Partial orders of isomorphic substructures of ultrahomogeneous relational structures

SETTOP, Novi Sad, August 2014

Boriša Kuzeljević

Mathematical Institute SANU

Joint work with Miloš Kurilić

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 1 / 11

<日 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Formulation

Describe maximal chains in partial orders of the form $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, for an ultrahomogeneous relational structure \mathbb{X} , where $\mathbb{P}(\mathbb{X}) = \{A \subset \mathbb{X} : A \cong \mathbb{X}\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の Q (>)

Formulation

Describe maximal chains in partial orders of the form $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, for an ultrahomogeneous relational structure \mathbb{X} , where $\mathbb{P}(\mathbb{X}) = \{A \subset \mathbb{X} : A \cong \mathbb{X}\}$.

Theorem (Our starting point, Kurilić 2010)

Linear order is isomorphic to a maximal chain in $\langle \mathbb{P}(\mathbb{Q}, <) \cup \{\emptyset\}, \subset \rangle$ if and only if it is complete, \mathbb{R} -embeddable with minimum non-isolated.

200

イロト イポト イヨト イヨト 三日

Formulation

Describe maximal chains in partial orders of the form $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, for an ultrahomogeneous relational structure \mathbb{X} , where $\mathbb{P}(\mathbb{X}) = \{A \subset \mathbb{X} : A \cong \mathbb{X}\}$.

Theorem (Our starting point, Kurilić 2010)

Linear order is isomorphic to a maximal chain in $\langle \mathbb{P}(\mathbb{Q}, <) \cup \{\emptyset\}, \subset \rangle$ if and only if it is complete, \mathbb{R} -embeddable with minimum non-isolated.

Theorem (Kuratowski 1921)

Linear order is isomorphic to a maximal chain in $\langle P(\kappa), \subset \rangle$ if and only if it is isomorphic to Init(L) for some linear order L of cardinality κ .

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Formulation

Describe maximal chains in partial orders of the form $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, for an ultrahomogeneous relational structure \mathbb{X} , where $\mathbb{P}(\mathbb{X}) = \{A \subset \mathbb{X} : A \cong \mathbb{X}\}$.

Theorem (Our starting point, Kurilić 2010)

Linear order is isomorphic to a maximal chain in $(\mathbb{P}(\mathbb{Q}, <) \cup \{\emptyset\}, \subset)$ if and only if it is complete, \mathbb{R} -embeddable with minimum non-isolated.

Theorem (Kuratowski 1921)

Linear order is isomorphic to a maximal chain in $\langle P(\kappa), \subset \rangle$ if and only if it is isomorphic to Init(L) for some linear order L of cardinality κ .

Open problem on maximal chains (1907)

Does every maximal chain in \mathbb{R}^{ω} contain (ω_1, ω_1^*) gap?

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

nac

Notation

- $\mathcal{L}_{\mathbb{X}}$ the class of order types of maximal chains in $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$, for a relational structure \mathbb{X} ;
- $\mathcal{C}_{\mathbb{R}}$ the class of order types of complete $\mathbb{R}\text{-embeddable}$ linear orders with minimum non-isolated.

By complete we mean Dedekind-complete with minimum and maximum.

Also, it holds that $C_{\mathbb{R}}$ = the class of order types of compact sets of reals K, such that min $K \in K'$;

 $\mathcal{B}_{\mathbb{R}}$ - the class of order types of boolean $\mathbb{R}\text{-embeddable}$ linear orders with minimum non-isolated.

By boolean we mean complete with dense jumps.

Also, it holds that $\mathcal{B}_{\mathbb{R}}$ = the class of order types of nowhere dense compact sets of reals K, such that min $K \in K'$.

Boriša Kuzeljević (MI SANU)

Definition

Let X be a countable set. We call $\mathcal{P} \subset P(X)$ a positive family on a set X if and only if:

•
$$\emptyset \notin \mathcal{P}$$
;
• $A \in \mathcal{P} \land B \in [A]^{<\omega} \Rightarrow A \smallsetminus B \in \mathcal{P}$;
• $A \in \mathcal{P} \land A \subset B \subset X \Rightarrow B \in \mathcal{P}$;
• $\exists A \in \mathcal{P} |X \smallsetminus A| = \omega$.

