
On the sequence convergence of the Cantor and

Aleksandrov cube on an arbitrary complete Boolean

algebra

Milo² Kurili¢ Aleksandar Pavlovi¢

Department of Mathematics and Informatics, Faculty of Sciences, Novi Sad, Serbia

SETTOP 2014

M. Kurili¢, A. Pavlovi¢ (Novi Sad) Cantor and Aleksandrov cube SETTOP 2014 1 / 23



M. Kurili¢, A. Pavlovi¢ (Novi Sad) Cantor and Aleksandrov cube SETTOP 2014 2 / 23



Convergences

Convergence

De�nition

For X 6= ∅, a mapping λ : Xω → P (X) is a convergence on X.

A convergence λ is called a topological convergence i� there exists a

topology O on X such that λ = limO.

Theorem

Each topological convergence λ satis�es conditions:

(L1) ∀a ∈ X a ∈ λ(〈a〉).
(L2) ∀x ∈ Xω ∀y ≺ x λ(x) ⊂ λ(y).

(L3) ∀x ∈ Xω (∀y ≺ x ∃z ≺ y a ∈ λ(z))⇒ a ∈ λ(x).

If |λ(x)| ≤ 1, then those are also su�cient conditions. (Kisy«ski, 1960)
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Convergences

Generating topology

Theorem

For each convergence λ : Xω → P (X) there exists a maximal topology

Oλ such that ∀x ∈ Xω λ(x) ⊂ limOλ x.

(L1) λ′(x) =

{
λ(x) ∪ {a} if x = 〈a〉 for some a ∈ X
λ(x) otherwise.

(L2) λ′−(x) =
⋃
x≺y λ(y)

(L3) λ′−∗(x) =
⋂
y≺x

⋃
z≺y λ(z)

Theorem

Oλ = Oλ′ = Oλ′− = Oλ′−∗ .

λ′−∗ 6= limOλ .
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Convergences

Weakly topological convergence

De�nition

A convergence λ satisfying (L1) and (L2) such that λ∗ is a topological

convergence will be called a weakly topological convergence.

Theorem

If a convergence λ satisfy (L1) and (L2) and we have |λ(x)| ≤ 1 for each

sequence x, then λ is a weakly topological convergence.
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Cantor cube and τs

The Cantor cube

De�nition

The Cantor cube of weight κ, denoted by 〈2κ, τC〉 is the Tychonov
product of κ-many copies of two point discrete space 2 = {0, 1}

Let ξ : 2κ → P (κ) be a bijection de�ned by f(x) = x−1[{1}].

ξ is a homeomorphism between 2κ and P (κ) (as Boolean algebra)
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Cantor cube and τs

De�nition

For the sequence of sets 〈Xn : n ∈ ω〉 ∈ (P (κ))ω let

lim infn∈ωXn =
⋃
k∈ω

⋂
n≥kXn lim supn∈ωXn =

⋂
k∈ω

⋃
n≥kXn

Fact

A sequence 〈xn : n ∈ ω〉 converges to the point x ∈ 2κ i�

lim infn∈ωXn = lim supn∈ωXn = X,

where Xn = ξ(xn), and X = ξ(x).

〈2κ, τC〉 is sequential i� κ = ω.
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Cantor cube and τs

Generalization of the Cantor cube

Let B be a complete Boolean algebra, and x = 〈xn : n ∈ ω〉.

De�nition

lim inf x =
∨
k∈ω

∧
n≥k xn lim supx =

∧
k∈ω

∨
n≥k xn

λs(x) =

{
{lim supx} if lim inf x = lim supx

∅ if lim inf x < lim supx

De�nition

Topology Oλs is the well known sequential topology, and usually

denoted by τs.
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Cantor cube and τs

Theorem

λs satis�es (L1) i (L2), |λs(x)| ≤ 1, so it is weakly topological, and in

general it does not satisfy (L3), so λs 6= limτs .

