THE CONDENSATION ORDER ON Rel(X)

Miloš Kurilić and Nenad Morača

Department of Mathematics and Informatics, Faculty of Natural Sciences, University of Novi Sad, Serbia

21st August 2014

(SE|=OP 2014, Novi Sad)

イロン イロン イヨン イヨン

• Preliminaries

イロト イポト イヨト イヨト

- Preliminaries
- The condensation equivalence on Rel(X)

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$
- Strongly reversible, reversible and weakly reversible relations

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\mathrm{Rel}(\omega)$

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\mathrm{Rel}(\omega)$
- The size of the equivalence classes in $\mathrm{Rel}(\omega)$

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$
- The size of the equivalence classes in $\operatorname{Rel}(\omega)$
- A partition of the quotient $\operatorname{Rel}(X)/\sim_c$

• • • • • • • • • • • • •

- Preliminaries
- The condensation equivalence on Rel(X)
- The condensation order on the quotient $\operatorname{Rel}(X)/\sim_c$
- Strongly reversible, reversible and weakly reversible relations
- The complexity of the equivalence classes in $\operatorname{Rel}(\omega)$
- The size of the equivalence classes in $\mathrm{Rel}(\omega)$
- A partition of the quotient $\operatorname{Rel}(X)/\sim_c$
- Suborders D_ρ = {[ρ ∪ Δ_A]_{~c} : A ⊂ X} for irreflexive ρ, and the properties of Aut(X, ρ)

(SE|=OP 2014, Novi Sad)

<ロ> <四> <四> <四> <四> <四> <四</p>

•
$$\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$$

<ロ> <四> <四> <四> <四> <四> <四</p>

- $\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$
- for $f: X \to Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_f

- $\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$
- for $f: X \to Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_f
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho \rangle \cong \langle X, \sigma \rangle$

- $\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$
- for $f: X \to Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_f
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho \rangle \cong \langle X, \sigma \rangle$

Then a bijection $f:\langle X,\rho\rangle \to \langle X,\sigma\rangle$ is

• a homomorphism iff $\rho_f \subset \sigma$

- $\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$
- for $f: X \to Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_f
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho \rangle \cong \langle X, \sigma \rangle$
- Then a bijection $f : \langle X, \rho \rangle \rightarrow \langle X, \sigma \rangle$ is
 - a homomorphism iff $\rho_f \subset \sigma$
 - an isomorphism iff $\rho_f = \sigma$

- $\langle X, \rho \rangle, X \neq \emptyset, \rho \in \operatorname{Rel}(X) := P(X \times X)$
- for $f: X \to Y$ and $\rho \in \operatorname{Rel}(X)$, the set $(f \times f)[\rho]$ will be denoted by ρ_f
- for $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $\rho \cong \sigma$ iff $\langle X, \rho \rangle \cong \langle X, \sigma \rangle$
- Then a bijection $f:\langle X,\rho\rangle\to\langle X,\sigma\rangle$ is
 - a homomorphism iff $\rho_f \subset \sigma$
 - an isomorphism iff $\rho_f = \sigma$

And also

•
$$[\rho]_{\cong} = \{\rho_f : f \in \operatorname{Bij}(X)\}$$

(SE|=OP 2014, Novi Sad)

Definition

- For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write
 - $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \rightarrow \langle X, \sigma \rangle$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \to \langle X, \sigma \rangle$
- $\rho \sim_c \sigma$ iff $\rho \preccurlyeq_c \sigma$ and $\sigma \preccurlyeq_c \rho$

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \to \langle X, \sigma \rangle$
- $\rho \sim_c \sigma$ iff $\rho \preccurlyeq_c \sigma$ and $\sigma \preccurlyeq_c \rho$

Then

• \preccurlyeq_c is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)

• • • • • • • • • • • • •

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \to \langle X, \sigma \rangle$
- $\rho \sim_c \sigma$ iff $\rho \preccurlyeq_c \sigma$ and $\sigma \preccurlyeq_c \rho$

Then

- \preccurlyeq_c is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_c is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \to \langle X, \sigma \rangle$
- $\rho \sim_c \sigma$ iff $\rho \preccurlyeq_c \sigma$ and $\sigma \preccurlyeq_c \rho$

