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Convergence

Definition

For X # (), a mapping \ : X* — P(X) is a convergence on X.
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Convergences

Convergence

Definition

For X # (), a mapping \ : X* — P(X) is a convergence on X.
A convergence A is called a topological convergence iff there exists a
topology O on X such that A = limp.

Theorem

Each topological convergence A satisfies conditions:

(L1) Ya € X a € \({(a)).

(L2) Vo € X¥Vy < x A(z) C A(y).

(L3) Ve e X¥ (Vy<z3Jz<ya€Xz)) =ac ).

If [A(x)| <1, then those are also sufficient conditions. (Kisyriski, 1960)

v
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Convergences

Generating topology

Theorem

For each convergence A : X“ — P(X) there exists a maximal topology
O, such that Vo € X“ A(z) C limp, «.
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(L1) X(z) = { igg U{a} ioft}:fengzz.for some a € X
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Convergences

Generating topology

Theorem

For each convergence A : X“ — P(X) there exists a maximal topology

O, such that Vo € X“ A(z) C limp, «.

(L1) N(z) = { igx) U{a} if z = (a) for some a € X

) otherwise.
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Convergences

Weakly topological convergence

Definition

A convergence A satisfying (L.1) and (L.2) such that A\* is a topological
convergence will be called a weakly topological convergence.
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Convergences

Weakly topological convergence

Definition

A convergence A satisfying (L.1) and (L.2) such that A\* is a topological
convergence will be called a weakly topological convergence.

Theorem

If a convergence A satisfy (L1) and (L2) and we have |[A(x)| < 1 for each
sequence x, then X is a weakly topological convergence.

v
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The Cantor cube

Definition

The Cantor cube of weight x, denoted by (2%, 7¢) is the Tychonov
product of kK-many copies of two point discrete space 2 = {0,1}
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The Cantor cube
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The Cantor cube of weight x, denoted by (2%, 7¢) is the Tychonov
product of kK-many copies of two point discrete space 2 = {0,1}
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The Cantor cube

Definition

The Cantor cube of weight x, denoted by (2%, 7¢) is the Tychonov
product of kK-many copies of two point discrete space 2 = {0,1}

Let ¢ : 28 — P(k) be a bijection defined by f(x) = z~'[{1}]. J

¢ is a homeomorphism between 2 and P(k) (as Boolean algebra) ]
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Cantor cube and 75

Definition
For the sequence of sets (X, : n € w) € (P(k))“ let

lim infngw X, = UkEw ngk Xp  lim SuPnGw ﬂkEw UnZk Xn
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Cantor cube and 75

Definition
For the sequence of sets (X, : n € w) € (P(k))“ let

lim infnew Xn = UkEw ngk Xn lim SuPnGw ﬂkEw UnZk X"

Fact

A sequence (z, : n € w) converges to the point x € 2" iff
liminf,e, X, = limsup,,¢, X, = X,

where X,, = &(x,), and X = £(z).
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Cantor cube and 75

Definition
For the sequence of sets (X, : n € w) € (P(k))“ let

liminf,e, Xn = Upey, ngk X, limsup,c, X

ﬂkEw UnZk X"

Fact

A sequence (z, : n € w) converges to the point x € 2" iff

liminf,e, X, = limsup,,¢, X, = X,

where X,, = &(x,), and X = £(z).

(2%, 7¢) is sequential iff kK = w.
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Cantor cube and 75

Generalization of the Cantor cube

Let B be a complete Boolean algebra, and = = (z,, : n € w). ]

M. Kurili¢, A. Pavlovi¢ (Novi Sad) Cantor and Aleksandrov cube SETTOP 2014 8 /23



Cantor cube and 75

Generalization of the Cantor cube

Let B be a complete Boolean algebra, and = = (z,, : n € w).

Definition

liminf x = Vkew /\nzk z, limsupz = /\kew Vnzk Tn

M. Kurili¢, A. Pavlovi¢ (Novi Sad) Cantor and Aleksandrov cube SETTOP 2014

8 /23



Cantor cube and 75

Generalization of the Cantor cube

Let B be a complete Boolean algebra, and = = (z,, : n € w).

