On the sequence convergence of the Cantor and Aleksandrov cube on an arbitrary complete Boolean algebra

Miloš Kurilić Aleksandar Pavlović

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad, Serbia

SETTOP 2014

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Eour of the Questions

ắrể Written on thể Wall

One Sequence to answer

chën äll

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014 2 / 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X.

A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$

$$(L3) \ \forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

- 4 周 ト 4 日 ト 4 日

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$

$$(L3) \ \forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

・ロト ・同ト ・ヨト ・ヨ

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle)$$
.
(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y)$.
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x)$.
If $|\lambda(x)| \leq 1$ then those are also sufficient conditions. (Kisvński, 1960)

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}$$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1) $\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$ (L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$ (L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1) $\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$ (L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$ (L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

SETTOP 2014

4 / 23

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

Weakly topological convergence

Definition

A convergence λ satisfying (L1) and (L2) such that λ^* is a topological convergence will be called a **weakly topological convergence**.

Theorem

If a convergence λ satisfy (L1) and (L2) and we have $|\lambda(x)| \leq 1$ for each sequence x, then λ is a weakly topological convergence.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Weakly topological convergence

Definition

A convergence λ satisfying (L1) and (L2) such that λ^* is a topological convergence will be called a **weakly topological convergence**.

Theorem

If a convergence λ satisfy (L1) and (L2) and we have $|\lambda(x)| \leq 1$ for each sequence x, then λ is a weakly topological convergence.

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi: 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi: 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

- 4 回 6 - 4 回 6 - 4 回

SETTOP 2014

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi: 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ 同 ト ・ ヨ ト ・ ヨ ト

SETTOP 2014

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi: 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n \in \omega} X_n = \bigcup_{k \in \omega} \bigcap_{n \ge k} X_n \quad \limsup_{n \in \omega} X_n = \bigcap_{k \in \omega} \bigcup_{n \ge k} X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

 $\liminf_{n\in\omega} X_n = \limsup_{n\in\omega} X_n = X,$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n\in\omega}X_n=\bigcup_{k\in\omega}\bigcap_{n\geq k}X_n\quad \limsup_{n\in\omega}X_n=\bigcap_{k\in\omega}\bigcup_{n\geq k}X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\liminf_{n \in \omega} X_n = \limsup_{n \in \omega} X_n = X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n\in\omega}X_n=\bigcup_{k\in\omega}\bigcap_{n\geq k}X_n\quad \limsup_{n\in\omega}X_n=\bigcap_{k\in\omega}\bigcup_{n\geq k}X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\liminf_{n \in \omega} X_n = \limsup_{n \in \omega} X_n = X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$

$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known sequential topology, and usually denoted by τ_s .

イロト イヨト イヨト イヨト

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$
$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known **sequential topology**, and usually denoted by τ_s .

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SETTOP 2014

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$
$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known sequential topology, and usually denoted by τ_s .

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

8 / 23

イロト イヨト イヨト イヨト

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$

$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known sequential topology, and usually denoted by τ_s .

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and in general it does not satisfy (L3), so $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

 $a \in \lim_{\tau_s}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

A (1) > A (1) > A

SETTOP 2014

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and in general it does not satisfy (L3), so $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

 $a \in \lim_{\tau_s}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and in general it does not satisfy (L3), so $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

$$a \in \lim_{\tau_s}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Condition (\hbar)

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra \mathbb{B} satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

 \mathfrak{t} -cc \Rightarrow $(\hbar) \Rightarrow \mathfrak{s}$ -cc.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ 同 ト ・ ヨ ト ・ ヨ ト

SETTOP 2014

Condition (\hbar)

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra $\mathbb B$ satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

 \mathfrak{t} -cc \Rightarrow $(\hbar) \Rightarrow \mathfrak{s}$ -cc.

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

Condition (\hbar)

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra $\mathbb B$ satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

$$\mathfrak{t}\text{-cc} \Rightarrow (\hbar) \Rightarrow \mathfrak{s}\text{-cc}.$$

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s} (x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

æ

11 / 23

<ロ> (四) (四) (三) (三) (三)

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s} (x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

æ

11 / 23

イロト イヨト イヨト イヨト

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s} (x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

æ

イロト イヨト イヨト イヨト
The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

```
\limsup_{n\in\omega} X_n \subset X,
```

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_A \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

```
\limsup_{n\in\omega} X_n \subset X,
```

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_A \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

э

12 / 23

< A > < E

SETTOP 2014

The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\limsup_{n\in\omega} X_n \subset X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_A \rangle$ is sequential iff $\kappa = \omega$.

