Group actions on Polish spaces

Robert Rałowski and Szymon Żeberski

 $SE \models OP$, Novi Sad, 2014

(G, \cdot) be any uncountable Polish group, X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ -ideal with a Borel base and
- I contains all singletons and
- I translation invariant.

(X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

(G, \cdot) be any uncountable Polish group, X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

• I is σ -ideal with a Borel base and

- I contains all singletons and
- I translation invariant.

(X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

(G, \cdot) be any uncountable Polish group, X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons and
- I translation invariant.

(X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

- (G, \cdot) be any uncountable Polish group, X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t
 - I is σ-ideal with a Borel base and
 - I contains all singletons and
 - I translation invariant.
- (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. Perf(X) stands for set of all perfect subsets of X

- (G, \cdot) be any uncountable Polish group, X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t
 - I is σ-ideal with a Borel base and
 - I contains all singletons and
 - I translation invariant.

(X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal.

$$non(I) = min\{|A| : A \subset X \land A \notin I\}$$
$$cov(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land \bigcup \mathscr{A} = X\}$$
$$cov_h(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$

 $\mathcal{N} \ \sigma$ -ideal of null sets and $\mathcal{M} \ \sigma$ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal.

$$non(I) = min\{|A| : A \subset X \land A \notin I\}$$
$$cov(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land \bigcup \mathscr{A} = X\}$$
$$cov_h(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) A \subseteq B\}$$

 $\mathcal{N} \ \sigma$ -ideal of null sets and $\mathcal{M} \ \sigma$ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Definition

Let (X, I) be Polish ideal space. Assume that $C \subseteq D \subseteq X$. We say that C is completely I-nonmeasurable in D iff

 $(\forall B \in \mathscr{B}^+_I(X)) (B \cap D \notin I \to (B \cap C \notin I \land B \cap (D \setminus C) \notin I)).$

Definition (Group action)

We say that (G, \cdot) acts on Polish space X if

- 1. $(\forall x \in X)ex = x$,
- 2. $(\forall x \in X)(\forall g, h \in G) \ (gh)x = g(hx)$

Definition (Orbit)

Let G acts on X and $A \subset X$ then

$$GA = \{gx \in X : (g, x) \in G \times A\}$$

is called an orbit of the set A by the group G and whenever $A = \{x\}$ is singleton then we will write Gx instead of $G\{x\}$ for convenience.

Definition

Let (X, I) be Polish ideal space. Assume that $C \subseteq D \subseteq X$. We say that C is completely I-nonmeasurable in D iff

 $(\forall B \in \mathscr{B}^+_I(X)) (B \cap D \notin I \to (B \cap C \notin I \land B \cap (D \setminus C) \notin I)).$

Definition (Group action)

We say that (G, \cdot) acts on Polish space X if

1.
$$(\forall x \in X)ex = x$$
,

2. $(\forall x \in X)(\forall g, h \in G) \ (gh)x = g(hx)$

Definition (Orbit)

Let G acts on X and $A \subset X$ then

$$GA = \{gx \in X : (g, x) \in G \times A\}$$

is called an orbit of the set A by the group G and whenever $A = \{x\}$ is singleton then we will write Gx instead of $G\{x\}$ for convenience.

Definition

Let (X, I) be Polish ideal space. Assume that $C \subseteq D \subseteq X$. We say that C is completely I-nonmeasurable in D iff

 $(\forall B \in \mathscr{B}^+_I(X)) (B \cap D \notin I \to (B \cap C \notin I \land B \cap (D \setminus C) \notin I)).$

Definition (Group action)

We say that (G, \cdot) acts on Polish space X if

1.
$$(\forall x \in X)ex = x,$$

2. $(\forall x \in X)(\forall g, h \in G) (gh)x = g(hx)$

Definition (Orbit)

Let G acts on X and $A \subset X$ then

$$GA = \{gx \in X : (g, x) \in G \times A\}$$

is called an orbit of the set A by the group G and whenever $A = \{x\}$ is singleton then we will write Gx instead of $G\{x\}$ for convenience.

