a number $HJ(\Lambda, c)$ such that for every integer $N \ge HJ(\Lambda, c)$ and every c-coloring of the set of Λ -words of length N, i.e., the cube Λ^N there is a variable word x(v) of length N, an element of $(\Lambda \cup \{v\})^N \setminus \Lambda^N$ such that the set of all substitutions

 $\{x[\lambda] : \lambda \in \Lambda\}$

is monochromatic.

Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every integer $c \ge 1$ there is a number $HJ(\Lambda, c)$ such that for every integer $N \ge HJ(\Lambda, c)$ and every c-coloring of the set of Λ -words of length N, i.e., the cube Λ^N there is a variable word x(v) of length N, an element of $(\Lambda \cup \{v\})^N \setminus \Lambda^N$ such that the set of all substitutions

$$\{x[\lambda] : \lambda \in \Lambda\}$$

is monochromatic.

Theorem (Carlson-Simpson, 1984)

Let Λ be a finite alphabet and let $v \notin \Lambda$ be a variable. Then for every finite coloring of the **semigroup** W_{Λ} of all Λ -words, there is an **infinite sequence** $(x_n(v))$ of variable words such that the set

$$\{x_0[\lambda_0]^\frown \cdots ^\frown x_n[\lambda_n] : n < \omega, \lambda_0, ..., \lambda_n \in \Lambda\}$$

is monochromatic.

Hales-Jewett Theorem for Trees

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

We fix a vector tree \mathbf{T} .

We fix a vector tree **T**. Fix a **finite alphabet** Λ .

We fix a vector tree **T**. Fix a **finite alphabet** Λ . For $m < n < \omega$, set

$$W(\Lambda, \mathbf{T}, m, n) = \Lambda^{\otimes \mathbf{T} \upharpoonright [m, n)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\otimes \mathbf{T} \upharpoonright [m, n) = \bigcup_{j=m}^{n-1} \otimes \mathbf{T}(j)$.

We fix a vector tree **T**. Fix a **finite alphabet** Λ . For $m < n < \omega$, set

$$W(\Lambda, \mathbf{T}, m, n) = \Lambda^{\otimes \mathbf{T} \upharpoonright [m, n)},$$

where $\otimes \mathbf{T} \upharpoonright [m, n) = \bigcup_{j=m}^{n-1} \otimes \mathbf{T}(j)$. We also set

$$W(\Lambda, \mathbf{T}) = \bigcup_{m \leq n} W(\Lambda, \mathbf{T}, m, n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix a vector level subset \mathbf{D} of \mathbf{T} . Let

 $W_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$

to be the set of all functions

$$f:\otimes \mathbf{T} \upharpoonright [m,n) \to \Lambda \cup \{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\}$$

such that

Fix a vector level subset \mathbf{D} of \mathbf{T} . Let

 $W_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$

to be the set of all functions

$$f:\otimes \mathbf{T} \upharpoonright [m,n) \to \Lambda \cup \{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\}$$

such that

The set f⁻¹({u_s}) is nonempty and admits s as a minimum in ⊗T, for all s ∈ ⊗D.

Fix a vector level subset D of T. Let

 $W_{v}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$

to be the set of all functions

$$f:\otimes \mathbf{T} \upharpoonright [m,n) \to \Lambda \cup \{v_{\mathbf{s}}: \mathbf{s} \in \otimes \mathbf{D}\}$$

such that

The set f⁻¹({u_s}) is nonempty and admits s as a minimum in ⊗T, for all s ∈ ⊗D.

► For every **s** and **s**' in \otimes **D**, we have $L_{\otimes T}(f^{-1}(\{u_s\})) = L_{\otimes T}(f^{-1}(\{u_{s'}\})).$

For $f \in W_{\nu}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$, set

$$ws(f) = \mathbf{D}, bot(f) = m and top(f) = n.$$

For $f \in W_{\nu}(\Lambda, \mathbf{T}, \mathbf{D}, m, n)$, set

$$ws(f) = \mathbf{D}, bot(f) = m and top(f) = n.$$

Moreover, we set

$$\begin{split} \mathrm{W}_{\mathbf{v}}(\Lambda,\mathbf{T}) &= \bigcup \big\{ \mathrm{W}_{\mathbf{v}}(\Lambda,\mathbf{T},\mathbf{D},m,n) : m \leq n \text{ and} \\ \mathbf{D} \text{ is a vector level subset of } \mathbf{T} \\ & \text{ with } L_{\mathbf{T}}(\mathbf{D}) \subset [m,n) \big\}. \end{split}$$

The elements of $W_{\nu}(\Lambda, \mathbf{T})$ are viewed as variable words over the alphabet Λ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

For variable words f in $W_v(\Lambda, \mathbf{T})$ we take **substitutions**: For every family $\mathbf{a} = (a_s)_{s \in \otimes ws(f)} \subseteq \Lambda$, let $f(\mathbf{a}) \in W(\Lambda, \mathbf{T})$ be the result of substituting for every \mathbf{s} in $\otimes ws(f)$ each occurrence of v_s by a_s , .

