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Preliminaries

• 〈X, ρ〉, X 6= ∅, ρ ∈ Rel(X) := P(X × X)

• for f : X → Y and ρ ∈ Rel(X), the set (f × f )[ρ] will be denoted by ρf

• for ρ, σ ∈ Rel(X) we shall write ρ ∼= σ iff 〈X, ρ〉 ∼= 〈X, σ〉

Then a bijection f : 〈X, ρ〉 → 〈X, σ〉 is
• a homomorphism iff ρf ⊂ σ
• an isomorphism iff ρf = σ

And also
• [ρ]∼= = {ρf : f ∈ Bij(X)}
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The condensation equivalence

Definition
For ρ, σ ∈ Rel(X) we shall write
• ρ 4c σ iff there exists a bijective homomorphism f : 〈X, ρ〉 → 〈X, σ〉
• ρ ∼c σ iff ρ 4c σ and σ 4c ρ

Then
• 4c is a pre-order on Rel(X) (the condensation pre-order)
• ∼c is an equivalence relation on Rel(X) (the condensation equivalence)

Theorem
For each X 6= ∅ and ρ ∈ Rel(X) we have
• [ρ]∼c = Conv〈Rel(X),⊂〉([ρ]∼=)

• if ρ is finite, then [ρ]∼c = [ρ]∼=
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The condensation order

Definition
For ρ, σ ∈ Rel(X) we shall write [ρ]∼c ≤ [σ]∼c iff ρ 4c σ

Then
• the relation ≤ on Rel(X)/ ∼c is well defined
• the relation ≤ on Rel(X)/ ∼c is a partial order (the condensation order)

Theorem
For ρ, σ ∈ Rel(X) we have [ρ]∼c ≤ [σ]∼c iff there are ρ1 ∈ [ρ]∼c and
σ1 ∈ [σ]∼c such that ρ1 ⊂ σ1

Without loss of generality we can speak only about the structures 〈Rel(κ),⊂〉,
〈Rel(κ),4c〉 and 〈Rel(κ)/ ∼c,≤〉 where κ > 0 is a cardinal
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〈Rel(2),⊂〉 is a Boolean lattice
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〈Rel(2)/ ∼c,≤〉 is not a lattice
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〈Rel(2)/ ∼c,≤〉 is not a lattice
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Reversibility

Definition
A relation ρ ∈ Rel(X) will be called
• strongly reversible iff [ρ]∼= = {ρ} (or equivalently iff [ρ]∼c = {ρ})
• reversible iff [ρ]∼= (or equivalently [ρ]∼c) is a weak antichain in the poset
〈Rel(X),⊂〉

• weakly reversible iff [ρ]∼= is a convex set in the poset 〈Rel(X),⊂〉

We have

ρ is strongly reversible⇒ ρ is reversible⇒ ρ is weakly reversible
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Strongly reversible relations

Theorem
For each ρ ∈ Rel(X) the following conditions are equivalent:
• ρ is strongly reversible
• f ∈ Aut〈X, ρ〉 for each bijection f : X → X

Theorem
The only strongly reversible relations are the following:
• ∅ (the empty relation)
• ∆X (the diagonal)
• (X × X) \∆X (the complete oriented graph)
• X × X (the full relation)
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Reversible relations

Theorem
For each ρ ∈ Rel(X) the following conditions are equivalent:
• ρ is reversible
• f ∈ Aut〈X, ρ〉 for each bijective homomorphism f : X → X

Example
Some reversible relations are the following:
• (Strict) linear orders
• Finite relations
• Finite unions of complete oriented graphs
• Finite unions of tournaments (oriented complete graphs)
• Equivalence relations corresponding to finite partitions
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Weakly reversible relations

Theorem
For each ρ ∈ Rel(X) the following conditions are equivalent:
• ρ is weakly reversible
• [ρ]∼c = [ρ]∼=

• [ρ]∼= is a ρ-star in 〈Rel(X),⊂〉, that is ∀ρ1 ∈ [ρ]∼= [ρ, ρ1] ⊂ [ρ]∼=

Theorem
If ρ ∈ Rel(X) is symmetric and weakly reversible then it is reversible

We have the examples of
• a weakly reversible relation ρ ∈ Rel(ω) which is not reversible
• a relation σ ∈ Rel(ω) which is not weakly reversible
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The complexity of the equivalence classes

We shall identify Rel(ω) = P(ω × ω) with the Cantor cube 2ω×ω ∼= 2ω by
identifying each set A ⊂ ω with its characteristic function χA

The following theorem is a known result.