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X.

Let

 $(\forall B \in \mathscr{B}_{I}^{+}(X)) \operatorname{cof}(I) \leq |\{Gb : b \in B\}|.$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X. Let

$(\forall B \in \mathscr{B}^+_I(X)) \ cof(I) \leq |\{Gb: \ b \in B\}|.$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X.

Let

$$(\forall B \in \mathscr{B}^+_I(X)) \ cof(I) \leq |\{Gb: \ b \in B\}|.$$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X.

Let

$$(\forall B \in \mathscr{B}^+_I(X)) \ cof(I) \leq |\{Gb: \ b \in B\}|.$$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X.

Let

$$(\forall B \in \mathscr{B}^+_I(X)) \ cof(I) \leq |\{Gb: \ b \in B\}|.$$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) be any Polish group acting on X.

Let

$$(\forall B \in \mathscr{B}^+_I(X)) \ cof(I) \leq |\{Gb: \ b \in B\}|.$$

Then there exists $H \leq G$ and $A \subset X$ such that A and HA are completely I-nonmeasurable subsets of X. Moreover if (G, J) is a Polish ideal space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

$$|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$$

Let us enumerate bases $\mathscr{B}_G = \{C_\alpha : \alpha < \lambda\}$ and $\mathscr{B}_X = \{B_\alpha : \alpha < \lambda\}$ where $\lambda \le |\{Gb : b \in B\}|$. Build transfinite sequence:

$\langle (a_{\xi}, d_{\xi}, h_{\xi}, c_{\xi}) \in B_{\xi} \times B_{\xi} \times C_{\xi} \times C_{\xi} : \xi < \lambda \rangle$

with the following conditions:

1. the collection of orbits $\{Ga_{\xi} : \xi < \lambda\} \cup \{Gd_{\xi} : \xi < \lambda\}$ is pairwise disjoint,

2. $\langle h_{\xi} : \xi < \lambda \rangle_G \cap \{ c_{\xi} : \xi < \lambda \} = \emptyset.$

Let us enumerate bases $\mathscr{B}_G = \{C_\alpha : \alpha < \lambda\}$ and $\mathscr{B}_X = \{B_\alpha : \alpha < \lambda\}$ where $\lambda \leq |\{Gb : b \in B\}|$. Build transfinite sequence:

$$\langle (a_{\xi}, d_{\xi}, h_{\xi}, c_{\xi}) \in B_{\xi} \times B_{\xi} \times C_{\xi} \times C_{\xi} : \xi < \lambda \rangle$$

with the following conditions:

1. the collection of orbits $\{Ga_{\xi} : \xi < \lambda\} \cup \{Gd_{\xi} : \xi < \lambda\}$ is pairwise disjoint,

2. $\langle h_{\xi} : \xi < \lambda \rangle_G \cap \{ c_{\xi} : \xi < \lambda \} = \emptyset.$

Let us enumerate bases $\mathscr{B}_G = \{C_\alpha : \alpha < \lambda\}$ and $\mathscr{B}_X = \{B_\alpha : \alpha < \lambda\}$ where $\lambda \le |\{Gb : b \in B\}|$. Build transfinite sequence:

$$\langle (a_{\xi}, d_{\xi}, h_{\xi}, c_{\xi}) \in B_{\xi} \times B_{\xi} \times C_{\xi} \times C_{\xi} : \xi < \lambda \rangle$$

with the following conditions:

1. the collection of orbits $\{Ga_{\xi} : \xi < \lambda\} \cup \{Gd_{\xi} : \xi < \lambda\}$ is pairwise disjoint,

2.
$$\langle h_{\xi} : \xi < \lambda \rangle_G \cap \{ c_{\xi} : \xi < \lambda \} = \emptyset.$$