Then

- \preccurlyeq_c is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_c is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

Theorem

For each $X \neq \emptyset$ and $\rho \in \operatorname{Rel}(X)$ we have

•
$$[\rho]_{\sim_c} = \operatorname{Conv}_{\langle \operatorname{Rel}(X), \subset \rangle}([\rho]_{\cong})$$

イロト イポト イヨト イヨト

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write

- $\rho \preccurlyeq_c \sigma$ iff there exists a bijective homomorphism $f : \langle X, \rho \rangle \to \langle X, \sigma \rangle$
- $\rho \sim_c \sigma$ iff $\rho \preccurlyeq_c \sigma$ and $\sigma \preccurlyeq_c \rho$

Then

- \preccurlyeq_c is a pre-order on $\operatorname{Rel}(X)$ (the condensation pre-order)
- \sim_c is an equivalence relation on $\operatorname{Rel}(X)$ (the condensation equivalence)

Theorem

For each $X \neq \emptyset$ and $\rho \in \operatorname{Rel}(X)$ we have

- $[\rho]_{\sim_c} = \operatorname{Conv}_{\langle \operatorname{Rel}(X), \subset \rangle}([\rho]_{\cong})$
- if ρ is finite, then $[\rho]_{\sim_c} = [\rho]_{\cong}$

イロト イポト イヨト イヨト

(SE|=OP 2014, Novi Sad)

<ロト < 四ト < 三ト < 三ト

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff $\rho \preccurlyeq_c \sigma$

-

• • • • • • • • • • • • •

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff $\rho \preccurlyeq_c \sigma$

Then

• the relation \leq on $\operatorname{Rel}(X) / \sim_c$ is well defined

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff $\rho \preccurlyeq_c \sigma$

Then

- the relation \leq on Rel $(X) / \sim_c$ is well defined
- the relation \leq on Rel(*X*)/ \sim_c is a partial order (**the condensation order**)

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff $\rho \preccurlyeq_c \sigma$

Then

- the relation \leq on $\operatorname{Rel}(X)/\sim_c$ is well defined
- the relation \leq on Rel(*X*)/ \sim_c is a partial order (**the condensation order**)

Theorem

For $\rho, \sigma \in \operatorname{Rel}(X)$ we have $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff there are $\rho_1 \in [\rho]_{\sim_c}$ and $\sigma_1 \in [\sigma]_{\sim_c}$ such that $\rho_1 \subset \sigma_1$

Definition

For $\rho, \sigma \in \operatorname{Rel}(X)$ we shall write $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff $\rho \preccurlyeq_c \sigma$

Then

- the relation \leq on Rel(*X*)/ \sim_c is well defined
- the relation \leq on Rel(*X*)/ \sim_c is a partial order (**the condensation order**)

Theorem

For $\rho, \sigma \in \operatorname{Rel}(X)$ we have $[\rho]_{\sim_c} \leq [\sigma]_{\sim_c}$ iff there are $\rho_1 \in [\rho]_{\sim_c}$ and $\sigma_1 \in [\sigma]_{\sim_c}$ such that $\rho_1 \subset \sigma_1$

Without loss of generality we can speak only about the structures $\langle \text{Rel}(\kappa), \subset \rangle$, $\langle \text{Rel}(\kappa), \preccurlyeq_c \rangle$ and $\langle \text{Rel}(\kappa) / \sim_c, \leq \rangle$ where $\kappa > 0$ is a cardinal

$\langle \operatorname{Rel}(2), \subset \rangle$ is a Boolean lattice

(SE=OP 2014, Novi Sad)

■ ◆ ■ ▶ ■ つへで 21st August 2014 6/18

<ロト < 四ト < 三ト < 三ト

$\langle \operatorname{Rel}(2), \subset \rangle$ is a Boolean lattice

$\langle \operatorname{Rel}(2)/\sim_c,\leq\rangle$ is not a lattice

<ロト < 四ト < 三ト < 三ト

$\langle \operatorname{Rel}(2)/\sim_c,\leq\rangle$ is not a lattice

Reversibility

(SE|=OP 2014, Novi Sad)

