NUMBER THEORY IN THE STONE-ČECH COMPACTIFICATION

Boris Šobot

Department of Mathematics and Informatics, Faculty of Science, Novi Sad
SetTop 2014

The Stone-Čech compactification

S - discrete topological space

βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$

If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function
$f: S \rightarrow C$ can be extended uniquely to $f: \beta S \rightarrow C$
In particular, every function $f: S \rightarrow S$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow \beta S$

The Stone-Čech compactification

S - discrete topological space βS - the set of ultrafilters on S

Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$

If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function
$f: S \rightarrow C$ can be extended uniquely to $f: \beta S \rightarrow C$
In particular, every function $f: S \rightarrow S$ can be extended uniquely to

The Stone-Čech compactification

S - discrete topological space
βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$
$S^{*}=\beta S \backslash S$
If $A \in[S]^{* 0}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function $f: S \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow C$ In particular, every function $f: S \rightarrow S$ can be extended uniquely to

The Stone-Čech compactification

S - discrete topological space βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$

If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function
$f: S \rightarrow C$ can be extended uniquely to $f: \beta S \rightarrow C$
In particular, every function $f: S \rightarrow S$ can be extended uniquely to

The Stone-Čech compactification

S - discrete topological space
βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$

$$
S^{*}=\beta S \backslash S
$$

The Stone-Čech compactification

S - discrete topological space
βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$
$S^{*}=\beta S \backslash S$
If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function
$f: S \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow C$
In particular, every function $f: S \rightarrow S$ can be extended uniquely to

The Stone-Čech compactification

S - discrete topological space
βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$
$S^{*}=\beta S \backslash S$
If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function $f: S \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow C$

The Stone-Čech compactification

S - discrete topological space
βS - the set of ultrafilters on S
Base sets: $\bar{A}=\{p \in \beta S: A \in p\}$ for $A \subseteq S$
Principal ultrafilters $\{A \subseteq S: n \in A\}$ are identified with respective elements $n \in S$
$S^{*}=\beta S \backslash S$
If $A \in[S]^{\aleph_{0}}$ we think of βA as a subspace of βS
If C is a compact topological space, every (continuous) function $f: S \rightarrow C$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow C$
In particular, every function $f: S \rightarrow S$ can be extended uniquely to $\tilde{f}: \beta S \rightarrow \beta S$

Algebra in the Stone-Čech compactification

(S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$
A / n=\{m \in S: m n \in A\}
$$

The semigroup operation can be extended to βS as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in S: A / n \in q\} \in p .
$$

Theorem (HS)
(a) $(\beta S \cdot)$ is a semigroup.
(b) If $S=N$, the algebraic center $\{p \in \beta N: \forall x \in \beta N p x=x p\}$ of
$(\beta N, \cdot)$ is N.
[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Algebra in the Stone-Čech compactification

(S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$
A / n=\{m \in S: m n \in A\}
$$

The semigroup operation can be extended to βS as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in S: A / n \in q\} \in p .
$$

Theorem (HS)
(a) ($\beta S . \cdot$) is a semigroup.
(b) If $S=N$, the algebraic center $\{p \in \beta N: \forall x \in \beta N p x=x p\}$ of
$(\beta N, \cdot)$ is N.
[HS] Tindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

Algebra in the Stone-Čech compactification

(S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$
A / n=\{m \in S: m n \in A\}
$$

The semigroup operation can be extended to βS as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in S: A / n \in q\} \in p
$$

Theorem (HS)
(a) $(\beta S . \cdot)$ is a semigroup.
(b) If $S=N$, the algebraic center $\{p \in \beta N: \forall x \in \beta N p x=x p\}$ of
[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification,
theory and applications

Algebra in the Stone-Čech compactification

(S, \cdot) - a semigroup provided with discrete topology
For $A \subseteq S$ and $n \in S$:

$$
A / n=\{m \in S: m n \in A\}
$$

The semigroup operation can be extended to βS as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in S: A / n \in q\} \in p
$$

