THE CONDENSATION ORDER ON $\operatorname{Rel}(X)$

Miloš Kurilić and Nenad Morača

Department of Mathematics and Informatics, Faculty of Natural Sciences,
University of Novi Sad, Serbia

21st August 2014

Plan of the presentation

Plan of the presentation

- Preliminaries

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Strongly reversible, reversible and weakly reversible relations

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$
- The size of the equivalence classes in $\operatorname{Rel}(\omega)$

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$
- The size of the equivalence classes in $\operatorname{Rel}(\omega)$
- A partition of the quotient $\operatorname{Rel}(X) / \sim_{c}$

Plan of the presentation

- Preliminaries
- The condensation equivalence on $\operatorname{Rel}(X)$
- The condensation order on the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$
- The size of the equivalence classes in $\operatorname{Rel}(\omega)$
- A partition of the quotient $\operatorname{Rel}(X) / \sim_{c}$
- Suborders $D_{\rho}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \subset X\right\}$ for irreflexive ρ, and the properties of $\operatorname{Aut}\langle X, \rho\rangle$

Preliminaries

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$
- for $f: X \rightarrow Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_{f}

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$
- for $f: X \rightarrow Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_{f}
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho\rangle \cong\langle X, \sigma\rangle$

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$
- for $f: X \rightarrow Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_{f}
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho\rangle \cong\langle X, \sigma\rangle$

Then a bijection $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$ is

- a homomorphism iff $\rho_{f} \subset \sigma$

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$
- for $f: X \rightarrow Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_{f}
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho\rangle \cong\langle X, \sigma\rangle$

Then a bijection $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$ is

- a homomorphism iff $\rho_{f} \subset \sigma$
- an isomorphism iff $\rho_{f}=\sigma$

Preliminaries

- $\langle X, \rho\rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X):=P(X \times X)$
- for $f: X \rightarrow Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_{f}
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho\rangle \cong\langle X, \sigma\rangle$

Then a bijection $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$ is

- a homomorphism iff $\rho_{f} \subset \sigma$
- an isomorphism iff $\rho_{f}=\sigma$

And also

- $[\rho]_{\cong}=\left\{\rho_{f}: f \in \operatorname{Bij}(X)\right\}$

The condensation equivalence

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$
- $\rho \sim_{c} \sigma$ iff $\rho \preccurlyeq_{c} \sigma$ and $\sigma \preccurlyeq_{c} \rho$

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$
- $\rho \sim_{c} \sigma$ iff $\rho \preccurlyeq_{c} \sigma$ and $\sigma \preccurlyeq_{c} \rho$

Then

- \preccurlyeq_{c} is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$
- $\rho \sim_{c} \sigma$ iff $\rho \preccurlyeq_{c} \sigma$ and $\sigma \preccurlyeq_{c} \rho$

Then

- \preccurlyeq_{c} is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_{c} is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$
- $\rho \sim_{c} \sigma$ iff $\rho \preccurlyeq_{c} \sigma$ and $\sigma \preccurlyeq_{c} \rho$

Then

- \preccurlyeq_{c} is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_{c} is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

Theorem
For each $X \neq \emptyset$ and $\rho \in \operatorname{Rel}(X)$ we have

- $[\rho]_{\sim_{c}}=\operatorname{Conv}_{\langle\operatorname{Rel}(X), \subset\rangle}\left([\rho]_{\cong}\right)$

The condensation equivalence

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_{c} \sigma$ iff there exists a bijective homomorphism $f:\langle X, \rho\rangle \rightarrow\langle X, \sigma\rangle$
- $\rho \sim_{c} \sigma$ iff $\rho \preccurlyeq_{c} \sigma$ and $\sigma \preccurlyeq_{c} \rho$

Then

- \preccurlyeq_{c} is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_{c} is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

Theorem
For each $X \neq \emptyset$ and $\rho \in \operatorname{Rel}(X)$ we have

- $[\rho]_{\sim_{c}}=\operatorname{Conv}_{\langle\operatorname{Rel}(X), \subset\rangle}\left([\rho]_{\cong}\right)$
- if ρ is finite, then $[\rho]_{\sim_{c}}=[\rho]_{\cong}$

The condensation order

The condensation order

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff $\rho \preccurlyeq_{c} \sigma$

The condensation order

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff $\rho \preccurlyeq_{c} \sigma$
Then

- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is well defined

The condensation order

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff $\rho \preccurlyeq_{c} \sigma$
Then

- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is well defined
- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is a partial order (the condensation order)

The condensation order

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff $\rho \preccurlyeq_{c} \sigma$
Then

- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is well defined
- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is a partial order (the condensation order)

Theorem

For $\rho, \sigma \in \operatorname{Rel}(X)$ we have $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff there are $\rho_{1} \in[\rho]_{\sim_{c}}$ and $\sigma_{1} \in[\sigma]_{\sim_{c}}$ such that $\rho_{1} \subset \sigma_{1}$

The condensation order

Definition
For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff $\rho \preccurlyeq_{c} \sigma$
Then

- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is well defined
- the relation \leq on $\operatorname{Rel}(X) / \sim_{c}$ is a partial order (the condensation order)

Theorem

For $\rho, \sigma \in \operatorname{Rel}(X)$ we have $[\rho]_{\sim_{c}} \leq[\sigma]_{\sim_{c}}$ iff there are $\rho_{1} \in[\rho]_{\sim_{c}}$ and $\sigma_{1} \in[\sigma]_{\sim_{c}}$ such that $\rho_{1} \subset \sigma_{1}$

Without loss of generality we can speak only about the structures $\langle\operatorname{Rel}(\kappa), \subset\rangle$, $\left\langle\operatorname{Rel}(\kappa), \preccurlyeq c_{c}\right\rangle$ and $\left\langle\operatorname{Rel}(\kappa) / \sim_{c}, \leq\right\rangle$ where $\kappa>0$ is a cardinal

$\langle\operatorname{Rel}(2), \subset\rangle$ is a Boolean lattice

$\langle\operatorname{Rel}(2), \subset\rangle$ is a Boolean lattice

$\left\langle\operatorname{Rel}(2) / \sim_{c}, \leq\right\rangle$ is not a lattice

$\left\langle\operatorname{Rel}(2) / \sim_{c}, \leq\right\rangle$ is not a lattice

Reversibility

Reversibility

Definition

A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong}=\{\rho\}$ (or equivalently iff $[\rho]_{\sim_{c}}=\{\rho\}$)

Reversibility

Definition
A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong}=\{\rho\}$ (or equivalently iff $[\rho]_{\sim_{c}}=\{\rho\}$)
- reversible iff $[\rho] \cong$ (or equivalently $[\rho]_{\sim_{c}}$) is a weak antichain in the poset $\langle\operatorname{Rel}(X), \subset\rangle$

Reversibility

Definition
A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong}=\{\rho\}$ (or equivalently iff $[\rho]_{\sim_{c}}=\{\rho\}$)
- reversible iff $[\rho]_{\cong}$ (or equivalently $[\rho]_{\sim_{c}}$) is a weak antichain in the poset $\langle\operatorname{Rel}(X), \subset\rangle$
- weakly reversible iff $[\rho] \cong$ is a convex set in the poset $\langle\operatorname{Rel}(X), \subset\rangle$

Reversibility

Definition
A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong}=\{\rho\}$ (or equivalently iff $[\rho]_{\sim_{c}}=\{\rho\}$)
- reversible iff $[\rho]_{\cong}$ (or equivalently $[\rho]_{\sim_{c}}$) is a weak antichain in the poset $\langle\operatorname{Rel}(X), \subset\rangle$
- weakly reversible iff $[\rho] \cong$ is a convex set in the poset $\langle\operatorname{Rel}(X), \subset\rangle$

We have
ρ is strongly reversible $\Rightarrow \rho$ is reversible $\Rightarrow \rho$ is weakly reversible

Strongly reversible relations

Strongly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible

Strongly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijection $f: X \rightarrow X$

Strongly reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijection $f: X \rightarrow X$

Theorem
The only strongly reversible relations are the following:

- \emptyset (the empty relation)

Strongly reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijection $f: X \rightarrow X$

Theorem
The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_{X} (the diagonal)

Strongly reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijection $f: X \rightarrow X$

Theorem
The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_{X} (the diagonal)
- $(X \times X) \backslash \Delta_{X}$ (the complete oriented graph)

Strongly reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijection $f: X \rightarrow X$

Theorem
The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_{X} (the diagonal)
- $(X \times X) \backslash \Delta_{X}$ (the complete oriented graph)
- $X \times X$ (the full relation)

