NUMBER THEORY IN THE STONE-ČECH COMPACTIFICATION

Boris Šobot

Department of Mathematics and Informatics, Faculty of Science, Novi Sad

SetTop 2014

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

Э

${\cal S}$ - discrete topological space

 $\begin{array}{l} \beta S \text{ - the set of ultrafilters on } S\\ \text{Base sets: } \bar{A} = \{p \in \beta S : A \in p\} \text{ for } A \subseteq S\\ \text{Principal ultrafilters } \{A \subseteq S : n \in A\} \text{ are identified with respective elements } n \in S\\ S^* = \beta S \setminus S\\ \text{If } A \in [S]^{\aleph_0} \text{ we think of } \beta A \text{ as a subspace of } \beta S\\ \text{If } C \text{ is a compact topological space, every (continuous) function}\\ f: S \to C \text{ can be extended uniquely to } \tilde{f}: \beta S \to C\\ \text{In particular, every function } f: S \to S \text{ can be extended uniquely to}\\ \tilde{f}: \beta S \to \beta S \end{array}$

${\cal S}$ - discrete topological space

βS - the set of ultrafilters on S

Base sets: $A = \{p \in \beta S : A \in p\}$ for $A \subseteq S$

Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$

 $S^* = \beta S \setminus S$

If $A \in [S]^{\aleph_0}$ we think of βA as a subspace of βS

If C is a compact topological space, every (continuous) function

 $f:S \to C$ can be extended uniquely to $\tilde{f}:\beta S \to C$

In particular, every function $f:S\to S$ can be extended uniquely to $\tilde{f}:\beta S\to\beta S$

S - discrete topological space βS - the set of ultrafilters on S Base sets: $\overline{A} = \{p \in \beta S : A \in p\}$ for $A \subseteq S$

S - discrete topological space βS - the set of ultrafilters on S Base sets: $\overline{A} = \{p \in \beta S : A \in p\}$ for $A \subseteq S$ Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$

S - discrete topological space βS - the set of ultrafilters on S Base sets: $\overline{A} = \{p \in \beta S : A \in p\}$ for $A \subseteq S$ Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$ $S^* = \beta S \setminus S$

S - discrete topological space βS - the set of ultrafilters on S Base sets: $A = \{p \in \beta S : A \in p\}$ for $A \subseteq S$ Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$ $S^* = \beta S \setminus S$ If $A \in [S]^{\aleph_0}$ we think of βA as a subspace of βS

S - discrete topological space βS - the set of ultrafilters on S Base sets: $A = \{p \in \beta S : A \in p\}$ for $A \subseteq S$ Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$ $S^* = \beta S \setminus S$ If $A \in [S]^{\aleph_0}$ we think of βA as a subspace of βS If C is a compact topological space, every (continuous) function $f: S \to C$ can be extended uniquely to $\tilde{f}: \beta S \to C$

S - discrete topological space βS - the set of ultrafilters on S Base sets: $\overline{A} = \{p \in \beta S : A \in p\}$ for $A \subseteq S$ Principal ultrafilters $\{A \subseteq S : n \in A\}$ are identified with respective elements $n \in S$ $S^* = \beta S \setminus S$ If $A \in [S]^{\aleph_0}$ we think of βA as a subspace of βS If C is a compact topological space, every (continuous) function $f: S \to C$ can be extended uniquely to $\tilde{f}: \beta S \to C$ In particular, every function $f: S \to S$ can be extended uniquely to $\tilde{f}:\beta S\to\beta S$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへの

 (S,\cdot) - a semigroup provided with discrete topology For $A\subseteq S$ and $n\in S$:

 $A/n = \{m \in S : mn \in A\}$

The semigroup operation can be extended to βS as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in S : A/n \in q\} \in p.$$

Theorem (HS)

(a) $(\beta S, \cdot)$ is a semigroup. (b) If S = N, the algebraic center $\{p \in \beta N : \forall x \in \beta N \ px = xp\}$ of $(\beta N, \cdot)$ is N.