Theorem (HS)
(a) $(\beta S, \cdot)$ is a semigroup.
(b) If $S=N$, the algebraic center $\{p \in \beta N: \forall x \in \beta N p x=x p\}$ of $(\beta N, \cdot)$ is N.
[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification,
theory and applications

Algebra in the Stone-Čech compactification

(S, \cdot) - a semigroup provided with discrete topology For $A \subseteq S$ and $n \in S$:

$$
A / n=\{m \in S: m n \in A\}
$$

The semigroup operation can be extended to βS as follows:

$$
A \in p \cdot q \Leftrightarrow\{n \in S: A / n \in q\} \in p
$$

Theorem (HS)
(a) $(\beta S, \cdot)$ is a semigroup.
(b) If $S=N$, the algebraic center $\{p \in \beta N: \forall x \in \beta N p x=x p\}$ of $(\beta N, \cdot)$ is N.
[HS] Hindman, Strauss: Algebra in the Stone-Čech compactification, theory and applications

The natural numbers

```
The idea: work with S=N and translate problems in number theory
to (\betaN,.)
```

Example
Problem: are there infinitely many perfect numbers?
$n \in N$ is perfect if $\sigma(n)=2 n$, where $\sigma(n)$ is the sum of positive
divisors of n.
If the answer is "yes", then there is $p \in N^{*}$ such that
$\{n \in N: \sigma(n)=2 n\} \in p$, so $\tilde{\sigma}(p)=2 p$.

The natural numbers

The idea: work with $S=N$ and translate problems in number theory to $(\beta N, \cdot)$

Example
Problem: are there infinitely many perfect numbers?
$n \in N$ is perfect if $\sigma(n)=2 n$, where $\sigma(n)$ is the sum of positive
divisors of n.
If the answer is "yes", then there is $p \in N^{*}$ such that
$\{n \in N: \sigma(n)=2 n\} \in p$, so $\tilde{\sigma}(p)=2 p$.

The natural numbers

The idea: work with $S=N$ and translate problems in number theory to $(\beta N, \cdot)$

Example
Problem: are there infinitely many perfect numbers?
$n \in N$ is perfect if $\sigma(n)=2 n$, where $\sigma(n)$ is the sum of positive divisors of n.
If the answer is "yes", then there is $p \in N^{*}$ such that
$\{n \in N: \sigma(n)=2 n\} \in p$, so $\tilde{\sigma}(p)=2 p$.

The natural numbers

The idea: work with $S=N$ and translate problems in number theory to $(\beta N, \cdot)$

Example
Problem: are there infinitely many perfect numbers?
$n \in N$ is perfect if $\sigma(n)=2 n$, where $\sigma(n)$ is the sum of positive divisors of n.
If the answer is "yes", then there is $p \in N^{*}$ such that
$\{n \in N: \sigma(n)=2 n\} \in p$, so $\tilde{\sigma}(p)=2 p$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.

Clearly, $\left.\left.\right|_{L} \subseteq\right|_{M}$ and $\left.\left.\right|_{R} \subseteq\right|_{M}$.

Extensions of the divisibility relation

Definition

Let $p, q \in \beta N$.
(a) q is left-divisible by $p,\left.p\right|_{L} q$, if there is $r \in \beta N$ such that $q=r p$.
(b) q is right-divisible by $p,\left.p\right|_{R} q$, if there is $r \in \beta N$ such that $q=p r$.
(c) q is mid-divisible by $p,\left.p\right|_{M} q$, if there are $r, s \in \beta N$ such that $q=r p s$.

Clearly, $\left.\left.\right|_{L} \subseteq\right|_{M}$ and $\left.\left.\right|_{R \subseteq} \subseteq\right|_{M}$.
Lemma
No two of the relations $\left.\right|_{L},\left.\right|_{R}$ and $\left.\right|_{M}$ are the same.

Continuity of $\left.\right|_{R}$

$$
\begin{aligned}
& \text { A binary relation } \alpha \subseteq X^{2} \text { is continuous if for every open set } U \subseteq X \text { the } \\
& \text { set } \alpha^{-1}[U]=\{x \in X: \exists y \in U(x, y) \in \alpha\} \text { is also open. }
\end{aligned}
$$

Lemma

The relation $\left.\right|_{R}$ is a continuous extension of \mid to βN.