<ロト < 四ト < 三ト < 三ト

Reversibility

Definition

A relation $\rho \in \operatorname{Rel}(X)$ will be called

• strongly reversible iff $[\rho]_{\cong} = \{\rho\}$ (or equivalently iff $[\rho]_{\sim_c} = \{\rho\}$)

• • • • • • • • • • • • •
Reversibility

Definition

A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong} = \{\rho\}$ (or equivalently iff $[\rho]_{\sim_c} = \{\rho\}$)
- reversible iff $[\rho]_{\cong}$ (or equivalently $[\rho]_{\sim_c}$) is a weak antichain in the poset $\langle \operatorname{Rel}(X), \subset \rangle$

Reversibility

Definition

A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong} = \{\rho\}$ (or equivalently iff $[\rho]_{\sim_c} = \{\rho\}$)
- reversible iff $[\rho]_{\cong}$ (or equivalently $[\rho]_{\sim_c}$) is a weak antichain in the poset $\langle \operatorname{Rel}(X), \subset \rangle$
- weakly reversible iff $[\rho] \cong$ is a convex set in the poset $(\operatorname{Rel}(X), \subset)$

Reversibility

Definition

A relation $\rho \in \operatorname{Rel}(X)$ will be called

- strongly reversible iff $[\rho]_{\cong} = \{\rho\}$ (or equivalently iff $[\rho]_{\sim_c} = \{\rho\}$)
- reversible iff [ρ]_≃ (or equivalently [ρ]_{∼c}) is a weak antichain in the poset ⟨Rel(X), ⊂⟩
- weakly reversible iff $[\rho]_{\cong}$ is a convex set in the poset $(\operatorname{Rel}(X), \subset)$

We have

 ρ is strongly reversible $\Rightarrow \rho$ is reversible $\Rightarrow \rho$ is weakly reversible

(SE|=OP 2014, Novi Sad)

■ ▶ < ■ ▶ ■ つへの 21st August 2014 9/18

<ロト < 四ト < 三ト < 三ト

Theorem

- For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:
 - ρ is strongly reversible

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijection $f: X \to X$

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijection $f: X \to X$

Theorem

The only strongly reversible relations are the following:

• \emptyset (the empty relation)

< □ > < □ > < □ > < □ >

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijection $f: X \to X$

Theorem

The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_X (the diagonal)

< □ > < □ > < □ > < □ >

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijection $f: X \to X$

Theorem

The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_X (the diagonal)
- $(X \times X) \setminus \Delta_X$ (the complete oriented graph)

• • • • • • • • • • • • • •

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is strongly reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijection $f: X \to X$

Theorem

The only strongly reversible relations are the following:

- \emptyset (the empty relation)
- Δ_X (the diagonal)
- $(X \times X) \setminus \Delta_X$ (the complete oriented graph)
- $X \times X$ (the full relation)

• • • • • • • • • • • • •

(SE|=OP 2014, Novi Sad)

2

<ロト < 四ト < 三ト < 三ト

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

• ρ is reversible

• • • • • • • • • • • •

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

• • • • • • • • • • • • •

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

Example

Some reversible relations are the following:

• (Strict) linear orders

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs
- Finite unions of tournaments (oriented complete graphs)

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is reversible
- $f \in \operatorname{Aut}\langle X, \rho \rangle$ for each bijective homomorphism $f: X \to X$

Example

Some reversible relations are the following:

- (Strict) linear orders
- Finite relations
- Finite unions of complete oriented graphs
- Finite unions of tournaments (oriented complete graphs)
- Equivalence relations corresponding to finite partitions

• • • • • • • • • • • • • •

(SE|=OP 2014, Novi Sad)

21st August 2014 11 / 18

2

<ロト < 四ト < 三ト < 三ト

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

• ρ is weakly reversible

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $\bullet \ [\rho]_{\sim_c} = [\rho]_\cong$

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- ρ is weakly reversible
- $\bullet \ [\rho]_{\sim_c} = [\rho]_{\cong}$
- $[\rho]_{\cong}$ is a ρ -star in $\langle \operatorname{Rel}(X), \subset \rangle$, that is $\forall \rho_1 \in [\rho]_{\cong} \ [\rho, \rho_1] \subset [\rho]_{\cong}$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is weakly reversible
- $\bullet \ [\rho]_{\sim_c} = [\rho]_{\cong}$
- $[\rho]_{\cong}$ is a ρ -star in $\langle \operatorname{Rel}(X), \subset \rangle$, that is $\forall \rho_1 \in [\rho]_{\cong} \ [\rho, \rho_1] \subset [\rho]_{\cong}$