Definition

liminf x = Vkew /\nzk z, limsupz = /\kew Vnzk Tn

Aolz) = {limsupz} if liminfx = limsupx
s\¥) = 0 if liminfz < limsup x

M. Kurilié, A. Pavlovié ad) Cantor and Aleksandrov cube SETTOP 2014

8 /23



Cantor cube and 75

Generalization of the Cantor cube

Let B be a complete Boolean algebra, and = = (z,, : n € w). ]

Definition

liminf x = Vkew /\nzk z, limsupz = /\kew Vnzk Tn

Aolz) = {limsupz} if liminfx = limsupx
s\¥) = 0 if liminfz < limsup x

Definition

Topology O,, is the well known sequential topology, and usually
denoted by 7s.
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Cantor cube and 75

Theorem
As satisfies (L1) i (L2), |As(z)| <1, so it is weakly topological, and in
general it does not satisfy (L3), so As # lim,,.
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Cantor cube and 75

Theorem

As satisfies (L1) i (L2), |As(z)| <1, so it is weakly topological, and in
general it does not satisfy (L3), so As # lim,,.

Theorem

As 1a a topological convergence iff B is (w, 2)-distributive.

a €lim, (z) & Vy <z 3z <y ac A(z).
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Condition(h)

Definition
A sequence z is lim sup-stable iff for each y <  limsupy = limsup z. J
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Cantor cube and 75

Condition(h)

Definition

A sequence z is lim sup-stable iff for each y <  limsupy = limsup z.

Definition

Complete Boolean algebra B satisfies condition (k) iff each sequence has
a lim sup-stable subsequence.
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Cantor cube and 75

Condition(h)

Definition

A sequence z is lim sup-stable iff for each y <  limsupy = limsup z.

v

Definition

Complete Boolean algebra B satisfies condition (k) iff each sequence has
a lim sup-stable subsequence.

Theorem
t-cc = (h) = s-cc.
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Cantor cube and 75

Definition

Let x be a sequence in a c¢.B.a.

Ay = /\Ae[w]w \/BG[A]W liminf,cp zy.

bm = \/AE[W]“’ /\BE[A]"" hm SupneB In.
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Cantor cube and

Definition

Let x be a sequence in a c¢.B.a.

Ay = /\Ae[w]w \/BG[A]W liminf,cp zy.

bm = \/Ae[w]“’ /\BE[A]"" hm SupneB In.

Theorem

a € lim; (v) = ag = by = a.
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Cantor cube and

Definition

Let x be a sequence in a c¢.B.a.

Ay = /\Ae[w]w vBe[A]w lim infneB T

be =V acu)e N\pepae Imsup,cp .

Theorem

a € lim; (v) = ag = by = a.

Theorem
If B which satisfies (h) we have

a € lim; () © ag = by = a.
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Alexandrov cube, A\;s and A\j;

The Alexandrov cube

Definition

The Alexandrov cube of weight , denoted by (2%, 74) is the Tychonov
product of K many copies of two point space 2 = {0, 1} with topology

Op = {@, {0}7 {07 1}}
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Fact
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Alexandrov cube, A\;s and A\j;

Generalization of the Alexandrov cube and its dual

Definition

Let
Ais(z) = (limsupz) T, Nj(z) = (liminfz) | .
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Alexandrov cube, A\;s and A\j;

Generalization of the Alexandrov cube and its dual

Definition
Let

Ais(z) = (limsupz) T, Nj(z) = (liminfz) | .

Theorem

Set F' € Fy, iff it is upward closed and A, =, € F, for each
decreasing x € F“.
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Alexandrov cube, A\;s and A\j;

Generalization of the Alexandrov cube and its dual

Definition

Let
Ais(z) = (limsupx) 1,  Aj(z) = (liminfz) | .

Theorem

Set F' € Fy, iff it is upward closed and A, =, € F, for each
decreasing x € F“.
Set F' € Fy; iff it is downward closed and \/
increasing x € FY.

Ty € F, for each

new
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Alexandrov cube, A\;s and A\j;

Generalization of the Alexandrov cube and its dual

Definition
Let
Ais(z) = (limsupz) T,  Ajy(x) = (liminfz) | .

Theorem

Set F' € Fy, iff it is upward closed and A, =, € F, for each
decreasing x € F“.
Set F' € Fy; iff it is downward closed and \/
increasing x € FY.

Ty € F, for each

new

Open set in O),, is downward closed and contains 0.
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Ty € F, for each
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Open set in O),, is downward closed and contains 0.
Open set in O,,, is upward closed and contains 1.
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Alexandrov cube, A\;s and A\j;

Generalization of the Alexandrov cube and its dual

Definition
Let
Ais(z) = (limsupz) T,  Ajy(x) = (liminfz) | .

Theorem

Set F' € Fy, iff it is upward closed and A, =, € F, for each
decreasing x € F“.
Set F' € Fy; iff it is downward closed and \/
increasing x € FY.