Reversible relations

Reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible

Reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Example
Some reversible relations are the following:

- (Strict) linear orders

Reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Example
Some reversible relations are the following:

- (Strict) linear orders
- Finite relations

Reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Example
Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs

Reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs
- Finite unions of tournaments (oriented complete graphs)

Reversible relations

Theorem
For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho\rangle$ for each bijective homomorphism $f: X \rightarrow X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs
- Finite unions of tournaments (oriented complete graphs)
- Equivalence relations corresponding to finite partitions

Weakly reversible relations

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $[\rho]_{\sim_{c}}=[\rho]_{\cong}$

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $[\rho]_{\sim_{c}}=[\rho]_{\cong}$
- $[\rho] \cong$ is a ρ - star in $\langle\operatorname{Rel}(X), \subset\rangle$, that is $\forall \rho_{1} \in[\rho] \cong\left[\rho, \rho_{1}\right] \subset[\rho] \cong$

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $[\rho]_{\sim_{c}}=[\rho]_{\cong}$
- $[\rho] \cong$ is a ρ - star in $\langle\operatorname{Rel}(X), \subset\rangle$, that is $\forall \rho_{1} \in[\rho] \cong\left[\rho, \rho_{1}\right] \subset[\rho] \cong$

Theorem
If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $[\rho]_{\sim_{c}}=[\rho]_{\cong}$
- $[\rho] \cong$ is a ρ - star in $\langle\operatorname{Rel}(X), \subset\rangle$, that is $\forall \rho_{1} \in[\rho] \cong\left[\rho, \rho_{1}\right] \subset[\rho] \cong$

Theorem
If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible
We have the examples of

- a weakly reversible relation $\rho \in \operatorname{Rel}(\omega)$ which is not reversible

Weakly reversible relations

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $[\rho]_{\sim_{c}}=[\rho]_{\cong}$
- $[\rho] \cong$ is a ρ - star in $\langle\operatorname{Rel}(X), \subset\rangle$, that is $\forall \rho_{1} \in[\rho] \cong\left[\rho, \rho_{1}\right] \subset[\rho] \cong$

Theorem
If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible
We have the examples of

- a weakly reversible relation $\rho \in \operatorname{Rel}(\omega)$ which is not reversible
- a relation $\sigma \in \operatorname{Rel}(\omega)$ which is not weakly reversible

The complexity of the equivalence classes

The complexity of the equivalence classes

We shall identify $\operatorname{Rel}(\omega)=P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_{A}

The complexity of the equivalence classes

We shall identify $\operatorname{Rel}(\omega)=P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_{A}

The following theorem is a known result.
Theorem
For each $\rho \in \operatorname{Rel}(\omega)$ the isomorphism class $[\rho] \cong$ is an analytic set

The complexity of the equivalence classes

> We shall identify $\operatorname{Rel}(\omega)=P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_{A}

The following theorem is a known result.
Theorem
For each $\rho \in \operatorname{Rel}(\omega)$ the isomorphism class $[\rho] \cong$ is an analytic set

We have the similar result.
Theorem
For each $\rho \in \operatorname{Rel}(\omega)$ the condensation class $[\rho]_{\sim_{c}}$ is an analytic set

The size of the equivalence classes

The size of the equivalence classes

Theorem
For each $\rho \in \operatorname{Rel}(\omega)$ we have $\left|[\rho]_{\cong}\right|=\left|[\rho]_{\sim_{c}}\right| \in\{1, \omega, \mathfrak{c}\}$

The size of the equivalence classes

```
Theorem
For each \(\rho \in \operatorname{Rel}(\omega)\) we have \(\left|[\rho]_{\cong}\right|=\left|[\rho]_{\sim_{c}}\right| \in\{1, \omega, \mathfrak{c}\}\)
```


Theorem

If for some $\rho \in \operatorname{Rel}(\omega)$ we have $\left|[\rho]_{\cong}\right|=\omega\left(\right.$ or $\left.\left|[\rho]_{\sim_{c}}\right|=\omega\right)$ then ρ is reversible.