Let us enumerate bases $\mathscr{B}_G = \{C_\alpha : \alpha < \lambda\}$ and $\mathscr{B}_X = \{B_\alpha : \alpha < \lambda\}$ where $\lambda \le |\{Gb : b \in B\}|$. Build transfinite sequence:

$$\langle (a_{\xi}, d_{\xi}, h_{\xi}, c_{\xi}) \in B_{\xi} \times B_{\xi} \times C_{\xi} \times C_{\xi} : \xi < \lambda \rangle$$

with the following conditions:

1. the collection of orbits $\{Ga_{\xi} : \xi < \lambda\} \cup \{Gd_{\xi} : \xi < \lambda\}$ is pairwise disjoint,

2.
$$\langle h_{\xi}: \xi < \lambda \rangle_{G} \cap \{c_{\xi}: \xi < \lambda\} = \emptyset.$$

$\alpha < \lambda$ step

By assumption

$$(\forall B \in \mathscr{B}^+_I(X)) \operatorname{cof}(I) \leq |\{Gb : b \in B\}|.$$

we can find

$$a_{\alpha}, d_{\alpha} \in B_{\alpha} \setminus \bigcup (\{Ga_{\xi} : \xi < \alpha\} \cup \{Gd_{\xi} : \xi < \alpha\})$$

and $h_{\alpha} \in C_{\alpha} \setminus \langle h_{\xi} : \xi < \alpha \rangle_{G}$ because $|\langle Z \rangle_{G}| \leq \aleph_{0} \cdot |Z|$ for any set $Z \subset G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\alpha < \lambda$ step

By assumption

$$(\forall B \in \mathscr{B}^+_I(X)) \operatorname{cof}(I) \leq |\{Gb : b \in B\}|.$$

we can find

$$a_{\alpha}, d_{\alpha} \in B_{\alpha} \setminus \bigcup (\{Ga_{\xi}: \xi < \alpha\} \cup \{Gd_{\xi}: \xi < \alpha\})$$

and $h_{\alpha} \in C_{\alpha} \setminus \langle h_{\xi} : \xi < \alpha \rangle_{G}$ because $|\langle Z \rangle_{G}| \leq \aleph_{0} \cdot |Z|$ for any set $Z \subset G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now let us take the following sets: $H = \langle h_{\alpha} \in G : \alpha < \lambda \rangle_{G}, A = \{a_{\alpha} \in X : \alpha < \lambda\}$ and $D = \{d_{\alpha} \in X : \alpha < \lambda\}.$

Then we have

- H is completely J-nonmeasurable subgroup of G,
- ► A and D are completely I-nonmeasurable subsets of the Polish space X.

Moreover by the inclusion

$$A \subset HA \subset D^c$$

Now let us take the following sets: $H = \langle h_{\alpha} \in G : \alpha < \lambda \rangle_{G}, A = \{a_{\alpha} \in X : \alpha < \lambda\} \text{ and } D = \{d_{\alpha} \in X : \alpha < \lambda\}.$

Then we have

• H is completely J-nonmeasurable subgroup of G,

► A and D are completely I-nonmeasurable subsets of the Polish space X.

Moreover by the inclusion

$$A \subset HA \subset D^c$$

Now let us take the following sets:

$$\begin{aligned} & \mathcal{H} = \langle h_{\alpha} \in \mathcal{G} : \alpha < \lambda \rangle_{\mathcal{G}}, \ \mathcal{A} = \{ a_{\alpha} \in \mathcal{X} : \alpha < \lambda \} \text{ and } \\ & \mathcal{D} = \{ d_{\alpha} \in \mathcal{X} : \alpha < \lambda \}. \end{aligned}$$

Then we have

- H is completely J-nonmeasurable subgroup of G,
- ► A and D are completely I-nonmeasurable subsets of the Polish space X.