Continuity of $\left.\right|_{R}$

A binary relation $\alpha \subseteq X^{2}$ is continuous if for every open set $U \subseteq X$ the set $\alpha^{-1}[U]=\{x \in X: \exists y \in U(x, y) \in \alpha\}$ is also open.

Lemma
The relation $\left.\right|_{R}$ is a continuous extension of \mid to βN.

Divisibility by elements of N

Theorem (HS)

N^{*} is an ideal of βN.
For $n \in N$ and $p \in \beta N,\left.n\right|_{L} p$ iff $\left.n\right|_{R} p$ iff $\left.n\right|_{M} p$, so we write only $n \mid p$.

Lemma
If $n \in N, n \mid p$ if and only if $n N \in p$.

Theorem
Let $A \subseteq N$ be downward closed for \mid and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility by elements of N

Theorem (HS)
N^{*} is an ideal of βN.
For $n \in N$ and $p \in \beta N,\left.n\right|_{L} p$ iff $\left.n\right|_{R} p$ iff $\left.n\right|_{M} p$, so we write only $n \mid p$.

Lemma

Theorem
Let $A \subseteq N$ be downward closed for | and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Divisibility by elements of N

Theorem (HS)
N^{*} is an ideal of βN.
For $n \in N$ and $p \in \beta N,\left.n\right|_{L} p$ iff $\left.n\right|_{R} p$ iff $\left.n\right|_{M} p$, so we write only $n \mid p$.

Lemma
If $n \in N, n \mid p$ if and only if $n N \in p$.

Divisibility by elements of N

Theorem (HS)
N^{*} is an ideal of βN.
For $n \in N$ and $p \in \beta N,\left.n\right|_{L} p$ iff $\left.n\right|_{R} p$ iff $\left.n\right|_{M} p$, so we write only $n \mid p$.

Lemma
If $n \in N, n \mid p$ if and only if $n N \in p$.

Theorem

Let $A \subseteq N$ be downward closed for \mid and closed for the operation of least common multiple. Then there is $x \in \beta N$ divisible by all $n \in A$, and not divisible by any $n \notin A$.

Prime and irreducible elements

An element $p \in \beta N$ is irreducible in $X \subseteq \beta N$ if it can not be represented in the form $p=x y$ for $x, y \in X \backslash\{1\}$. $p \in \beta N$ is prime if $\left.p\right|_{R} x y$ for $x, y \in \beta N$ implies $\left.p\right|_{R} x$ or $\left.p\right|_{R} y$.
\square

Prime and irreducible elements

An element $p \in \beta N$ is irreducible in $X \subseteq \beta N$ if it can not be represented in the form $p=x y$ for $x, y \in X \backslash\{1\}$. $p \in \beta N$ is prime if $\left.p\right|_{R} x y$ for $x, y \in \beta N$ implies $\left.p\right|_{R} x$ or $\left.p\right|_{R} y$.

Lemma
If $n \in N$ is a prime number and $n \mid x y$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P=\{n \in N: n$ is prime $\}$

Prime and irreducible elements

An element $p \in \beta N$ is irreducible in $X \subseteq \beta N$ if it can not be represented in the form $p=x y$ for $x, y \in X \backslash\{1\}$.
$p \in \beta N$ is prime if $\left.p\right|_{R} x y$ for $x, y \in \beta N$ implies $\left.p\right|_{R} x$ or $\left.p\right|_{R} y$.
Lemma
If $n \in N$ is a prime number and $n \mid x y$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P=\{n \in N: n$ is prime $\}$

Prime and irreducible elements

An element $p \in \beta N$ is irreducible in $X \subseteq \beta N$ if it can not be represented in the form $p=x y$ for $x, y \in X \backslash\{1\}$.
$p \in \beta N$ is prime if $\left.p\right|_{R} x y$ for $x, y \in \beta N$ implies $\left.p\right|_{R} x$ or $\left.p\right|_{R} y$.
Lemma
If $n \in N$ is a prime number and $n \mid x y$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P=\{n \in N: n$ is prime $\}$
Lemma
If $p \in \beta N$ and $P \in p$, then p is irreducible in βN.