The size of the equivalence classes

```
Theorem
For each \(\rho \in \operatorname{Rel}(\omega)\) we have \(\left|[\rho]_{\cong}\right|=\left|[\rho]_{\sim_{c}}\right| \in\{1, \omega, \mathfrak{c}\}\)
```

```
Theorem
If for some \(\rho \in \operatorname{Rel}(\omega)\) we have \(\left|[\rho]_{\cong}\right|=\omega\left(\right.\) or \(\left.\left|[\rho]_{\sim_{c}}\right|=\omega\right)\) then \(\rho\) is reversible.
```


Theorem

$|\operatorname{Rel}(\omega) / \cong|=\left|\operatorname{Rel}(\omega) / \sim_{c}\right|=\mathfrak{c}$

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Convex properties (and thus also condensation properties):

- Reflexivity

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

Theorem

- $\left\{q_{\sim_{c}}\left[\operatorname{Refl}_{X}\right], q_{\sim_{c}}\left[\operatorname{Irrefl}_{X}\right], q_{\sim_{c}}\left[\neg \operatorname{Refl}_{X} \cap \neg \operatorname{Irrefl}_{X}\right]\right\}$ is a partition of the poset $\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\}$ into convex sets

Nice partition of $\operatorname{Rel}(X) / \sim_{c}$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

Theorem

- $\left\{q_{\sim_{c}}\left[\operatorname{Refl}_{X}\right], q_{\sim_{c}}\left[\operatorname{Irrefl}_{X}\right], q_{\sim_{c}}\left[\neg \operatorname{Refl}_{X} \cap \neg \operatorname{Irrefl}_{X}\right]\right\}$ is a partition of the poset $\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\}$ into convex sets
- The mapping $F:\left\langle q_{\sim_{c}}\left[\operatorname{Irrefl}_{X}\right], \leq\right\rangle \rightarrow\left\langle q_{\sim_{c}}\left[\operatorname{Refl}_{X}\right], \leq\right\rangle$ defined by $F\left([\rho]_{\sim_{c}}\right)=\left[\rho \cup \Delta_{X}\right]_{\sim_{c}}$ is an isomorphism

The sets D_{ρ}

The sets D_{ρ}

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ let $D_{\rho}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \subset X\right\}$

The sets D_{ρ}

Definition
For $\rho \in \operatorname{Irrefl}_{X}$ let $D_{\rho}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \subset X\right\}$

Theorem
Let $\rho \in \operatorname{Irrefl}_{X}$ and let $G: P(X) \rightarrow D_{\rho}$, where $G(A)=\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}$. Then G is injective iff $\langle X, \rho\rangle$ is a rigid structure. And then $\langle P(X), \subset\rangle \cong_{G}\left\langle D_{\rho}, \leq\right\rangle$

The sets D_{ρ}

Definition
For $\rho \in \operatorname{Irrefl}_{X}$ let $D_{\rho}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \subset X\right\}$

Theorem

Let $\rho \in \operatorname{Irrefl}_{X}$ and let $G: P(X) \rightarrow D_{\rho}$, where $G(A)=\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}$. Then G is injective iff $\langle X, \rho\rangle$ is a rigid structure. And then $\langle P(X), \subset\rangle \cong_{G}\left\langle D_{\rho}, \leq\right\rangle$

For a finite cardinal κ, let θ_{κ} denote the order type of $\kappa+1$. For infinite κ let

$$
\theta_{\kappa}=\operatorname{type}\left(\langle\{\mu \in \operatorname{Card}: \mu \leq \kappa\}, \leq\rangle+\langle\{\mu \in \operatorname{Card}: \mu<\kappa\}, \leq\rangle^{*}\right)
$$

The sets D_{ρ}

Definition
For $\rho \in \operatorname{Irrefl}_{X}$ let $D_{\rho}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \subset X\right\}$

Theorem

Let $\rho \in \operatorname{Irrefl}_{X}$ and let $G: P(X) \rightarrow D_{\rho}$, where $G(A)=\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}$. Then G is injective iff $\langle X, \rho\rangle$ is a rigid structure. And then $\langle P(X), \subset\rangle \cong_{G}\left\langle D_{\rho}, \leq\right\rangle$

For a finite cardinal κ, let θ_{κ} denote the order type of $\kappa+1$. For infinite κ let

$$
\theta_{\kappa}=\operatorname{type}\left(\langle\{\mu \in \operatorname{Card}: \mu \leq \kappa\}, \leq\rangle+\langle\{\mu \in \operatorname{Card}: \mu<\kappa\}, \leq\rangle^{*}\right)
$$