Moreover by the inclusion

 $A \subset HA \subset D^c$

Now let us take the following sets:

$$\begin{aligned} & \mathcal{H} = \langle h_{\alpha} \in \mathcal{G} : \alpha < \lambda \rangle_{\mathcal{G}}, \ \mathcal{A} = \{ a_{\alpha} \in \mathcal{X} : \alpha < \lambda \} \text{ and } \\ & \mathcal{D} = \{ d_{\alpha} \in \mathcal{X} : \alpha < \lambda \}. \end{aligned}$$

Then we have

- H is completely J-nonmeasurable subgroup of G,
- ► A and D are completely I-nonmeasurable subsets of the Polish space X.

Moreover by the inclusion

$$A \subset HA \subset D^{c}$$

Moreover, we have

Theorem

Let (X, I) be Polish ideal space and (G, \cdot) acting on X. If we have

$$(\forall B \in \mathscr{B}^+_I(X)) \operatorname{cof}(I) \leq |\{Gb : b \in B\}|.$$

Then there exists subgroup $H \leq B$ and the pairwise disjoint family $\{A_{\alpha} : \alpha < cof(I)\} \subset \mathscr{P}(X)$ such that:

(∀α < cof(I)) A_α, HA_α are completely I-nonmeasurable in X,
 (∀α, β)α < β < cof(I) → HA_α ∩ HA_β = Ø.

Moreover if (G, J) is a Polish space and there exists Borel bases $\mathscr{B}_G \subset \mathscr{B}_J^+(G)$ and $\mathscr{B}_X \subset \mathscr{B}_I^+(X)$ with

 $|\mathscr{B}_G| = |\mathscr{B}_X| \le |\{Gb: b \in B\}|,$

Theorem Let (G, \cdot) be any group and let (X, I) be a Polish ideal space. If for some (every) $x \in X$ Gx = X and

$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists a subgroup $H \leq G$ and a subset $A \subset X$ such that A and HA are complete I-nonmeasurable sets in X. Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Theorem

Let (G, \cdot) be any group and let (X, I) be a Polish ideal space. If for some (every) $x \in X$ Gx = X and

$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists a subgroup $H \leq G$ and a subset $A \subset X$ such that A and HA are complete I-nonmeasurable sets in X. Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Theorem

Let (G, \cdot) be any group and let (X, I) be a Polish ideal space. If for some (every) $x \in X$ Gx = X and

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |\mathcal{G}_{x,y}| \leq \lambda$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists a subgroup $H \leq G$ and a subset $A \subset X$ such that A and HA are complete I-nonmeasurable sets in X. Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Theorem

Let (G, \cdot) be any group and let (X, I) be a Polish ideal space. If for some (every) $x \in X$ Gx = X and

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |\mathcal{G}_{x,y}| \leq \lambda$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists a subgroup $H \leq G$ and a subset $A \subset X$ such that A and HA are complete I-nonmeasurable sets in X.

Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem

Let (G, \cdot) be any group and let (X, I) be a Polish ideal space. If for some (every) $x \in X$ Gx = X and

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |\mathcal{G}_{x,y}| \leq \lambda$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists a subgroup $H \leq G$ and a subset $A \subset X$ such that A and HA are complete I-nonmeasurable sets in X. Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

(日) (同) (三) (三) (三) (○) (○)

Theorem

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits.

Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega$ $\mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

 A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Theorem

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits.

Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega$ $\mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

 A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Theorem

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits. Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}.$

Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega$ $\mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

 A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Moreover, if (G, J) forms Polish ideal space then our H is completely J-nonmeasurable in G.

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits. Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}$. Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega$ $\mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

 A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits. Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}$. Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega \ \mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < c$

 A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits. Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}$. Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega \ \mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Let (X, I) is a Polish ideal space and (G, \cdot) group acting on X. Assume that $X = \bigcup \{Gx_n : n \in \omega\}$ is a union of the countable many I-positive and I-measurable orbits. Suppose that

$$(\exists \lambda < 2^{\omega})(\forall x, y \in X) \ x \neq y \rightarrow |G_{x,y}| \leq \lambda,$$

where $G_{x,y} = \{g \in G : y = gx\}$. Then there exists $H \leq G$ and countably many families \mathscr{A}_n such that for every $n \in \omega \ \mathscr{A}_n = \{A_\alpha^n : \alpha < 2^\omega\}$ is a family of continuum many pairwise disjoint subsets of X with the following condition: for all $n \in \omega$, $\alpha < \mathfrak{c}$

A_{α}^{n} and HA_{α}^{n} is completely I – nonmeasurable in Gx_{n} .