Ty € F, for each

new

Open set in O),, is downward closed and contains 0.
Open set in O,,, is upward closed and contains 1.
O)\ZS,O)\“ C 7g.
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Alexandrov cube, A\;s and A\j;

Theorem
Ais and Ay satisfy (L1) and (L2).
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Alexandrov cube, A\;s and Aj;

Theorem

Ais and Ay satisfy (L1) and (L2).
Ais and A\j; are topological convergences iff B is (w, 2)-distributive.
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Alexandrov cube, A\;s and A\j;

Theorem

Ais and Ay satisfy (L1) and (L2).
Ais and A\j; are topological convergences iff B is (w, 2)-distributive.

(L3)

Eks(x) = ﬂy<m Uz<y AlS(z)7 Tz(x) = my<m Uz<y All(z)
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Alexandrov cube, A\;s and A\j;

Theorem
Ais and Ay satisfy (L1) and (L2).

Ais and A\j; are topological convergences iff B is (w, 2)-distributive.

(L3)
1 (8) = My Uazy Mis (), AG(2) = My<e U<y Mi(2)

Question 1.

Are )\, and A}, topological convergences?
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Topology OF

Definition
Let the family P* = O,,, U O,,, be a subbase for a topology O*. J
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Topology OF

Definition
Let the family P* = O,,, U O,,, be a subbase for a topology O*.

Theorem
O C 7y

limp« = limy,, Nlimy,,
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Topology O*

Topology OF

Definition
Let the family P* = O,,, U O,, be a subbase for a topology O*.

Theorem
O C 7y

limp« = limy,, Nlimy,,

Theorem
If B satisfies (k) or it is (w, 2)-distributive, then limp« = lim,, .
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Topology O*

Topology OF

Definition

Let the family P* = O,,, U O,, be a subbase for a topology O*.

Theorem
O C 7y

limp« = limy,, Nlimy,,

Theorem
If B satisfies (k) or it is (w, 2)-distributive, then limp« = lim,, .

Question 2.

Is it always limp+ = lim, 7
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Topology O*

Theorem

In the case when limp- = lim,, we have that O* = 7 iff (X,0*) is a
sequential space.
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Theorem

In the case when limp- = lim,, we have that O* = 7 iff (X,0*) is a
sequential space.

Theorem

For Boolean algebra P(w) we have O* = 7.
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*
O* = 1,7

Theorem

In the case when limp- = lim,, we have that O* = 7 iff (X,0*) is a
sequential space.

Theorem

For Boolean algebra P(w) we have O* = 7.

Proof: Both spaces, (P(w), 7s) and (P(w), O*) are Hausdorff, O* C 7
and (P(w), 7s) is homeomorphic to the Cantor cube, so it is compact,
and as a compact space, its minimality in the class of Hausdorff spaces
implies O = 5.
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Topology O*

Theorem

If a Boolean algebra carries strictly positive Maharam submeasure p,
we have O* = 7.
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Topology O*

Theorem

If a Boolean algebra carries strictly positive Maharam submeasure p,
we have O* = 7.

Proof: For O € 7y and a € O let B(a,r) ={z € B:u(x Aa)<r} CO
and

Or={zeB:pu(x\a)<r/2}, Os={zxeB:ula\x)<r/2}

So,a € O1 N0y C B(a,r) C O.
Also we have O € O,,, and Oz € O,,,.
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Topology O*

Theorem

If a Boolean algebra carries strictly positive Maharam submeasure p,
we have O* = 7.

Proof: For O € 7y and a € O let B(a,r) ={z € B:u(x Aa)<r} CO
and

Or={zeB:pu(x\a)<r/2}, Os={zxeB:ula\x)<r/2}

So,a € O1 N0y C B(a,r) C O.
Also we have O € O,,, and Oz € O,,,.

Question 3.
Does there exist a complete Boolean algebra such that O* # 757 J
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Topology O*

Definition

Ny is the family of all neighborhoods of the point 0 in topology 7.
Ng={UeNy:U=U}.

Theorem (Balcar, Glowczynski, Jech)

If (B, 75) is a Frechét space, then for each V € N exists U € N¢ such
that U C V. So, then N(‘)i is a neighborhood base at the point O.

NG = O,,, is a neighborhood base at the point 0 for the topology O*. J

If in a topological space (B, 7;) the family NV is not a neighborhood
base at 0, then 75 # O*.

Question 4.