Theorem
For $\rho \in \operatorname{Irrefl}_{X}$ the poset $\left\langle D_{\rho}, \leq\right\rangle$ contains a chain of the type $\theta_{|X|}$. If ρ is strongly reversible, then $\left\langle D_{\rho}, \leq\right\rangle \cong \theta_{|X|}$

The sets D_{ρ}^{n}

The sets D_{ρ}^{n}

Definition
 For $\rho \in \operatorname{Irrefl}_{X}$ and $n<\min \{\omega,|X|+1\}$ let $D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}$

The sets D_{ρ}^{n}

```
Definition
For \(\rho \in \operatorname{Irrefl}_{X}\) and \(n<\min \{\omega,|X|+1\}\) let \(D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right] \sim_{c}: A \in[X]^{n}\right\}\)
```

Theorem
For each $\rho \in \operatorname{Irrefl}_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$

The sets D_{ρ}^{n}

```
Definition
For \(\rho \in \operatorname{Irrefl}_{X}\) and \(n<\min \{\omega,|X|+1\}\) let \(D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}\)
```

Theorem
For each $\rho \in \operatorname{Irrefl}_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$
- ρ is stronly reversible or a linear order, and $\operatorname{Aut}\langle X, \rho\rangle$ is m-set transitive for each $m \in \omega$

The sets D_{ρ}^{n}

```
Definition
For \(\rho \in \operatorname{Irrefl}_{X}\) and \(n<\min \{\omega,|X|+1\}\) let \(D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}\)
```

Theorem
For each $\rho \in \operatorname{Irrefl}_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$
- ρ is stronly reversible or a linear order, and $\operatorname{Aut}\langle X, \rho\rangle$ is m-set transitive for each $m \in \omega$
- $\left|D_{\rho}^{m}\right|=1$ for each $m \in \omega$

The sets D_{ρ}^{n}

```
Definition
For \(\rho \in \operatorname{Irrefl}_{X}\) and \(n<\min \{\omega,|X|+1\}\) let \(D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}\)
```

Theorem
For each $\rho \in \operatorname{Irrefl}_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$
- ρ is stronly reversible or a linear order, and $\operatorname{Aut}\langle X, \rho\rangle$ is m-set transitive for each $m \in \omega$
- $\left|D_{\rho}^{m}\right|=1$ for each $m \in \omega$

If $\rho \in \operatorname{Irrefl}_{X}$ then either $\left|D_{\rho}^{n}\right|=1$ for each $n \in \omega$,

The sets D_{ρ}^{n}

```
Definition
For \(\rho \in \operatorname{Irrefl}_{X}\) and \(n<\min \{\omega,|X|+1\}\) let \(D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}\)
```

Theorem
For each $\rho \in \operatorname{Irrefl}_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$
- ρ is stronly reversible or a linear order, and $\operatorname{Aut}\langle X, \rho\rangle$ is m-set transitive for each $m \in \omega$
- $\left|D_{\rho}^{m}\right|=1$ for each $m \in \omega$

If $\rho \in \operatorname{Irrefl}_{X}$ then either $\left|D_{\rho}^{n}\right|=1$ for each $n \in \omega$, or $\left|D_{\rho}^{n}\right|>1$ for each $n \geq 3$

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ and $n<\min \{\omega,|X|+1\}$ let $D_{\rho}^{n}=\left\{\left[\rho \cup \Delta_{A}\right]_{\sim_{c}}: A \in[X]^{n}\right\}$

Theorem
For each $\rho \in$ Irrefl $_{X}$, where $|X| \leq \omega$, the following conditions are equivalent:

- $\left|D_{\rho}^{n}\right|=1$ for some $n \geq 3$
- ρ is stronly reversible or a linear order, and $\operatorname{Aut}\langle X, \rho\rangle$ is m-set transitive for each $m \in \omega$
- $\left|D_{\rho}^{m}\right|=1$ for each $m \in \omega$

If $\rho \in \operatorname{Irrefl}_{X}$ then either $\left|D_{\rho}^{n}\right|=1$ for each $n \in \omega$, or $\left|D_{\rho}^{n}\right|>1$ for each $n \geq 3$
Theorem
If $\rho \in$ Irrefl $_{X}$ is a linear order and $|X| \geq \omega$, then $\left|D_{\rho}^{\omega}\right|>1$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ let $\mathcal{D}_{[\rho]_{\sim_{c}}}=\bigcup_{\sigma \in[\rho]_{\sim_{c}}} D_{\sigma}$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ let $\mathcal{D}_{[\rho]_{\sim_{c}}}=\bigcup_{\sigma \in[\rho]_{\sim_{c}}} D_{\sigma}$