[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

 (S,\cdot) - a semigroup provided with discrete topology For $A\subseteq S$ and $n\in S$:

 $A/n = \{m \in S: mn \in A\}$

The semigroup operation can be extended to βS as follows:

 $A \in p \cdot q \Leftrightarrow \{n \in S : A/n \in q\} \in p.$

Theorem (HS)

(a) $(\beta S, \cdot)$ is a semigroup. (b) If S = N, the algebraic center $\{p \in \beta N : \forall x \in \beta N \ px = xp\}$ of $(\beta N, \cdot)$ is N.

[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

 (S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$A/n = \{m \in S: mn \in A\}$$

The semigroup operation can be extended to βS as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in S : A/n \in q\} \in p.$$

Theorem (HS) (a) $(\beta S, \cdot)$ is a semigroup. (b) If S = N, the algebraic center $\{p \in \beta N : \forall x \in \beta N \ px = xp\}$ of $(\beta N, \cdot)$ is N.

[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

 (S,\cdot) - a semigroup provided with discrete topology For $A\subseteq S$ and $n\in S$:

$$A/n = \{m \in S: mn \in A\}$$

The semigroup operation can be extended to βS as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in S : A/n \in q\} \in p.$$

Theorem (HS) (a) $(\beta S, \cdot)$ is a semigroup. (b) If S = N, the algebraic center $\{p \in \beta N : \forall x \in \beta N \ px = xp\}$ of $(\beta N, \cdot)$ is N.

[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014 3 / 12

 (S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$A/n = \{m \in S: mn \in A\}$$

The semigroup operation can be extended to βS as follows:

$$A \in p \cdot q \Leftrightarrow \{n \in S : A/n \in q\} \in p.$$

Theorem (HS) (a) $(\beta S, \cdot)$ is a semigroup. (b) If S = N, the algebraic center $\{p \in \beta N : \forall x \in \beta N \ px = xp\}$ of $(\beta N, \cdot)$ is N.

[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

The idea: work with S=N and translate problems in number theory to $(\beta N, \cdot)$

Example

Problem: are there infinitely many perfect numbers?

 $n \in N$ is perfect if $\sigma(n) = 2n$, where $\sigma(n)$ is the sum of positive divisors of n.

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

The idea: work with S=N and translate problems in number theory to $(\beta N, \cdot)$

Example Problem: are there infinitely many perfect numbers?

 $n \in N$ is perfect if $\sigma(n) = 2n$, where $\sigma(n)$ is the sum of positive divisors of n.

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

The idea: work with S=N and translate problems in number theory to $(\beta N, \cdot)$

Example Problem: are there infinitely many perfect numbers?

$n \in N$ is perfect if $\sigma(n) = 2n$, where $\sigma(n)$ is the sum of positive divisors of n.

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

4 / 12

The idea: work with S = N and translate problems in number theory to $(\beta N, \cdot)$

Example Problem: are there infinitely many perfect numbers?

 $n \in N$ is perfect if $\sigma(n) = 2n$, where $\sigma(n)$ is the sum of positive divisors of n.

If the answer is "yes", then there is $p \in N^*$ such that $\{n \in N : \sigma(n) = 2n\} \in p$, so $\tilde{\sigma}(p) = 2p$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps.

Clearly, $|_L \subseteq |_M$ and $|_R \subseteq |_M$.

Lemma

No two of the relations $|_L$, $|_R$ and $|_M$ are the same.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps.

Clearly, $|_L \subseteq |_M$ and $|_R \subseteq |_M$.

Lemma

No two of the relations $|_L$, $|_R$ and $|_M$ are the same.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$. (a) q is left-divisible by $p, p \mid_L q$, if there is $r \in \beta N$ such that q = rp. (b) q is right-divisible by $p, p \mid_R q$, if there is $r \in \beta N$ such that q = pr. (c) q is mid-divisible by $p, p \mid_M q$, if there are $r, s \in \beta N$ such that q = rps.

Clearly, $|_L \subseteq |_M$ and $|_R \subseteq |_M$.