JOC P

イロト イボト イヨト

Definition

Let X be a countable set. We call $\mathcal{P} \subset P(X)$ a positive family on a set X if and only if:

•
$$\emptyset \notin \mathcal{P}$$
;
• $A \in \mathcal{P} \land B \in [A]^{<\omega} \Rightarrow A \smallsetminus B \in \mathcal{P}$;
• $A \in \mathcal{P} \land A \subset B \subset X \Rightarrow B \in \mathcal{P}$;
• $\exists A \in \mathcal{P} |X \smallsetminus A| = \omega$.

For example, each non-principal ultrafilter is a positive family on ω , while the set $[\omega]^{\omega}$ is the maximal positive family.

SQA

Definition

Let X be a countable set. We call $\mathcal{P} \subset P(X)$ a positive family on a set X if and only if:

•
$$\emptyset \notin \mathcal{P}$$
;
• $A \in \mathcal{P} \land B \in [A]^{<\omega} \Rightarrow A \smallsetminus B \in \mathcal{P}$;
• $A \in \mathcal{P} \land A \subset B \subset X \Rightarrow B \in \mathcal{P}$;
• $\exists A \in \mathcal{P} | X \smallsetminus A | = \omega$.

For example, each non-principal ultrafilter is a positive family on ω , while the set $[\omega]^{\omega}$ is the maximal positive family.

Theorem (Kurilić 2010)

Let \mathcal{P} a positive family on ω . Then $\mathcal{B}_{\mathbb{R}} = \mathcal{L}_{\mathcal{P}}$.

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 4 / 11

Definition

Let X be a countable set. We call $\mathcal{P} \subset P(X)$ a positive family on a set X if and only if:

•
$$\emptyset \notin \mathcal{P}$$
;
• $A \in \mathcal{P} \land B \in [A]^{<\omega} \Rightarrow A \smallsetminus B \in \mathcal{P}$;
• $A \in \mathcal{P} \land A \subset B \subset X \Rightarrow B \in \mathcal{P}$;
• $\exists A \in \mathcal{P} | X \smallsetminus A | = \omega$.

For example, each non-principal ultrafilter is a positive family on ω , while the set $[\omega]^{\omega}$ is the maximal positive family.

Theorem (Kurilić 2010)

Let \mathcal{P} a positive family on ω . Then $\mathcal{B}_{\mathbb{R}} = \mathcal{L}_{\mathcal{P}}$.

Lemma

If there exists a positive family $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$ then $\mathcal{B}_{\mathbb{R}} \subset \mathcal{L}_{\mathbb{X}}$.

Boriša Kuzeljević (MI SANU)

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

200

・ロト ・ 一 ト ・ ヨ ト

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

rational line Q,

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

3 August 2014. 5 / 11

200

イロト イポト イヨト イヨト

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,
- Henson graphs \mathbb{H}_n (n > 2),

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,
- Henson graphs \mathbb{H}_n (n > 2),
- random poset \mathbb{D} ,

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,
- Henson graphs \mathbb{H}_n (n > 2),
- random poset \mathbb{D} .
- rational Urysohn space $\mathbb{U}_{\mathbb{O}}$,

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,
- Henson graphs \mathbb{H}_n (n > 2),
- ullet random poset \mathbb{D} ,
- rational Urysohn space $\mathbb{U}_{\mathbb{Q}}$,
- Hilbert space ℓ^2 (viewed as a metric space)...

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 5 / 11

= 990

Definition

Relational structure X is *ultrahomogeneous* iff every isomorphism between finite substructures of X can be extended to an automorphism of X.

Examples

- rational line Q,
- the countable random graph \mathbb{G}_{Rado} ,
- Henson graphs \mathbb{H}_n (n > 2),
- ullet random poset \mathbb{D} ,
- rational Urysohn space $\mathbb{U}_{\mathbb{Q}}$,
- Hilbert space ℓ^2 (viewed as a metric space)...

Theorem

Let X be a countable ultrahomogeneous relational structure which satisfies $\mathbb{P}(X) \neq \{X\}$. Then $\mathcal{L}_X \subset \mathcal{C}_{\mathbb{R}}$.