э

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

• (1) • (1) • (1)

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$.

Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

• (1) • (1) • (1)

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

13 / 23

A (1) < A (1) < A (1) </p>

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

-

13 / 23

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

-

A (10) A (10) A (10) A

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**. $\mathcal{O}_{\lambda_{ls}}, \mathcal{O}_{\lambda_{li}} \subset \tau_S$.

-

13 / 23

A (10) A (10) A (10) A

λ_{ls} and λ_{li} satisfy (L1) and (L2).

 λ_{ls} and λ_{li} are topological convergences iff $\mathbb B$ is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1.

Are λ_{ls}^* and λ_{li}^* topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

14 / 23

A (1) < A (1) < A (1) </p>

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1.

Are λ_{ls}^* and λ_{li}^* topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1.

Are λ_{ls}^* and λ_{li}^* topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

SETTOP 2014

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1. Are $\lambda_{l_s}^*$ and $\lambda_{l_i}^*$ topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

 $\mathcal{O}^* \subset \tau_s$

 $\operatorname{im}_{\mathcal{O}^*} = \operatorname{lim}_{\lambda_{ls}} \cap \operatorname{lim}_{\lambda_{li}}$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

э.

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

 $\mathcal{O}^* \subset \tau_s$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If $\mathbb B$ satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal O^*} = \lim_{\tau_s} \mathcal O_s$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

A (1) A (2) A (3) A

SETTOP 2014

э.

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

$$\mathcal{O}^* \subset \tau_s$$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s} .$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

э.

A 3 b

A (1) > (1) > (1)

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{l_s}} \cup \mathcal{O}_{\lambda_{l_s}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

$$\mathcal{O}^* \subset \tau_s$$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_{e}}$.

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

イロト イヨト イヨト イヨト

$\mathcal{O}^* = \tau_s?$

Theorem

In the case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $\mathcal{O}^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

16 / 23

・ロト ・ 同ト ・ ヨト ・ ヨト

$\mathcal{O}^* = \tau_s?$

Theorem

In the case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $O^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

・ロト ・ 同ト ・ ヨト ・ ヨト

$\mathcal{O}^* = \tau_s?$

Theorem

In the case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $O^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

16 / 23

- 同下 - 三下 - 三下

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \triangle a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $a \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{ls}}$ and $O_2 \in \mathcal{O}_{\lambda_{li}}$.

Question 3.

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $a \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{l_s}}$ and $O_2 \in \mathcal{O}_{\lambda_{l_i}}$.

Question 3

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $a \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{l_s}}$ and $O_2 \in \mathcal{O}_{\lambda_{l_i}}$.

Question 3.

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

Definition

 \mathcal{N}_0 is the family of all neighborhoods of the point **0** in topology τ_s . $\mathcal{N}_0^d = \{ U \in \mathcal{N}_0 : U = U \downarrow \}.$

Theorem (Balcar, Glówczyński, Jech)

If $\langle \mathbb{B}, \tau_s \rangle$ is a Frechét space, then for each $V \in \mathcal{N}_0$ exists $U \in \mathcal{N}_0^d$ such that $U \subset V$. So, then \mathcal{N}_0^d is a neighborhood base at the point **0**.

 $\mathcal{N}_0^d = \mathcal{O}_{\lambda_{ls}}$ is a neighborhood base at the point **0** for the topology \mathcal{O}^* .

If in a topological space $\langle \mathbb{B}, \tau_s \rangle$ the family \mathcal{N}_0^d is not a neighborhood base at **0**, then $\tau_s \neq \mathcal{O}^*$.

Question 4.

Does there exist a c.B.a. such that \mathcal{N}_0^d is not a neighborhood base of **0**?