Let (G, \cdot, J) be a Polish ideal group which acts on the Polish ideal space (X, I). Let us assume that

1.
$$cov_h(J) = cov_h(I) = cof(I) = cof(J)$$
,

2. for any $n \in \omega$, $s \in \mathbb{Z}^n$ there exists $G' \subseteq G$ such that $G \setminus G' \in J$ and for every $g \in G'$, $a \in G'^n$ the following condition holds

$$\{h\in G: \prod_{i\in n}a_i\cdot h^{s_i}=g\}\in J.$$

Then there is a completely J-nonmeasurable subgroup H in G and completely I-nonmeasurable subset $A \subseteq X$ such that HA is completely I-nonmeasurable in the space X.

Non(I) < cov(I)

Theorem Let (X, I) be a Polish ideal space and $non(I) < cov_h(I)$. Assume that (G, \cdot) is a group which acts on X. If $H \le G$ and $A \in I$ are such that HA contains a Borel set $B \notin I$ then there is a subgroup $H' \le H$ such that H'A is completely I-nonmeasurable in some I-positive Borel set.

Non(I) < cov(I)

Theorem

Let (X, I) be a Polish ideal space and $non(I) < cov_h(I)$. Assume that (G, \cdot) is a group which acts on X. If $H \leq G$ and $A \in I$ are such that HA contains a Borel set $B \notin$ then there is a subgroup $H' \leq H$ such that H'A is completely

I-nonmeasurable in some I-positive Borel set.

Non(I) < cov(I)

Theorem

Let (X, I) be a Polish ideal space and $non(I) < cov_h(I)$. Assume that (G, \cdot) is a group which acts on X. If $H \leq G$ and $A \in I$ are such that HA contains a Borel set $B \notin I$ then there is a subgroup $H' \leq H$ such that H'A is completely I-nonmeasurable in some I-positive Borel set.

Proof. Let $B \in \mathscr{B}_{I}^{+}(X)$ such that $B \subseteq HA$. Let $T \subset B$ witness of non(I). Define $F : T \to H$ such that

 $t \in F(t)A$ holds for any $t \in T$.

If $H' = \langle F[T] \rangle_H$ then

 $|H'| = |F[T]| \le |T| = non(I) < cov_h(I).$ Then $T \subseteq F[T]A \subseteq H'A$. So, $H'A \notin I$. Notice that

►
$$H'A = \bigcup \mathcal{F}$$
, where $\mathcal{F} = \{hA : h \in H'\} \subseteq I$

$$|\mathcal{F}| < cov_h(I)$$

Then any I-positive Borel set can not be covered by the family \mathcal{F} .

Applications

X topological space $\mathscr{H}(X)$ space of all homeomorphisms on X with compact-open topology:

 $\{V(K, U): K \subseteq X \text{ is compact and } U \subseteq X \text{ is open in } X\},\$

where

$$V(K, U) = \{ f \in \mathscr{H}(X) : f[K] \subseteq U \} \}.$$

When X is compact Polish space then $\mathscr{H}(X)$ is also Polish one. A metric on $\mathscr{H}(X)$:

$$d(f,g) = \sup_{x \in X} \{ d(f(x),g(x)) \} + \sup_{y \in X} d(f^{-1}(y),g^{-1}(y)).$$

Proposition

Let (G, \cdot) be a Polish space. Fix $n \in \omega$, $s \in \mathbb{Z}^n$. Then there exists comeager $G' \subseteq G$ such that for every $g \in G'$, $a \in G'^n$ the following set

$$\{h \in G: \prod_{i \in n} a_i^{s_i} \cdot h = g\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

is meager.