Theorem

λs ia a topological convergence i� B is (ω, 2)-distributive.

a ∈ limτs(x)⇔ ∀y ≺ x ∃z ≺ y a ∈ λs(z).
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Cantor cube and τs

Condition(~)

De�nition

A sequence x is lim sup-stable i� for each y ≺ x lim sup y = lim supx.

De�nition

Complete Boolean algebra B satis�es condition (~) i� each sequence has

a lim sup-stable subsequence.

Theorem

t-cc ⇒ (~) ⇒ s-cc.
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Cantor cube and τs

De�nition

Let x be a sequence in a c.B.a.

ax =
∧
A∈[ω]ω

∨
B∈[A]ω lim infn∈B xn.

bx =
∨
A∈[ω]ω

∧
B∈[A]ω lim supn∈B xn.

Theorem

a ∈ limτs(x)⇒ ax = bx = a.

Theorem

If B which satis�es (~) we have

a ∈ limτs(x)⇔ ax = bx = a.
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Alexandrov cube, λls and λli

The Alexandrov cube

De�nition

The Alexandrov cube of weight κ, denoted by 〈2κ, τA〉 is the Tychonov
product of κ many copies of two point space 2 = {0, 1} with topology

OA = {∅, {0}, {0, 1}}.

Fact

A sequence 〈xn : n ∈ ω〉 converges to the point x ∈ 2κ i�

lim sup
n∈ω

Xn ⊂ X,

where Xn = ξ(xn), and X = ξ(x).

〈2κ, τA〉 is sequential i� κ = ω.
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Alexandrov cube, λls and λli

Generalization of the Alexandrov cube and its dual

De�nition

Let

λls(x) = (lim supx) ↑, λli(x) = (lim inf x) ↓ .

Theorem

Set F ∈ Fls i� it is upward closed and
∧
n∈ω xn ∈ F , for each

decreasing x ∈ Fω.
Set F ∈ Fli i� it is downward closed and

∨
n∈ω xn ∈ F , for each

increasing x ∈ Fω.

Open set in Oλls is downward closed and contains 0.

Open set in Oλli is upward closed and contains 1.

Oλls ,Oλli ⊂ τS .
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Alexandrov cube, λls and λli

Theorem

λls and λli satisfy (L1) and (L2).

λls and λli are topological convergences i� B is (ω, 2)-distributive.

(L3)

λ∗ls(x) =
⋂
y≺x

⋃
z≺y λls(z), λ∗li(x) =

⋂
y≺x

⋃
z≺y λli(z)

Question 1.

Are λ∗ls and λ
∗
li topological convergences?
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Topology O∗

Topology O∗

De�nition

Let the family P∗ = Oλls ∪ Oλli be a subbase for a topology O∗.

Theorem

O∗ ⊂ τs
limO∗ = limλls ∩ limλli

Theorem

If B satis�es (~) or it is (ω, 2)-distributive, then limO∗ = limτs .

Question 2.

Is it always limO∗ = limτs?
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Topology O∗

O∗ = τs?

Theorem

In the case when limO∗ = limτs we have that O∗ = τs i� 〈X,O∗〉 is a
sequential space.

Theorem

For Boolean algebra P (ω) we have O∗ = τs.

Proof: Both spaces, 〈P (ω), τs〉 and 〈P (ω),O∗〉 are Hausdor�, O∗ ⊂ τs
and 〈P (ω), τs〉 is homeomorphic to the Cantor cube, so it is compact,

and as a compact space, its minimality in the class of Hausdor� spaces

implies O∗ = τs.
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Topology O∗

Theorem

If a Boolean algebra carries strictly positive Maharam submeasure µ,
we have O∗ = τs.

Proof: For O ∈ τs and a ∈ O let B(a, r) = {x ∈ B : µ(x M a) < r} ⊂ O
and

O1 = {x ∈ B : µ(x \ a) < r/2}, O2 = {x ∈ B : µ(a \ x) < r/2}

So, a ∈ O1 ∩O2 ⊂ B(a, r) ⊂ O.
Also we have O1 ∈ Oλls and O2 ∈ Oλli .