Theorem
For $\rho \in \operatorname{Irrefl}_{X}$ we have $\mathcal{D}_{[\rho]_{\sim_{c}}}=\operatorname{Conv}_{\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\rangle}\left(D_{\rho}\right)$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ let $\mathcal{D}_{[\rho]_{\sim_{c}}}=\bigcup_{\sigma \in[\rho]_{\sim_{c}}} D_{\sigma}$

Theorem
For $\rho \in \operatorname{Irrefl}_{X}$ we have $\mathcal{D}_{[\rho]_{\sim_{c}}}=\operatorname{Conv}_{\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\rangle}\left(D_{\rho}\right)$

> Theorem
> $\operatorname{Rel}(X) / \sim_{c}=\bigcup_{[\rho]_{\sim_{c}} \in q_{\sim_{c}}[\text { Irreff }]} \mathcal{D}_{[\rho]_{\sim_{c}}}$ is a partition of the set $\operatorname{Rel}(X) / \sim_{c}$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$

Definition

For $\rho \in \operatorname{Irrefl}_{X}$ let $\mathcal{D}_{[\rho]_{\sim_{c}}}=\bigcup_{\sigma \in[\rho]_{\sim_{c}}} D_{\sigma}$

Theorem
For $\rho \in \operatorname{Irrefl}_{X}$ we have $\mathcal{D}_{[\rho]_{\sim_{c}}}=\operatorname{Conv}_{\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\rangle}\left(D_{\rho}\right)$

> Theorem
> $\operatorname{Rel}(X) / \sim_{c}=\bigcup_{[\rho]_{\sim_{c}} \in q_{\sim_{c}}[\text { Irreff }]} \mathcal{D}_{[\rho]_{\sim_{c}}}$ is a partition of the set $\operatorname{Rel}(X) / \sim_{c}$

Theorem
If $\rho \in$ Irrefl $_{X}$ is weakly reversible, then $\mathcal{D}_{[\rho]_{\sim_{c}}}=D_{\rho}$

The sets $\mathcal{D}_{[\rho]_{\sim_{c}}}$
Definition
For $\rho \in \operatorname{Irrefl} X_{X}$ let $\mathcal{D}_{[\rho]_{\sim_{c}}}=\bigcup_{\sigma \in[\rho]_{c}} D_{\sigma}$
Theorem
For $\rho \in \operatorname{Irrefl}_{X}$ we have $\mathcal{D}_{[\rho]_{\sim_{c}}}=\operatorname{Conv}_{\left\langle\operatorname{Rel}(X) / \sim_{c}, \leq\right\rangle}\left(D_{\rho}\right)$

> Theorem
> $\operatorname{Rel}(X) / \sim_{c}=\bigcup_{[\rho]_{\sim_{c}} \in q_{\sim_{c}}[\text { Irreff }]} \mathcal{D}_{[\rho]_{\sim_{c}}}$ is a partition of the set $\operatorname{Rel}(X) / \sim_{c}$

Theorem
If $\rho \in$ Irrefl $_{X}$ is weakly reversible, then $\mathcal{D}_{[\rho]_{\sim_{c}}}=D_{\rho}$
We have the example of a relation $\rho \in \operatorname{Irref}_{\omega}$ such that $\mathcal{D}_{[\rho]_{\sim_{c}}} \neq D_{\rho}$

References

R. Fraïssé, Theory of relations, Revised edition, With an appendix by Norbert Sauer, Studies in Logic and the Foundations of Mathematics, 145. North-Holland, Amsterdam, (2000)
W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993.
T. Jech, Set Theory, 2nd corr. Edition, Springer, Berlin, 1997.
A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995.
A. H. Lachlan, R. E. Woodrow, Countable ultrahomogeneous undirected graphs, Trans. Amer. Math. Soc., 262,1 (1980) 51-94.
R. C. Lyndon, Properties preserved under homomorphism, Pacific J. Math. 9 (1959) 143-154.
J. G. Rosenstein, Linear orderings, Pure and Applied Mathematics, 98, Academic Press, Inc., Harcourt Brace Jovanovich Publishers, New York-London, 1982.
J. H. Schmerl, Countable homogeneous partially ordered sets, Algebra Univers. 9,3 (1979) 317-321.