Assume that $cov(\mathcal{M}) = cof(\mathcal{M})$. Let X be a compact Polish space without isolated points.

Then there exist a completely \mathcal{M} -nonmeasurable subgroup $H < \mathcal{H}(X)$ and a completely \mathcal{M} -nonmeasurable subset $A \subseteq X$ such that HA is completely \mathcal{M} -nonmeasurable.

くして 前 ふかく 山下 ふゆう ふしゃ

Assume that $cov(\mathcal{M}) = cof(\mathcal{M})$. Let X be a compact Polish space without isolated points.

Then there exist a completely \mathcal{M} -nonmeasurable subgroup $H < \mathcal{H}(X)$

and a completely \mathcal{M} -nonmeasurable subset $A \subseteq X$ such that HA is completely \mathcal{M} -nonmeasurable.

Assume that $cov(\mathcal{M}) = cof(\mathcal{M})$. Let X be a compact Polish space without isolated points.

Then there exist a completely \mathcal{M} -nonmeasurable subgroup $H < \mathcal{H}(X)$

and a completely \mathcal{M} -nonmeasurable subset $A \subseteq X$ such that HA is completely \mathcal{M} -nonmeasurable.

Assume that $cov(\mathcal{M}) = cof(\mathcal{M})$. Let X be a compact Polish space without isolated points.

Then there exist a completely \mathcal{M} -nonmeasurable subgroup $H < \mathcal{H}(X)$

and a completely \mathcal{M} -nonmeasurable subset $A \subseteq X$ such that HA is completely \mathcal{M} -nonmeasurable.

From the other side the following example is a simple corollary from Theorem 6 when we can find many different orbits.

Corollary

If G is a subgroup of the group of all isometries on the Cantor space 2^ω defined as follows

$$G = \{T_X : X \in \mathscr{P}(\{n \in \omega : n \equiv 0 \mod 2\})\}$$

where for any $x \in 2^{\omega}$ and $n \in \omega$

$$T_X(x)(n) = egin{cases} x(n) & ext{when } n
otin X \ 1-x(n) & ext{when } n \in X. \end{cases}$$

Then there is a subgroup H of G and uncountable many pairwise disjoint subsets $\{A_{\alpha} \subset 2^{\omega} : \alpha < cof(\mathcal{M})\}$ such that HA_{α} are completely \mathcal{M} -nonmeasurable in the Cantor space 2^{ω} for any $\alpha < cof(\mathcal{M})$. Moreover, $\{HA_{\alpha} : \alpha < cof(\mathcal{M})\}$ forms a pairwise disjoint family of subsets of the Cantor space. From the other side the following example is a simple corollary from Theorem 6 when we can find many different orbits.

Corollary

If G is a subgroup of the group of all isometries on the Cantor space 2^ω defined as follows

$$G = \{T_X : X \in \mathscr{P}(\{n \in \omega : n \equiv 0 \mod 2\})\}$$

where for any $x \in 2^{\omega}$ and $n \in \omega$

$$T_X(x)(n) = egin{cases} x(n) & ext{when } n
otin X \ 1-x(n) & ext{when } n \in X. \end{cases}$$

Then there is a subgroup H of G and uncountable many pairwise disjoint subsets $\{A_{\alpha} \subset 2^{\omega} : \alpha < cof(\mathcal{M})\}$ such that HA_{α} are completely \mathcal{M} -nonmeasurable in the Cantor space 2^{ω} for any $\alpha < cof(\mathcal{M})$. Moreover, $\{HA_{\alpha} : \alpha < cof(\mathcal{M})\}$ forms a pairwise disjoint family of subsets of the Cantor space.

Thank You

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

R. Rałowski and Sz. Żeberski, Group action on Polish spaces, arXiv:1406.3063