Lemma

No two of the relations $|_L$, $|_R$ and $|_M$ are the same.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

5/12

(4月) イヨト イヨト

Continuity of $|_R$

A binary relation $\alpha \subseteq X^2$ is *continuous* if for every open set $U \subseteq X$ the set $\alpha^{-1}[U] = \{x \in X : \exists y \in U \ (x, y) \in \alpha\}$ is also open.

Lemma

The relation $|_R$ is a continuous extension of | to βN .

Continuity of $|_R$

A binary relation $\alpha \subseteq X^2$ is *continuous* if for every open set $U \subseteq X$ the set $\alpha^{-1}[U] = \{x \in X : \exists y \in U \ (x, y) \in \alpha\}$ is also open.

Lemma

The relation $|_R$ is a continuous extension of | to βN .

Theorem (HS)

N^* is an ideal of βN .

For $n \in N$ and $p \in \beta N$, $n \mid_L p$ iff $n \mid_R p$ iff $n \mid_M p$, so we write only $n \mid p$.

Lemma

```
If n \in N, n \mid p if and only if nN \in p.
```

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

イロト イヨト イヨト イヨト

Theorem (HS)

 N^* is an ideal of βN .

For $n \in N$ and $p \in \beta N$, $n \mid_L p$ iff $n \mid_R p$ iff $n \mid_M p$, so we write only $n \mid p$.

Lemma

```
If n \in N, n \mid p if and only if nN \in p.
```

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

イロト イヨト イヨト イヨト

Theorem (HS)

 N^* is an ideal of βN .

For $n \in N$ and $p \in \beta N$, $n \mid_L p$ iff $n \mid_R p$ iff $n \mid_M p$, so we write only $n \mid p$.

Lemma

If $n \in N$, $n \mid p$ if and only if $nN \in p$.

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Theorem (HS)

 N^* is an ideal of βN .

For $n \in N$ and $p \in \beta N$, $n \mid_L p$ iff $n \mid_R p$ iff $n \mid_M p$, so we write only $n \mid p$.

Lemma

If $n \in N$, $n \mid p$ if and only if $nN \in p$.

Theorem

Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

(日) (周) (日) (日)

An element $p \in \beta N$ is *irreducible* in $X \subseteq \beta N$ if it can not be represented in the form p = xy for $x, y \in X \setminus \{1\}$. $p \in \beta N$ is *prime* if $p \mid_R xy$ for $x, y \in \beta N$ implies $p \mid_R x$ or $p \mid_R y$.

Lemma

If $n \in N$ is a prime number and $n \mid xy$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P = \{n \in N : n \text{ is prime}\}$

Lemma

If $p \in \beta N$ and $P \in p$, then p is irreducible in βN .

The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

An element $p \in \beta N$ is *irreducible* in $X \subseteq \beta N$ if it can not be represented in the form p = xy for $x, y \in X \setminus \{1\}$. $p \in \beta N$ is *prime* if $p \mid_R xy$ for $x, y \in \beta N$ implies $p \mid_R x$ or $p \mid_R y$.

Lemma

If $n \in N$ is a prime number and $n \mid xy$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P = \{n \in N : n \text{ is prime}\}$

Lemma

If $p \in \beta N$ and $P \in p$, then p is irreducible in βN .

The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

イロト イヨト イヨト イヨト

An element $p \in \beta N$ is *irreducible* in $X \subseteq \beta N$ if it can not be represented in the form p = xy for $x, y \in X \setminus \{1\}$. $p \in \beta N$ is *prime* if $p \mid_R xy$ for $x, y \in \beta N$ implies $p \mid_R x$ or $p \mid_R y$.

Lemma

If $n \in N$ is a prime number and $n \mid xy$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P = \{n \in N : n \text{ is prime}\}$

Lemma

If $p \in \beta N$ and $P \in p$, then p is irreducible in βN .

The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

イロト イヨト イヨト イヨト

An element $p \in \beta N$ is *irreducible* in $X \subseteq \beta N$ if it can not be represented in the form p = xy for $x, y \in X \setminus \{1\}$. $p \in \beta N$ is *prime* if $p \mid_R xy$ for $x, y \in \beta N$ implies $p \mid_R x$ or $p \mid_R y$.