Theorem

If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is weakly reversible
- $\bullet \ [\rho]_{\sim_c} = [\rho]_{\cong}$
- $[\rho]_{\cong}$ is a ρ -star in $\langle \operatorname{Rel}(X), \subset \rangle$, that is $\forall \rho_1 \in [\rho]_{\cong} \ [\rho, \rho_1] \subset [\rho]_{\cong}$

Theorem

If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible

We have the examples of

• a weakly reversible relation $\rho \in \operatorname{Rel}(\omega)$ which is not reversible

• • • • • • • • • • • • • •

Theorem

For each $\rho \in \operatorname{Rel}(X)$ the following conditions are equivalent:

- *ρ* is weakly reversible
- $\bullet \ [\rho]_{\sim_c} = [\rho]_{\cong}$
- $[\rho]_{\cong}$ is a ρ -star in $\langle \operatorname{Rel}(X), \subset \rangle$, that is $\forall \rho_1 \in [\rho]_{\cong} \ [\rho, \rho_1] \subset [\rho]_{\cong}$

Theorem

If $\rho \in \operatorname{Rel}(X)$ is symmetric and weakly reversible then it is reversible

We have the examples of

- a weakly reversible relation $\rho \in \operatorname{Rel}(\omega)$ which is not reversible
- a relation $\sigma \in \operatorname{Rel}(\omega)$ which is not weakly reversible

(SE=OP 2014, Novi Sad)

21st August 2014 12 / 18

< □ > < 同 > < 回 > < 回 > < 回

We shall identify $\operatorname{Rel}(\omega) = P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_A

We shall identify $\operatorname{Rel}(\omega) = P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_A

The following theorem is a known result.

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ the isomorphism class $[\rho]_{\cong}$ is an analytic set

We shall identify $\operatorname{Rel}(\omega) = P(\omega \times \omega)$ with the Cantor cube $2^{\omega \times \omega} \cong 2^{\omega}$ by identifying each set $A \subset \omega$ with its characteristic function χ_A

The following theorem is a known result.

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ the isomorphism class $[\rho]_{\cong}$ is an analytic set

We have the similar result.

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ the condensation class $[\rho]_{\sim_c}$ is an analytic set

< ロ > < 同 > < 回 > < 回 > < 回 >

(SE=OP 2014, Novi Sad)

21st August 2014 13 / 18

< □ > < 同 > < 回 > < 回 > < 回

э

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ we have $|[\rho]_{\cong}| = |[\rho]_{\sim_c}| \in \{1, \omega, \mathfrak{c}\}$

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ we have $|[\rho]_{\cong}| = |[\rho]_{\sim_c}| \in \{1, \omega, \mathfrak{c}\}$

Theorem

If for some $\rho \in \operatorname{Rel}(\omega)$ we have $|[\rho]_{\cong}| = \omega$ (or $|[\rho]_{\sim_c}| = \omega$) then ρ is reversible.

Theorem

For each $\rho \in \operatorname{Rel}(\omega)$ we have $|[\rho]_{\cong}| = |[\rho]_{\sim_c}| \in \{1, \omega, \mathfrak{c}\}$

Theorem

If for some $\rho \in \operatorname{Rel}(\omega)$ we have $|[\rho]_{\cong}| = \omega$ (or $|[\rho]_{\sim_c}| = \omega$) then ρ is reversible.