Prime and irreducible elements

An element $p \in \beta N$ is irreducible in $X \subseteq \beta N$ if it can not be represented in the form $p=x y$ for $x, y \in X \backslash\{1\}$.
$p \in \beta N$ is prime if $\left.p\right|_{R} x y$ for $x, y \in \beta N$ implies $\left.p\right|_{R} x$ or $\left.p\right|_{R} y$.
Lemma
If $n \in N$ is a prime number and $n \mid x y$ for some $x, y \in \beta N$, then $n \mid x$ or $n \mid y$.

Let $P=\{n \in N: n$ is prime $\}$
Lemma
If $p \in \beta N$ and $P \in p$, then p is irreducible in βN.
The reverse is not true: there is $p \in \beta N$ irreducible in βN such that $P \notin p$.

Prime and irreducible elements (continued)

Theorem (HS)
$N^{*} N^{*}$ is nowhere dense in N^{*}, i.e. for every $A \in[N]^{\aleph_{0}}$ there is $B \in[A]^{\aleph_{0}}$ such that all elements of \bar{B} are irreducible in N^{*}.

Theorem (HS)
The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$ for all $q \in \beta N$ (iii) $p \in p q \beta N$ for all $q \in \beta N$.

Prime and irreducible elements (continued)

Theorem (HS)
$N^{*} N^{*}$ is nowhere dense in N^{*}, i.e. for every $A \in[N]^{\aleph_{0}}$ there is $B \in[A]^{\aleph_{0}}$ such that all elements of \bar{B} are irreducible in N^{*}.
$K(\beta N)$ - the smallest ideal of βN
Theorem (HS)
The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$

Prime and irreducible elements (continued)

Theorem (HS)
$N^{*} N^{*}$ is nowhere dense in N^{*}, i.e. for every $A \in[N]^{\aleph_{0}}$ there is $B \in[A]^{\aleph_{0}}$ such that all elements of \bar{B} are irreducible in N^{*}.
$K(\beta N)$ - the smallest ideal of βN
Theorem (HS)
The following conditions are equivalent: (i) $p \in K(\beta N)$ (ii) $p \in \beta N q p$ for all $q \in \beta N$ (iii) $p \in p q \beta N$ for all $q \in \beta N$.

Cancelation laws

Theorem (HS)
If $n \in N$ and $p, q \in \beta N$, then $n p=n q$ implies $p=q$.

Theorem (Blass, Hindman)
$p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A=\{x \in N: B / x \in p\}$.

The set of right cancelable elements contains an dense open subset of N^{*}, i.e. for every $U \in[N]^{\aleph_{0}}$ there is $V \in[U]^{\aleph_{0}}$ such that all $p \in \bar{V}$ are right cancelable.

Cancelation laws

Theorem (HS)
If $n \in N$ and $p, q \in \beta N$, then $n p=n q$ implies $p=q$.
Theorem (HS)
If $m, n \in N$ and $p \in \beta N$, then $m p=n p$ implies $m=n$.

The set of right cancelable elements contains an dense open subset of N^{*}, i.e. for every $U \in[N]^{\aleph_{0}}$ there is $V \in[U]^{\aleph_{0}}$ such that all $p \in \bar{V}$ are right cancelable.

Cancelation laws

Theorem (HS)
If $n \in N$ and $p, q \in \beta N$, then $n p=n q$ implies $p=q$.
Theorem (HS)
If $m, n \in N$ and $p \in \beta N$, then $m p=n p$ implies $m=n$.
Theorem (Blass, Hindman)
$p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A=\{x \in N: B / x \in p\}$.