Lemma

If $n \in N$ is a prime number and $n \mid xy$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P = \{n \in N : n \text{ is prime}\}$

Lemma

If $p \in \beta N$ and $P \in p$, then p is irreducible in βN .

The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

8 / 12

An element $p \in \beta N$ is *irreducible* in $X \subseteq \beta N$ if it can not be represented in the form p = xy for $x, y \in X \setminus \{1\}$. $p \in \beta N$ is *prime* if $p \mid_R xy$ for $x, y \in \beta N$ implies $p \mid_R x$ or $p \mid_R y$.

Lemma

If $n \in N$ is a prime number and $n \mid xy$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P = \{n \in N : n \text{ is prime}\}$

Lemma

If $p \in \beta N$ and $P \in p$, then p is irreducible in βN .

The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

8 / 12

(日) (周) (日) (日)

Prime and irreducible elements (continued)

Theorem (HS)

 N^*N^* is nowhere dense in N^* , i.e. for every $A \in [N]^{\aleph_0}$ there is $B \in [A]^{\aleph_0}$ such that all elements of \overline{B} are irreducible in N^* .

 $K(\beta N)$ - the smallest ideal of βN

Theorem (HS)

The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$ for all $q \in \beta N$ (iii) $p \in pq\beta N$ for all $q \in \beta N$.

Prime and irreducible elements (continued)

Theorem (HS)

 N^*N^* is nowhere dense in N^* , i.e. for every $A \in [N]^{\aleph_0}$ there is $B \in [A]^{\aleph_0}$ such that all elements of \overline{B} are irreducible in N^* .

 $K(\beta N)$ - the smallest ideal of βN

Theorem (HS)

The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$ for all $q \in \beta N$ (iii) $p \in pq\beta N$ for all $q \in \beta N$.

Prime and irreducible elements (continued)

Theorem (HS)

 N^*N^* is nowhere dense in N^* , i.e. for every $A \in [N]^{\aleph_0}$ there is $B \in [A]^{\aleph_0}$ such that all elements of \overline{B} are irreducible in N^* .

 $K(\beta N)$ - the smallest ideal of βN

Theorem (HS)

The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$ for all $q \in \beta N$ (iii) $p \in pq\beta N$ for all $q \in \beta N$.

9 / 12

- 4 回 5 - 4 三 5 - 4 三 5

Theorem (HS) If $n \in N$ and $p, q \in \beta N$, then np = nq implies p = q.

Theorem (HS) If $m, n \in N$ and $p \in \beta N$, then mp = np implies m = n

Theorem (Blass, Hindman)

 $p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A = \{x \in N : B | x \in p\}.$

Theorem (Blass, Hindman)

The set of right cancelable elements contains an dense open subset of N^* , i.e. for every $U \in [N]^{\aleph_0}$ there is $V \in [U]^{\aleph_0}$ such that all $p \in \overline{V}$ are right cancelable.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

Theorem (HS) If $n \in N$ and $p, q \in \beta N$, then np = nq implies p = q.

Theorem (HS) If $m, n \in N$ and $p \in \beta N$, then mp = np implies m = n.

Theorem (Blass, Hindman)

 $p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A = \{x \in N : B | x \in p\}.$

Theorem (Blass, Hindman)

The set of right cancelable elements contains an dense open subset of N^* , i.e. for every $U \in [N]^{\aleph_0}$ there is $V \in [U]^{\aleph_0}$ such that all $p \in \overline{V}$ are right cancelable.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

Theorem (HS) If $n \in N$ and $p, q \in \beta N$, then np = nq implies p = q.

Theorem (HS) If $m, n \in N$ and $p \in \beta N$, then mp = np implies m = n.

Theorem (Blass, Hindman)

 $p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A = \{x \in N : B | x \in p\}.$

Theorem (Blass, Hindman)

The set of right cancelable elements contains an dense open subset of N^* , i.e. for every $U \in [N]^{\aleph_0}$ there is $V \in [U]^{\aleph_0}$ such that all $p \in \overline{V}$ are right cancelable.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

August 19th 2014

Theorem (HS) If $n \in N$ and $p, q \in \beta N$, then np = nq implies p = q.