Theorem

 $|\operatorname{Rel}(\omega)/\cong|=|\operatorname{Rel}(\omega)/\sim_c|=\mathfrak{c}$

・ロト ・ 四ト ・ ヨト ・ ヨト

Nice partition of $\operatorname{Rel}(X)/\sim_c$

(SE=OP 2014, Novi Sad)

<ロト < 四ト < 三ト < 三ト

Nice partition of $\operatorname{Rel}(X)/\sim_c$

Convex properties (and thus also condensation properties):

• Reflexivity

< □ > < 同 > < 回 > < 回 > < 回

Nice partition of $\operatorname{Rel}(X)/\sim_c$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity

< □ > < 同 > < 回 > < 回 > < 回
Nice partition of $\operatorname{Rel}(X)/\sim_c$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

< □ > < 同 > < 回 > < 回 > < 回

Nice partition of $\operatorname{Rel}(X)/\sim_c$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

Theorem

{q_{~c}[Refl_X], q_{~c}[Irrefl_X], q_{~c}[¬Refl_X ∩¬Irrefl_X]} is a partition of the poset ⟨Rel(X)/ ~c, ≤} into convex sets

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nice partition of $\operatorname{Rel}(X)/\sim_c$

Convex properties (and thus also condensation properties):

- Reflexivity
- Irreflexivity
- Antisymmetricity

Theorem

- {q_{~c}[Refl_X], q_{~c}[Irrefl_X], q_{~c}[¬Refl_X ∩¬Irrefl_X]} is a partition of the poset ⟨Rel(X)/ ~c, ≤} into convex sets
- The mapping $F : \langle q_{\sim_c}[\operatorname{Irrefl}_X], \leq \rangle \to \langle q_{\sim_c}[\operatorname{Refl}_X], \leq \rangle$ defined by $F([\rho]_{\sim_c}) = [\rho \cup \Delta_X]_{\sim_c}$ is an isomorphism

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲口 > ▲圖 > ▲ 国 > ▲ 国 > 二 国

Definition

For $\rho \in \operatorname{Irrefl}_X$ let $D_{\rho} = \{ [\rho \cup \Delta_A]_{\sim_c} : A \subset X \}$

<ロト < 四ト < 三ト < 三ト

Definition

For $\rho \in \operatorname{Irrefl}_X$ let $D_{\rho} = \{ [\rho \cup \Delta_A]_{\sim_c} : A \subset X \}$

Theorem

Let $\rho \in \operatorname{Irrefl}_X$ and let $G : P(X) \to D_\rho$, where $G(A) = [\rho \cup \Delta_A]_{\sim_c}$. Then *G* is injective iff $\langle X, \rho \rangle$ is a rigid structure. And then $\langle P(X), \subset \rangle \cong_G \langle D_\rho, \leq \rangle$

Definition

For $\rho \in \operatorname{Irrefl}_X$ let $D_{\rho} = \{ [\rho \cup \Delta_A]_{\sim_c} : A \subset X \}$

Theorem

Let $\rho \in \operatorname{Irrefl}_X$ and let $G : P(X) \to D_\rho$, where $G(A) = [\rho \cup \Delta_A]_{\sim_c}$. Then *G* is injective iff $\langle X, \rho \rangle$ is a rigid structure. And then $\langle P(X), \subset \rangle \cong_G \langle D_\rho, \leq \rangle$

For a finite cardinal κ , let θ_{κ} denote the order type of $\kappa + 1$. For infinite κ let

$$\theta_{\kappa} = \operatorname{type}\left(\left\langle \{\mu \in \operatorname{Card} : \mu \leq \kappa\}, \leq \right\rangle + \left\langle \{\mu \in \operatorname{Card} : \mu < \kappa\}, \leq \right\rangle^{*}\right)$$

• • • • • • • • • • • •

Definition

For $\rho \in \operatorname{Irrefl}_X \operatorname{let} D_\rho = \{ [\rho \cup \Delta_A]_{\sim_c} : A \subset X \}$

Theorem

Let $\rho \in \operatorname{Irrefl}_X$ and let $G : P(X) \to D_\rho$, where $G(A) = [\rho \cup \Delta_A]_{\sim_c}$. Then G is injective iff $\langle X, \rho \rangle$ is a rigid structure. And then $\langle P(X), \subset \rangle \cong_G \langle D_\rho, \leq \rangle$

For a finite cardinal κ , let θ_{κ} denote the order type of $\kappa + 1$. For infinite κ let

$$\theta_{\kappa} = \operatorname{type}\left(\left\langle \{\mu \in \operatorname{Card} : \mu \leq \kappa\}, \leq \right\rangle + \left\langle \{\mu \in \operatorname{Card} : \mu < \kappa\}, \leq \right\rangle^{*}\right)$$