For variable words f in $W_v(\Lambda, \mathbf{T})$ we take **substitutions**: For every family $\mathbf{a} = (a_s)_{s \in \otimes ws(f)} \subseteq \Lambda$, let $f(\mathbf{a}) \in W(\Lambda, \mathbf{T})$ be the result of substituting for every \mathbf{s} in $\otimes ws(f)$ each occurrence of v_s by a_s , .

Moreover, we set

$$[f]_{\Lambda} = \{f(\mathbf{a}): \mathbf{a} = (a_{\mathbf{s}})_{\mathbf{s} \in \otimes \mathrm{ws}(f)} \subseteq \Lambda\},\$$

the constant span of f.

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if: 1. bot $(f_0) = 0$,

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

(ロ)、(型)、(E)、(E)、 E) の(の)

1.
$$bot(f_0) = 0$$
,

2.
$$bot(f_{n+1}) = top(f_n)$$
 for all $n < \omega$,

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

1.
$$bot(f_0) = 0$$
,

2. $bot(f_{n+1}) = top(f_n)$ for all $n < \omega$,

3. Setting $D_i = \bigcup_{n < \omega} ws_i(f)$ for all i = 1, ..., d, where $ws(f) = (ws_1(f), ..., ws_d(f))$, we have that $(D_1, ..., D_d)$ forms a dense vector subset of **T**.

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

1.
$$bot(f_0) = 0$$
,

2. $bot(f_{n+1}) = top(f_n)$ for all $n < \omega$,

3. Setting $D_i = \bigcup_{n < \omega} ws_i(f)$ for all i = 1, ..., d, where $ws(f) = (ws_1(f), ..., ws_d(f))$, we have that $(D_1, ..., D_d)$ forms a dense vector subset of **T**.

For a subspace $X = (f_n)_{n < \omega}$ we define

$$[X]_{\Lambda} = \Big\{ igcup_{q=0}^n g_q: \ n < \omega \ ext{and} \ g_q \in [f_q]_{\Lambda} \ ext{for all} \ q=0,...,n \Big\}.$$

An infinite sequence $X = (f_n)_{n < \omega}$ in $W_v(\Lambda, \mathbf{T})$ is a **subspace**, if:

1.
$$bot(f_0) = 0$$
,

2. $\operatorname{bot}(f_{n+1}) = \operatorname{top}(f_n)$ for all $n < \omega$,

3. Setting $D_i = \bigcup_{n < \omega} ws_i(f)$ for all i = 1, ..., d, where $ws(f) = (ws_1(f), ..., ws_d(f))$, we have that $(D_1, ..., D_d)$ forms a dense vector subset of **T**.

For a subspace $X = (f_n)_{n < \omega}$ we define

$$[X]_{\Lambda} = \Big\{ \bigcup_{q=0}^{n} g_q: n < \omega \text{ and } g_q \in [f_q]_{\Lambda} \text{ for all } q = 0, ..., n \Big\}.$$

For two subspaces X and Y, we write $X \leq Y$ if $[X]_{\Lambda} \subseteq [Y]_{\Lambda}$.

An infinite Hales-Jewett theorem for trees

Theorem

Let Λ be a finite alphabet and **T** a vector tree. Then for every finite coloring of the set of the constant words $W(\Lambda, \mathbf{T})$ over Λ and every subspace X of $W(\Lambda, \mathbf{T})$ there exists a subspace X' of $W(\Lambda, \mathbf{T})$ with $X' \leq X$ such that the set $[X']_{\Lambda}$ is monochromatic.

An infinite Hales-Jewett theorem for trees

Theorem

Let Λ be a finite alphabet and **T** a vector tree. Then for every finite coloring of the set of the constant words $W(\Lambda, \mathbf{T})$ over Λ and every subspace X of $W(\Lambda, \mathbf{T})$ there exists a subspace X' of $W(\Lambda, \mathbf{T})$ with $X' \leq X$ such that the set $[X']_{\Lambda}$ is monochromatic.

Remark

This will be used as a **pigeonhole principle** for its infinite-dimensional version.

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

1. $bot(g_0) = 0$ and

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. $bot(g_0) = 0$ and
- 2. $bot(g_{n+1}) = topg_n$ for all $n < \omega$.

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

- 1. $bot(g_0) = 0$ and
- 2. $bot(g_{n+1}) = topg_n$ for all $n < \omega$.