How to find maximal chains

Theorem

Let $\mathbb X$ be a countable relational structure and $\mathbb Q$ the set of rationals.

(A) If there exists a partition $\{J_n : n \in \omega\}$ of \mathbb{Q} and a structure with the domain \mathbb{Q} of the same signature as \mathbb{X} such that

(i) J_0 is a dense subset of $\langle \mathbb{Q}, < \rangle$;

(ii) J_n , $n \in \mathbb{N}$, are coinitial subsets of $\langle \mathbb{Q} \rangle$;

(iii) $J_0 \cap (-\infty, x) \subset A \subset \mathbb{Q} \cap (-\infty, x)$ implies $A \cong \mathbb{X}$, for all $x \in \mathbb{R} \cup \{\infty\}$; (iv) $J_0 \cap (-\infty, q] \subset C \subset \mathbb{Q} \cap (-\infty, q]$ implies $C \ncong \mathbb{X}$, for each $q \in J_0$;

then for each uncountable \mathbb{R} -embeddable complete linear order L with minimum non-isolated, such that all initial segments of $L \setminus \{\min L\}$ are uncountable there is a maximal chain in $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$ isomorphic to L.

(B) If, in addition,

(v) for each countable complete linear order L with minimum non-isolated there is a maximal chain in $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$ isomorphic to L,

then $\mathcal{L}_{\mathbb{X}} = \mathcal{C}_{\mathbb{R}}$.

Lemma

The family $\mathcal{P} = \{A \subset \mathbb{G}_{Rado} : \mathbb{G}_{Rado} \setminus \mathbb{K}_{\omega} \subset^* A\}$ is a positive family on \mathbb{G}_{Rado} such that $\mathcal{P} \subset \mathbb{P}(\mathbb{G}_{Rado})$.

Lemma

The family $\mathcal{P} = \{B \subset \mathbb{D} : \mathbb{D} \setminus \mathbb{A}_{\omega} \subset^* B\}$ is a positive family on \mathbb{D} such that $\mathcal{P} \subset \mathbb{P}(\mathbb{D})$.

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 7 / 11

Let X be any ultrahomogeneous relational structure (binary) whose age satisfies strong (disjoint) amalgamation property. Define $\langle \mathbb{P}, \leq \rangle$ to be the partial order of all pairs $p = \langle X_p, \rho_p \rangle$ such that:

- $X_p \in [\mathbb{Q}]^{<\omega}$;
- $p \in Age X$.
- $p \leq q \iff X_p \supset X_q \land X_p^2 \cap \rho_p = \rho_q.$

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let X be any ultrahomogeneous relational structure (binary) whose age satisfies strong (disjoint) amalgamation property. Define $\langle \mathbb{P}, \leq \rangle$ to be the partial order of all pairs $p = \langle X_p, \rho_p \rangle$ such that:

- $X_p \in [\mathbb{Q}]^{<\omega}$;
- $p \in Age X$.

•
$$p \leq q \iff X_p \supset X_q \land X_p^2 \cap \rho_p = \rho_q.$$

Then the set

$$\mathcal{D}_q = \{p \in \mathbb{P} : q \in X_p\}$$

is dense in $\mathbb P$ for all $q\in\mathbb Q$, and also the set

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 8 / 11

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の Q (>)

Let X be any ultrahomogeneous relational structure (binary) whose age satisfies strong (disjoint) amalgamation property. Define $\langle \mathbb{P}, \leq \rangle$ to be the partial order of all pairs $p = \langle X_p, \rho_p \rangle$ such that:

- $X_p \in [\mathbb{Q}]^{<\omega}$;
- $p \in Age X$.

•
$$p \leq q \iff X_p \supset X_q \land X_p^2 \cap \rho_p = \rho_q.$$

Then the set

$$\mathcal{D}_q = \{ p \in \mathbb{P} : q \in X_p \}$$

is dense in $\mathbb P$ for all $q\in\mathbb Q,$ and also the set

$$\mathcal{D}_{B,K,m} = \{ p \in \mathbb{P} : K \subset X_p \land (p \upharpoonright K \not\triangleleft B \lor \exists q \in (m_K, m_K + \frac{1}{m})_{\mathbb{Q}} \ p \upharpoonright (K \cup \{q\}) \cong B) \}$$

is dense in \mathbb{P} for all $K \in [\mathbb{Q}]^{<\omega}$, $B \in Age_{|K|+1} \mathbb{X}$ and $m \in \mathbb{N}$.