Theorem

For $\rho \in \text{Irrefl}_X$ the poset $\langle D_{\rho}, \leq \rangle$ contains a chain of the type $\theta_{|X|}$. If ρ is strongly reversible, then $\langle D_{\rho}, \leq \rangle \cong \theta_{|X|}$

▲口 > ▲圖 > ▲ 国 > ▲ 国 > 二 国

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X| + 1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

3

<ロト < 四ト < 三ト < 三ト

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

•
$$|D_{\rho}^n| = 1$$
 for some $n \ge 3$

• • • • • • • • • • • • •

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

- $|D_{\rho}^n| = 1$ for some $n \ge 3$
- *ρ* is stronly reversible or a linear order, and Aut(X, *ρ*) is *m*-set transitive for each *m* ∈ *ω*

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

- $|D_{\rho}^n| = 1$ for some $n \ge 3$
- *ρ* is stronly reversible or a linear order, and Aut(X, *ρ*) is *m*-set transitive for each *m* ∈ ω
- $|D_{\rho}^{m}| = 1$ for each $m \in \omega$

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

- $|D_{\rho}^n| = 1$ for some $n \ge 3$
- *ρ* is stronly reversible or a linear order, and Aut(X, *ρ*) is *m*-set transitive for each *m* ∈ *ω*
- $|D_{\rho}^{m}| = 1$ for each $m \in \omega$

If $\rho \in \text{Irrefl}_X$ then either $|D_{\rho}^n| = 1$ for each $n \in \omega$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

- $|D_{\rho}^n| = 1$ for some $n \ge 3$
- *ρ* is stronly reversible or a linear order, and Aut(X, *ρ*) is *m*-set transitive for each *m* ∈ *ω*
- $|D_{\rho}^{m}| = 1$ for each $m \in \omega$

If $\rho \in \text{Irrefl}_X$ then either $|D_{\rho}^n| = 1$ for each $n \in \omega$, or $|D_{\rho}^n| > 1$ for each $n \ge 3$

イロト イポト イヨト イヨト

Definition

For $\rho \in \operatorname{Irrefl}_X$ and $n < \min\{\omega, |X|+1\}$ let $D_{\rho}^n = \{[\rho \cup \Delta_A]_{\sim_c} : A \in [X]^n\}$

Theorem

For each $\rho \in \text{Irrefl}_X$, where $|X| \leq \omega$, the following conditions are equivalent:

- $|D_{\rho}^n| = 1$ for some $n \ge 3$
- *ρ* is stronly reversible or a linear order, and Aut(X, *ρ*) is *m*-set transitive for each *m* ∈ *ω*
- $|D_{\rho}^{m}| = 1$ for each $m \in \omega$

If $\rho \in \text{Irrefl}_X$ then either $|D_{\rho}^n| = 1$ for each $n \in \omega$, or $|D_{\rho}^n| > 1$ for each $n \ge 3$

Theorem

If $\rho \in \operatorname{Irrefl}_X$ is a linear order and $|X| \ge \omega$, then $|D_{\rho}^{\omega}| > 1$

<ロ> <四> <四> <四> <四> <四> <四</p>

The sets $\mathcal{D}_{[\rho]_{\sim c}}$

For $\rho \in \operatorname{Irrefl}_X$ let $\mathcal{D}_{[\rho]_{\sim_c}} = \bigcup_{\sigma \in [\rho]_{\sim_c}} D_{\sigma}$

イロト イポト イヨト イヨト

The sets $\mathcal{D}_{[\rho]_{\sim c}}$

For
$$\rho \in \operatorname{Irrefl}_X$$
 let $\mathcal{D}_{[\rho]_{\sim_c}} = \bigcup_{\sigma \in [\rho]_{\sim_c}} D_{\sigma}$

Theorem

For $\rho \in \operatorname{Irrefl}_X$ we have $\mathcal{D}_{[\rho]_{\sim_c}} = \operatorname{Conv}_{\langle \operatorname{Rel}(X)/\sim_c, \leq \rangle}(D_{\rho})$