For a subspace X, we set

$$[X]^{\infty}_{\Lambda} = \{(g_n)_{n < \omega} \in \mathrm{W}^{\infty}(\Lambda, \mathbf{T}) : (\forall n < \omega) \bigcup_{q=0}^{n} g_q \in [X]_{\Lambda}.$$

Let $W^{\infty}(\Lambda, \mathbf{T})$, be the set of all sequences $(g_n)_{n < \omega}$ in $W(\Lambda, \mathbf{T})$ such that:

- 1. $bot(g_0) = 0$ and
- 2. $bot(g_{n+1}) = topg_n$ for all $n < \omega$.

For a subspace X, we set

$$[X]^{\infty}_{\Lambda} = \{(g_n)_{n < \omega} \in \mathrm{W}^{\infty}(\Lambda, \mathbf{T}) : (\forall n < \omega) \bigcup_{q=0}^{n} g_q \in [X]_{\Lambda}.$$

Theorem

Let Λ be a finite alphabet and \mathbf{T} a vector tree. Then for every finite Souslin measurable coloring of the set $W^{\infty}(\Lambda, \mathbf{T})$ and every subspace X of $W(\Lambda, \mathbf{T})$ there exists a subspace X' of $W(\Lambda, \mathbf{T})$ with $X' \leq X$ such that the set $[X']^{\infty}_{\Lambda}$ is monochromatic.

Higher Dimensions

Higher Dimensions

Theorem (Graham-Rothschild)

For every triple of positive integers k, l, and c there is integer GR = GR(k, l, c) such that for every set X of cardinality $\geq GR$ and every c-coloring of the family

 $\binom{\mathcal{P}(X)}{k}$

of all k-families of pairwise disjoint subsets of X there is a family $\mathbf{D} = (D_i)_{i=1}^l$ of pairwise disjoint nonempty subsets of X such that the family

$$\binom{\mathcal{U}(\mathbf{D})}{k}$$

of k-families of pairwise disjoint subsets of $U(\mathbf{D}) = \{\bigcup_{i \in I} D_i : \emptyset \neq I \subseteq \{1, 2, ..., I\}\}$ is monochromatic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Fix a positive integers b and n.

Fix a positive integers b and n.

Let $b^{<n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

Fix a positive integers b and n.

Let $b^{<n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

Let k be another positive integer.

Fix a positive integers b and n.

Let $b^{<n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let k be another positive integer.

A subset subset T of $b^{< n}$ is a skew subtree of height k if

Fix a positive integers b and n.

Let $b^{<n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

Let k be another positive integer.

A subset subset T of $b^{< n}$ is a **skew subtree of height** k if

1. T has a minimum,

Fix a positive integers b and n.

Let $b^{<n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let k be another positive integer.

A subset subset T of $b^{< n}$ is a **skew subtree of height** k if

- 1. T has a minimum,
- 2. Every maximal chain in T is of size k,

Finite Union Theorem for Trees in $\mathrm{Dim}>1$

Fix a positive integers b and n.

Let $b^{\leq n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

Let k be another positive integer.

A subset subset T of $b^{< n}$ is a **skew subtree of height** k if

- 1. T has a minimum,
- 2. Every maximal chain in T is of size k,
- 3. For every non maximal t in T and every $s \in \text{ImmSucc}_{b^{\leq n}}(t)$ there exists unique $s' \in \text{ImmSucc}_{T}(t)$ satisfying $s \sqsubseteq s'$.

Finite Union Theorem for Trees in $\operatorname{Dim} > 1$

Fix a positive integers b and n.

Let $b^{\leq n}$ denote the **uniformly** *b*-branching tree of height *n*, the set of all sequences of length less than *n* taking values from the set $b = \{0, ..., b - 1\}$ ordered by the relation \sqsubseteq of **end-extension**.

Let k be another positive integer.

A subset subset T of $b^{< n}$ is a skew subtree of height k if

- 1. T has a minimum,
- 2. Every maximal chain in T is of size k,
- 3. For every non maximal t in T and every $s \in \text{ImmSucc}_{b^{\leq n}}(t)$ there exists unique $s' \in \text{ImmSucc}_{T}(t)$ satisfying $s \sqsubseteq s'$.