A base matrix tree is a tree $\langle \mathcal{T},^* \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq \mathfrak{c}^{\mathfrak{h}} = 2^{\mathfrak{h}}.$ $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

A base matrix tree is a tree $\langle \mathcal{T},^* \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists. Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq \mathfrak{c}^{\mathfrak{h}} = 2^{\mathfrak{h}}.$ $Br(\mathcal{T}) = \{T_\alpha : \alpha < \kappa\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq \mathfrak{c}^{\mathfrak{h}} = 2^{\mathfrak{h}}.$ $Br(\mathcal{T}) = \{T_\alpha : \alpha < \kappa\}.$

M. Kurilić, A. Pavlović (Novi Sad)

19 / 23

・ 同 ト・ イヨート・ イヨート

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|$. $2^{\omega_1} \leq \kappa \leq c^{\mathfrak{h}} = 2^{\mathfrak{h}}$.

 $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists. Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq \mathfrak{c}^{\mathfrak{h}} = 2^{\mathfrak{h}}.$ $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}.$

・ 同 ト ・ 臣 ト ・ 臣 ト

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|$. $2^{\omega_1} \leq \kappa \leq \mathfrak{c}^{\mathfrak{h}} = 2^{\mathfrak{h}}$. $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| < \mathfrak{t}$.

$$1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^* B$$

By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \ \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$

Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

Let \mathbb{B} is a c.B.a. such that $\operatorname{cc}(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^{V})| < \mathfrak{t}$. So, $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} X \subset^{*} B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \sigma_{\alpha} \subset^{*} B$

Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $\in \tau \parallel$ and for $\tau_x = \{ \langle \check{n}, x_n \rangle : n \in \omega \}$ we ha

$$1 \Vdash \tau = \tau_x$$

M. Kurilić, A. Pavlović (Novi Sad)

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| < \mathfrak{t}$. So, $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} X \subset^* B$

By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\tilde{\omega}]^{\tilde{\omega}} \ \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$

Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

Let \mathbb{B} is a c.B.a. such that $\operatorname{cc}(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^{V})| < \mathfrak{t}$. So, $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^{*} B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^{*} B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^{V})| < \mathfrak{t}$. So, $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^{*} B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^{*} B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

 $\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{h}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^{V})| < \mathfrak{t}$. So, $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^{*} B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^{*} B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$
$$x_n = \|\check{n} \in \tau\| \text{ and for } \tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\} \text{ we have}$$
$$1 \Vdash \tau = \tau_x$$
Properties of the Sequence

 $0\not\in\lambda_{ls}^*(x)$

 $0 \in \lim_{\mathcal{O}_{\lambda_{ls}}} (x)$

Answer 1.

 λ_{ls}^* is not a topological convergence.

$$0 \in \lim_{\mathcal{O}_{\lambda_{l_s}}} (x) \cap \lim_{\mathcal{O}_{\lambda_{l_i}}} (x) = \lim_{\mathcal{O}^*} (x) \text{ and } 0 \notin \lim_{\tau_s} (x)$$

Answer 2. $\lim_{\tau_s} \neq \lim_{\mathcal{O}^*}$

Answer 3.

 $\tau_s \neq \mathcal{O}^*$

If $X = \{x_n : n \in \omega\}$, then $\mathbb{B} \setminus X \in \tau_s$, but it is not downward closed and each downward closed neighborhood of **0** intersects X.

Answer 4.

There exists a Boolean algebra in which \mathcal{N}_0^d is not a neighborhood base of **0** for topology τ_s .

Small cardinals

5

- Set $S \subset \omega$ splits a set $A \subset \omega$ iff $|A \cap S| = \omega$ and $|A \setminus S| = \omega$.
- $\mathcal{S} \subset [\omega]^{\omega}$ is a splitting family iff each
 - $A \in [\omega]^{\omega}$ is splitted by some element of \mathcal{S} .
- Splitting number, \mathfrak{s} , is the minimal cardinality of a splitting family.

£

Small cardinals

- *T* ⊂ [ω]^ω is a tower iff ⟨*T*, * *⊋*⟩ well-ordered and the family *T* has no pseudointersection.
- Tower number, **t**, is the minimal cardinality of a tower.

Small cardinals

\mathfrak{b}

- For functions $f, g \in \omega^{\omega}, f \leq^* g$ denotes $\exists n_0 \in \omega \ \forall n \geq n_0$ $f(n) \leq g(n).$
- B ⊂ ω^ω is unbounded family iff there does not exist g ∈ ω^ω such that f ≤* g for each f ∈ B.
- Bounding number, \mathfrak{b} , is the minimal cardinality of unbounded family.

Small cardinals

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

SETTOP 2014