<ロト < 四ト < 三ト < 三ト

The sets $\mathcal{D}_{[\rho]_{\sim c}}$

For
$$\rho \in \operatorname{Irrefl}_X$$
 let $\mathcal{D}_{[\rho]_{\sim_c}} = \bigcup_{\sigma \in [\rho]_{\sim_c}} D_{\sigma}$

Theorem

For
$$\rho \in \operatorname{Irrefl}_X$$
 we have $\mathcal{D}_{[\rho]_{\sim_c}} = \operatorname{Conv}_{\langle \operatorname{Rel}(X)/\sim_c, \leq \rangle}(D_{\rho})$

Theorem

$$\operatorname{Rel}(X)/\sim_c = \bigcup_{[\rho]\sim_c \in q_{\sim_c}[\operatorname{Irrefl}_X]} \mathcal{D}_{[\rho]\sim_c}$$
 is a partition of the set $\operatorname{Rel}(X)/\sim_c$

(SE=OP 2014, Novi Sad)

21st August 2014 17 / 18

The sets $\mathcal{D}_{[\rho]_{\sim n}}$

For
$$\rho \in \operatorname{Irrefl}_X$$
 let $\mathcal{D}_{[\rho]_{\sim_c}} = \bigcup_{\sigma \in [\rho]_{\sim_c}} D_{\sigma}$

Theorem

For
$$\rho \in \operatorname{Irrefl}_X$$
 we have $\mathcal{D}_{[\rho]_{\sim_c}} = \operatorname{Conv}_{\langle \operatorname{Rel}(X)/\sim_c, \leq \rangle}(D_{\rho})$

Theorem

 $\operatorname{Rel}(X)/\sim_c = \bigcup_{[\rho]_{\sim_c} \in q_{\sim_c}[\operatorname{Irrefl}_X]} \mathcal{D}_{[\rho]_{\sim_c}}$ is a partition of the set $\operatorname{Rel}(X)/\sim_c$

Theorem

If
$$\rho \in \operatorname{Irrefl}_X$$
 is weakly reversible, then $\mathcal{D}_{[\rho]_{\sim_c}} = D_{\rho}$

(SE=OP 2014, Novi Sad)

<ロト < 四ト < 三ト < 三ト

The sets $\mathcal{D}_{[\rho]_{\sim a}}$

For
$$\rho \in \operatorname{Irrefl}_X$$
 let $\mathcal{D}_{[\rho]_{\sim_c}} = \bigcup_{\sigma \in [\rho]_{\sim_c}} D_{\sigma}$

Theorem

For
$$\rho \in \operatorname{Irrefl}_X$$
 we have $\mathcal{D}_{[\rho]_{\sim_c}} = \operatorname{Conv}_{\langle \operatorname{Rel}(X)/\sim_c, \leq \rangle}(D_{\rho})$

Theorem

 $\operatorname{Rel}(X)/\sim_c = \bigcup_{[\rho]_{\sim_c} \in q_{\sim_c}[\operatorname{Irrefl}_X]} \mathcal{D}_{[\rho]_{\sim_c}}$ is a partition of the set $\operatorname{Rel}(X)/\sim_c$

Theorem

If
$$\rho \in \operatorname{Irrefl}_X$$
 is weakly reversible, then $\mathcal{D}_{[\rho]_{\sim_c}} = D_{\rho}$

We have the example of a relation $\rho \in \operatorname{Irrefl}_{\omega}$ such that $\mathcal{D}_{[\rho]_{\sim_c}} \neq D_{\rho}$

イロト イポト イヨト イヨト

References

1

1

1

- W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993.
- T. Jech, Set Theory, 2nd corr. Edition, Springer, Berlin, 1997.
- A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995.
- A. H. Lachlan, R. E. Woodrow, Countable ultrahomogeneous undirected graphs, Trans. Amer. Math. Soc., 262,1 (1980) 51-94.
- R. C. Lyndon, Properties preserved under homomorphism, Pacific J. Math. 9 (1959) 143-154.
- J. G. Rosenstein, Linear orderings, Pure and Applied Mathematics, 98, Academic Press, Inc., Harcourt Brace Jovanovich Publishers, New York-London, 1982.
- J. H. Schmerl, Countable homogeneous partially ordered sets, Algebra Univers. 9,3 (1979) 317-321.

イロト イポト イヨト イヨト