Question 3.

Does there exist a complete Boolean algebra such that O∗ 6= τs?
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Topology O∗

De�nition

N0 is the family of all neighborhoods of the point 0 in topology τs.
N d

0 = {U ∈ N0 : U = U ↓}.

Theorem (Balcar, Glówczy«ski, Jech)

If 〈B, τs〉 is a Frechét space, then for each V ∈ N0 exists U ∈ N d
0 such

that U ⊂ V . So, then N d
0 is a neighborhood base at the point 0.

N d
0 = Oλls is a neighborhood base at the point 0 for the topology O∗.

If in a topological space 〈B, τs〉 the family N d
0 is not a neighborhood

base at 0, then τs 6= O∗.

Question 4.

Does there exist a c.B.a. such that N d
0 is not a neighborhood base of 0?
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Topology O∗

Base matrix tree

A base matrix tree is a tree 〈T ,∗⊃〉 of height h such that T is dense in

a pre-order 〈[ω]ω,⊂∗〉. Levels are MAD families, and maximal chains

are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by Br(T ) a set of all maximal branches of T and let

κ = |Br(T )|.
2ω1 ≤ κ ≤ ch = 2h.
Br(T ) = {Tα : α < κ}.
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Topology O∗

A construction of the Sequence

Let B is a c.B.a. such that cc(B) > 2h and 1 B |((h)V )̌| < t.
So, 1  |Ťα| < t
1  ∃X ∈ [ω̌]ω̌ ∀B ∈ Ťα X ⊂∗ B
By the Maximum principle there exists a name σα such that

1  σα ∈ [ω̌]ω̌ ∀B ∈ Ťα σα ⊂∗ B
Let 〈bα : α < κ〉 be a maximal antichain in B. Then, by Mixing lemma

there exists name τ such that

∀α < κ bα  τ = σα

xn = ‖ň ∈ τ‖ and for τx = {〈ň, xn〉 : n ∈ ω} we have

1  τ = τx
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By the Maximum principle there exists a name σα such that

1  σα ∈ [ω̌]ω̌ ∀B ∈ Ťα σα ⊂∗ B
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Topology O∗

Properties of the Sequence

0 6∈ λ∗ls(x)

0 ∈ limOλls (x)

Answer 1.

λ∗ls is not a topological convergence.

0 ∈ limOλls (x) ∩ limOλli (x) = limO∗(x) and 0 6∈ limτs(x)

Answer 2.

limτs 6= limO∗

Answer 3.

τs 6= O∗
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Topology O∗

If X = {xn : n ∈ ω}, then B \X ∈ τs, but it is not downward closed

and each downward closed neighborhood of 0 intersects X.

Answer 4.

There exists a Boolean algebra in which N d
0 is not a neighborhood base

of 0 for topology τs.
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Small cardinals

Small cardinals
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s
• Set S ⊂ ω splits a set A ⊂ ω i�

|A ∩ S| = ω and

|A \ S| = ω.

• S ⊂ [ω]ω is a splitting family

i� each

A ∈ [ω]ω is splitted by some element

of S.
• Splitting number, s, is the minimal

cardinality of a splitting family.
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t
• T ⊂ [ω]ω is a tower i� 〈T , ∗ !〉
well-ordered and the family T has no

pseudointersection.

• Tower number, t, is the minimal

cardinality of a tower.
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• For functions f, g ∈ ωω, f ≤∗ g
denotes ∃n0 ∈ ω ∀n ≥ n0

f(n) ≤ g(n).

• B ⊂ ωω is unbounded family i� there

does not exist g ∈ ωω such that

f ≤∗ g for each f ∈ B.
• Bounding number, b, is the minimal

cardinality of unbounded family.
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h

h = min{|H| : H is a family of open

dense subsets of the order

〈[ω]ω,⊂∗〉 and
⋂
H is not dense}.
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