Cancelation laws

Theorem (HS)
If $n \in N$ and $p, q \in \beta N$, then $n p=n q$ implies $p=q$.
Theorem (HS)
If $m, n \in N$ and $p \in \beta N$, then $m p=n p$ implies $m=n$.
Theorem (Blass, Hindman)
$p \in \beta N$ is right cancelable if and only if for every $A \subseteq N$ there is $B \subseteq A$ such that $A=\{x \in N: B / x \in p\}$.

Theorem (Blass, Hindman)
The set of right cancelable elements contains an dense open subset of N^{*}, i.e. for every $U \in[N]^{\aleph_{0}}$ there is $V \in[U]^{\aleph_{0}}$ such that all $p \in \bar{V}$ are right cancelable.

More on $\left.\right|_{L}$

Let E_{L} be the symmetric closure of $\left.\right|_{L}$.
Theorem (HS)
Each of the connected components of the graph $\left(\beta N, E_{L}\right)$ is nowhere dense in βN.

Definition
(a) $\left.n\right|_{I N} q$ if there is $n \in N$ such that $\left.p\right|_{L n q}$
(b) $p=_{L N} q$ if $\left.p\right|_{L N} q$ and $\left.q\right|_{L N} p$.

Lemma
For every $q \in \beta N$ the set $q \downarrow=\left\{[p]_{L_{N}}:\left.p\right|_{L N} q\right\}$ is linearly ordered.

More on $\left.\right|_{L}$

Let E_{L} be the symmetric closure of $\left.\right|_{L}$.
Theorem (HS)
Each of the connected components of the graph $\left(\beta N, E_{L}\right)$ is nowhere dense in βN.

Definition

Lemma
For every $q \in \beta N$ the set $q \downarrow=\left\{[p]_{L_{N N}}:\left.p\right|_{L N} q\right\}$ is linearly ordered.

More on $\left.\right|_{L}$

Let E_{L} be the symmetric closure of $\left.\right|_{L}$.
Theorem (HS)
Each of the connected components of the graph $\left(\beta N, E_{L}\right)$ is nowhere dense in βN.

Definition

(a) $\left.p\right|_{L N} q$ if there is $n \in N$ such that $\left.p\right|_{L} n q$
(b) $p=_{L N} q$ if $\left.p\right|_{L N} q$ and $\left.q\right|_{L N} p$.

Lemma
For every $q \in \beta N$ the set $q \downarrow=\left\{[p]_{=_{L N}}:\left.p\right|_{L N} q\right\}$ is linearly ordered.

More on $\left.\right|_{L}$

Let E_{L} be the symmetric closure of $\left.\right|_{L}$.
Theorem (HS)
Each of the connected components of the graph $\left(\beta N, E_{L}\right)$ is nowhere dense in βN.

Definition

(a) $\left.p\right|_{L N} q$ if there is $n \in N$ such that $\left.p\right|_{L} n q$
(b) $p=_{L N} q$ if $\left.p\right|_{L N} q$ and $\left.q\right|_{L N} p$.

Lemma
For every $q \in \beta N$ the set $q \downarrow=\left\{[p]_{=_{L N}}:\left.p\right|_{L N} q\right\}$ is linearly ordered.

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$ $D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$

Theorem
The following conditions are equivalent: (i) $\left.p\right|_{L} q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Conjecture: the following conditions are equivalent: (i) $\left.p\right|_{R} q$; (ii) $D(p) \subseteq q ; ~($ iii $) D(p) \subseteq D(q)$.

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$
Theorem
The following conditions are equivalent: (i) $\left.p\right|_{L} q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Equivalent conditions for divisibility

For $p \in \beta N$:
$C(p)=\{A \subseteq N: \forall n \in N A / n \in p\}$
$D(p)=\{A \subseteq N:\{n \in N: A / n=N\} \in p\}$
Theorem
The following conditions are equivalent: (i) $\left.p\right|_{L} q$; (ii) $C(p) \subseteq q$; (iii) $C(p) \subseteq C(q)$.

Conjecture: the following conditions are equivalent: (i) $\left.p\right|_{R} q$; (ii) $D(p) \subseteq q ; ~($ iii $) D(p) \subseteq D(q)$.