Theorem
For each ρ ∈ Rel(ω) the isomorphism class [ρ]∼= is an analytic set

We have the similar result.

Theorem
For each ρ ∈ Rel(ω) the condensation class [ρ]∼c is an analytic set
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The size of the equivalence classes

Theorem
For each ρ ∈ Rel(ω) we have |[ρ]∼=| = |[ρ]∼c | ∈ {1, ω, c}

Theorem
If for some ρ ∈ Rel(ω) we have |[ρ]∼=| = ω (or |[ρ]∼c | = ω) then ρ is
reversible.

Theorem
|Rel(ω)/ ∼= | = |Rel(ω)/ ∼c | = c
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Nice partition of Rel(X)/ ∼c

Convex properties (and thus also condensation properties):
• Reflexivity
• Irreflexivity
• Antisymmetricity

Theorem
• {q∼c [ReflX], q∼c [IrreflX], q∼c [¬ReflX ∩¬ IrreflX]} is a partition of the

poset 〈Rel(X)/ ∼c,≤} into convex sets
• The mapping F : 〈q∼c [IrreflX],≤〉 → 〈q∼c [ReflX],≤〉 defined by

F([ρ]∼c) = [ρ ∪∆X]∼c is an isomorphism
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The sets Dρ

Definition
For ρ ∈ IrreflX let Dρ = {[ρ ∪∆A]∼c : A ⊂ X}

Theorem
Let ρ ∈ IrreflX and let G : P(X)→ Dρ, where G(A) = [ρ ∪∆A]∼c . Then G is
injective iff 〈X, ρ〉 is a rigid structure. And then 〈P(X),⊂〉 ∼=G 〈Dρ,≤〉

For a finite cardinal κ, let θκ denote the order type of κ+ 1. For infinite κ let

θκ = type
(〈
{µ ∈ Card : µ ≤ κ},≤

〉
+
〈
{µ ∈ Card : µ < κ},≤

〉∗)
Theorem
For ρ ∈ IrreflX the poset 〈Dρ,≤〉 contains a chain of the type θ|X|. If ρ is
strongly reversible, then 〈Dρ,≤〉 ∼= θ|X|
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The sets Dn
ρ

Definition
For ρ ∈ IrreflX and n < min{ω, |X|+ 1} let Dn

ρ = {[ρ ∪∆A]∼c : A ∈ [X]n}

Theorem
For each ρ ∈ IrreflX , where |X| ≤ ω, the following conditions are equivalent:
• |Dn

ρ| = 1 for some n ≥ 3
• ρ is stronly reversible or a linear order, and Aut〈X, ρ〉 is m-set transitive

for each m ∈ ω
• |Dm

ρ | = 1 for each m ∈ ω

If ρ ∈ IrreflX then either |Dn
ρ| = 1 for each n ∈ ω, or |Dn

ρ| > 1 for each n ≥ 3

Theorem
If ρ ∈ IrreflX is a linear order and |X| ≥ ω, then |Dω

ρ | > 1
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The sets D[ρ]∼c

Definition
For ρ ∈ IrreflX let D[ρ]∼c

=
⋃
σ∈[ρ]∼c

Dσ

Theorem
For ρ ∈ IrreflX we have D[ρ]∼c

= Conv〈Rel(X)/∼c,≤〉(Dρ)

Theorem
Rel(X)/ ∼c=

⋃
[ρ]∼c∈q∼c [IrreflX ]

D[ρ]∼c
is a partition of the set Rel(X)/ ∼c

Theorem
If ρ ∈ IrreflX is weakly reversible, then D[ρ]∼c

= Dρ

We have the example of a relation ρ ∈ Irreflω such that D[ρ]∼c
6= Dρ
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