Does there exist a c.B.a. such that Ngl is not a neighborhood base of 07

v
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Base matrix tree

A base matrix tree is a tree (7,*D) of height h such that 7 is dense in
a pre-order ([w]*, C*).
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a pre-order ([w]¥, C*). Levels are MAD families, and maximal chains
are towers.
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Topology O*

Base matrix tree

A base matrix tree is a tree (7,*D) of height h such that 7 is dense in
a pre-order ([w]¥, C*). Levels are MAD families, and maximal chains
are towers.

By Balcar, Pelant and Simon, such tree always exists.
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Topology O*

Base matrix tree

A base matrix tree is a tree (7,*D) of height h such that 7 is dense in
a pre-order ([w]¥, C*). Levels are MAD families, and maximal chains
are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by Br(7T) a set of all maximal branches of 7 and let
k = |Br(T)|.
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Topology O*

Base matrix tree

A base matrix tree is a tree (7,*D) of height h such that 7 is dense in
a pre-order ([w]¥, C*). Levels are MAD families, and maximal chains
are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by Br(7T) a set of all maximal branches of 7 and let
k= |Br(T)|.

2¢1 < g < ) =20,
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Topology O*

Base matrix tree

A base matrix tree is a tree (7,*D) of height h such that 7 is dense in
a pre-order ([w]¥, C*). Levels are MAD families, and maximal chains
are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by Br(7T) a set of all maximal branches of 7 and let
k= |Br(T)|.

2¢1 < g < ) =20,

Br(T) ={T,: a < k}.
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Topology O*

A construction of the Sequence

Let B is a c.B.a. such that cc(B) > 29 and 1 IFg |((H))]| < t.
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Topology O*
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So, 11 |T,| < t
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Topology O*

A construction of the Sequence

Let B is a c.B.a. such that cc(B) > 27 and 1 1Fg |((h)V)] < t.
So, 11 |T,| < t

1F3Xcw*VBeT, X C*B

By the Maximum principle there exists a name o, such that
1IFo, €W VBeT, 0, C* B
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Topology O*

A construction of the Sequence

Let B is a c.B.a. such that cc(B) > 29 and 1 IFg |((H))]| < t.

So, 11 |T,| < t

1F3Xcw*VBeT, X C*B

By the Maximum principle there exists a name o, such that

1IFo, €W VBeT, 0, C* B

Let (by : @ < k) be a maximal antichain in B. Then, by Mixing lemma
there exists name 7 such that

Va < Kk by IF 17 =04
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Topology O*

A construction of the Sequence

Let B is a c.B.a. such that cc(B) > 29 and 1 IFg |((H))]| < t.

So, 11 |T,| < t

1F3Xcw*VBeT, X C*B

By the Maximum principle there exists a name o, such that

1IFo, €W VBeT, 0, C* B

Let (by : @ < k) be a maximal antichain in B. Then, by Mixing lemma
there exists name 7 such that

Va < Kk by IF 17 =04

xn = ||n € 7|| and for 7, = {(n,z,) : n € w} we have

lIFr =7,
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Topology O*

Properties of the Sequence

0 ¢ A, (2)

0e limokls (x)

Answer 1.

A7, is not a topological convergence.

0 € limp,, (x) Nlime, () = limp-+(z) and 0 ¢ lim, (z)

Answer 2.
lim, # limp-

Answer 3.

Ts # OF
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If X ={z,:n€cw}, then B\ X € 7,, but it is not downward closed
and each downward closed neighborhood of 0 intersects X.

Answer 4.

There exists a Boolean algebra in which NV is not a neighborhood base
of 0 for topology Ts.
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Small cardinals

Small cardinals

S

e Set S C w splits a set A C w iff
|ANS| =w and
|A\ S| =w.

o S C [w]” is a splitting family
iff each
A € [w]¥ is splitted by some element
of S.

e Splitting number, s, is the minimal
cardinality of a splitting family.
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Small cardinals

Small cardinals

o T C [w]¥ is a tower iff (T, * D)
well-ordered and the family 7 has no
pseudointersection.

e Tower number, t, is the minimal
cardinality of a tower.
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Small cardinals

Small cardinals

b

e For functions f,g e w¥, f <*g
denotes dng € w VYn > ng
f(n) < g(n).

e B C w" is unbounded family iff there
does not exist g € w* such that
f <* g for each f € B.

e Bounding number, b, is the minimal
cardinality of unbounded family.
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Small cardinals

Small cardinals

h = min{|H|: H is a family of open

dense subsets of the order

([w]¥, C*) and mH is not dense}.
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