4. For every $\ell < k$ and $s, t \in T(\ell)$, we have that $s <_{\text{lex}} t$ iff |s| < |t|.

Skew subtree of height 3

(日)、

Let

 $\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$

Let

$$\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$$

A k-dimensional subspace of $\mathcal{U}(b^{< n})$ is a family of of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{< n})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let

$$\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$$

A *k*-dimensional subspace of $\mathcal{U}(b^{\leq n})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{< n})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

such that

1. T is a skew subtree of $b^{< n}$ height k,

Let

$$\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$$

A *k*-dimensional subspace of $U(b^{< n})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{< n})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

such that

1. T is a skew subtree of $b^{< n}$ height k,

2.
$$U_s \cap U_t = \emptyset$$
 for $s \neq t \in T$,

Let

$$\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$$

A *k*-dimensional subspace of $U(b^{< n})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{< n})$$

- 1. T is a skew subtree of $b^{<n}$ height k,
- 2. $U_s \cap U_t = \emptyset$ for $s \neq t \in T$,
- 3. min $U_t = t$ for all $t \in T$.

Let

$$\mathcal{U}(b^{\leq n}) = \{ U \subseteq b^{\leq n} : U \text{ has a minimum} \}.$$

A *k*-dimensional subspace of $U(b^{< n})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{< n})$$

such that

1. T is a skew subtree of
$$b^{< n}$$
 height k,

2.
$$U_s \cap U_t = \emptyset$$
 for $s \neq t \in T$,

3. min
$$U_t = t$$
 for all $t \in T$.

A subspace $(V_s)_{s \in S}$ is a further subspace of $(U_t)_{t \in T}$ if

$$(\forall s \in S) \quad V_s \in \{\bigcup_{t \in A} U_t : A \subseteq T\}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

Finite Union Theorem for Trees in Dimension k

Finite Union Theorem for Trees in Dimension k

Theorem

For every positive integers c, k, l, b with $k \le l$ there exists a positive integer $n_0 = TT(c, k, l, b)$ such that for every integer $n \ge n_0$ and every r-coloring of the k-dimensional subspaces of $\mathcal{U}(b^{\le n})$, there exists a l-dimensional subspace **U** such that the set of all further k-dimensional subspaces of **U** is monochromatic.

Finite Union Theorem for Trees in Dimension k

Theorem

For every positive integers c, k, l, b with $k \leq l$ there exists a positive integer $n_0 = TT(c, k, l, b)$ such that for every integer $n \geq n_0$ and every r-coloring of the k-dimensional subspaces of $\mathcal{U}(b^{\leq n})$, there exists a l-dimensional subspace **U** such that the set of all further k-dimensional subspaces of **U** is monochromatic.

Remark

The Graham-Rotschild Finite Union Theorem is the case b = 1 of this result.

<ロ> <@> < E> < E> E のQの

An ω -dimensional subspace of $\mathcal{U}(b^{<\omega})$ is a family of of the form

 $(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

An $\omega\text{-}\mathbf{dimensional\ subspace}$ of $\mathcal{U}(b^{<\omega})$ is a family of of the form

 $(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

such that

1. T is a skew subtree of $b^{<\omega}$ height ω ,

An ω -dimensional subspace of $\mathcal{U}(b^{<\omega})$ is a family of of the form

 $(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$

- 1. T is a skew subtree of $b^{<\omega}$ height ω ,
- 2. $U_s \cap U_t = \emptyset$ for $s \neq t \in T$,

An ω -dimensional subspace of $\mathcal{U}(b^{<\omega})$ is a family of of the form

 $(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$

- 1. T is a skew subtree of $b^{<\omega}$ height ω ,
- 2. $U_s \cap U_t = \emptyset$ for $s \neq t \in T$,
- 3. min $U_t = t$ for all $t \in T$.

An ω -dimensional subspace of $\mathcal{U}(b^{<\omega})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω ,

2.
$$U_s \cap U_t = \emptyset$$
 for $s \neq t \in T$,

3. min $U_t = t$ for all $t \in T$.

As before an ω -dimensional subspace $(V_s)_{s \in S}$ is a further subspace of $(U_t)_{t \in T}$ if

$$(\forall s \in S) \ V_s \in \{\bigcup_{t \in A} U_t : A \subseteq T\}.$$

An ω -dimensional subspace of $\mathcal{U}(b^{<\omega})$ is a family of the form

$$(U_t)_{t\in T}\subseteq \mathcal{U}(b^{<\omega})$$

such that

1. T is a skew subtree of $b^{<\omega}$ height ω ,

2.
$$U_s \cap U_t = \emptyset$$
 for $s \neq t \in T$,

3. min $U_t = t$ for all $t \in T$.

As before an ω -dimensional subspace $(V_s)_{s \in S}$ is a further subspace of $(U_t)_{t \in T}$ if

$$(\forall s \in S) \ V_s \in \{\bigcup_{t \in A} U_t : A \subseteq T\}.$$

Conjecture

For every finite Souslin-measurable coloring of the family of all ω -dimensional subspaces of $\mathcal{U}(b^{<\omega})$ there is an ω -dimensional subspace (U_t)_{t \in T} all of whose further ω -dimensional subspaces are of the same color.