Theorem (HS) If $m, n \in N$ and $p \in \beta N$, then mp = np implies m = n.

Theorem (Blass, Hindman)

 $p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A = \{x \in N : B/x \in p\}.$

Theorem (Blass, Hindman)

The set of right cancelable elements contains an dense open subset of N^* , i.e. for every $U \in [N]^{\aleph_0}$ there is $V \in [U]^{\aleph_0}$ such that all $p \in \overline{V}$ are right cancelable.

Let E_L be the symmetric closure of $|_L$.

Theorem (HS)

Each of the connected components of the graph $(\beta N, E_L)$ is nowhere dense in βN .

Definition

(a) $p \mid_{LN} q$ if there is $n \in N$ such that $p \mid_L nq$ (b) $p =_{LN} q$ if $p \mid_{LN} q$ and $q \mid_{LN} p$.

Lemma

For every $q \in \beta N$ the set $q \downarrow = \{ [p]_{=_{LN}} : p \mid_{LN} q \}$ is linearly ordered.

Let E_L be the symmetric closure of $|_L$.

Theorem (HS)

Each of the connected components of the graph $(\beta N, E_L)$ is nowhere dense in βN .

Definition

(a) $p \mid_{LN} q$ if there is $n \in N$ such that $p \mid_L nq$ (b) $p =_{LN} q$ if $p \mid_{LN} q$ and $q \mid_{LN} p$.

Lemma

For every $q \in \beta N$ the set $q \downarrow = \{ [p]_{=_{LN}} : p \mid_{LN} q \}$ is linearly ordered.

Let E_L be the symmetric closure of $|_L$.

Theorem (HS)

Each of the connected components of the graph $(\beta N, E_L)$ is nowhere dense in βN .

Definition

(a) $p \mid_{LN} q$ if there is $n \in N$ such that $p \mid_L nq$ (b) $p =_{LN} q$ if $p \mid_{LN} q$ and $q \mid_{LN} p$.

Lemma

For every $q \in \beta N$ the set $q \downarrow = \{ [p]_{=_{LN}} : p \mid_{LN} q \}$ is linearly ordered.

Let E_L be the symmetric closure of $|_L$.

Theorem (HS)

Each of the connected components of the graph $(\beta N, E_L)$ is nowhere dense in βN .

Definition

(a) $p \mid_{LN} q$ if there is $n \in N$ such that $p \mid_L nq$ (b) $p =_{LN} q$ if $p \mid_{LN} q$ and $q \mid_{LN} p$.

Lemma

For every $q \in \beta N$ the set $q \downarrow = \{ [p]_{=_{LN}} : p \mid_{LN} q \}$ is linearly ordered.

Equivalent conditions for divisibility

For
$$p \in \beta N$$
:
 $C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}$
 $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$

Theorem

The following conditions are equivalent: (i) $p \mid_L q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Conjecture: the following conditions are equivalent: (i) $p \mid_R q$; (ii) $D(p) \subseteq q$; (iii) $D(p) \subseteq D(q)$.

Equivalent conditions for divisibility

For $p \in \beta N$: $C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}$ $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$

Theorem

The following conditions are equivalent: (i) $p \mid_L q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Conjecture: the following conditions are equivalent: (i) $p \mid_R q$; (ii) $D(p) \subseteq q$; (iii) $D(p) \subseteq D(q)$.

Boris Šobot (Novi Sad)

NUMBER THEORY IN βN

 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ▲ □ ▶
 ■ ■ □ ▶
 ▲ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶
 ■ ■ □ ▶</t

Equivalent conditions for divisibility

For $p \in \beta N$: $C(p) = \{A \subseteq N : \forall n \in N \ A/n \in p\}$ $D(p) = \{A \subseteq N : \{n \in N : A/n = N\} \in p\}$

Theorem

The following conditions are equivalent: (i) $p \mid_L q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Conjecture: the following conditions are equivalent: (i) $p \mid_R q$; (ii) $D(p) \subseteq q$; (iii) $D(p) \subseteq D(q)$.