Boriša Kuzeljević (MI SANU)

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let X be any ultrahomogeneous relational structure (binary) whose age satisfies strong (disjoint) amalgamation property. Define $\langle \mathbb{P}, \leq \rangle$ to be the partial order of all pairs $p = \langle X_p, \rho_p \rangle$ such that:

- $X_p \in [\mathbb{Q}]^{<\omega}$;
- $p \in Age X$.

•
$$p \leq q \iff X_p \supset X_q \land X_p^2 \cap \rho_p = \rho_q.$$

Then the set

$$\mathcal{D}_q = \{ p \in \mathbb{P} : q \in X_p \}$$

is dense in $\mathbb P$ for all $q\in\mathbb Q,$ and also the set

$$\mathcal{D}_{B,K,m} = \{ p \in \mathbb{P} : K \subset X_p \land (p \upharpoonright K \not\triangleleft B \lor) \\ \exists q \in (m_K, m_K + \frac{1}{m})_{\mathbb{Q}} \ p \upharpoonright (K \cup \{q\}) \cong B) \}$$

is dense in \mathbb{P} for all $K \in [\mathbb{Q}]^{<\omega}$, $B \in Age_{|K|+1} \mathbb{X}$ and $m \in \mathbb{N}$.

Hence, there is a filter in $\mathbb P$ intersecting all these dense sets.

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

◆ロ ▶ ◆ 同 ▶ ◆ 三 ▶ ◆ 同 ▶ ● ● ● ● ● ●

Still finding positive families

We define a relational structure $\langle \mathbb{Q}, \rho \rangle$ by $\rho = \bigcup_{p \in G} \rho_p$.

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Still finding positive families

We define a relational structure $\langle \mathbb{Q}, \rho \rangle$ by $\rho = \bigcup_{p \in G} \rho_p$.

Theorem

•
$$\langle \mathbb{Q}, \rho \rangle \cong \mathbb{X}$$
;
• $\langle (-\infty, x), \rho \rangle \cong \mathbb{X}$ for any $x \in \mathbb{R}$;

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

Still finding positive families

We define a relational structure $\langle \mathbb{Q}, \rho \rangle$ by $\rho = \bigcup_{p \in G} \rho_p$.

Theorem

•
$$\langle \mathbb{Q}, \rho \rangle \cong \mathbb{X};$$

• $\langle (-\infty, x), \rho \rangle \cong \mathbb{X}$ for any $x \in \mathbb{R};$

Theorem

If the family \mathcal{P} is given by

$$\mathcal{P} = \left\{ \mathbb{Q} \setminus \bigcup_{n \in \mathbb{Z}} F_n : F_n \in \left[[n, n+1) \right]^{<\omega} \right\},\$$

then for each $A \in \mathcal{P}$ we have $\langle A, \rho \rangle \cong \mathbb{X}$. In particular, we have that $\mathcal{P} \subset \mathbb{P}(\mathbb{Q}, \rho)$ is a positive family.

Boriša Kuzeljević (MI SANU)

August 2014. 9 / 11

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Corrolary

Let L be an \mathbb{R} -embeddable boolean linear order with minimum non-isolated. Then there is a maximal chain $\mathcal{L} \subset \langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$ isomorphic to L.

Corrolary

Let $\mathbb X$ be a countable ultrahomogeneous relational structure. Then the following conditions are equivalent:

- there is a positive family \mathcal{P} on \mathbb{X} which satisfies $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$;
- Age X satisfies the strong amalgamation property.

Boriša Kuzeljević (MI SANU)

Chains of copies of relational structures

August 2014. 10 / 11

SQA

References

- M. Kurilić, B. Kuzeljević, Maximal chains of isomorphic subgraphs of countable ultrahomogeneous graphs, Advances in Mathematics 264, 762-775.
- M. Kurilić, B. Kuzeljević, *Maximal chains of isomorphic suborders of countable ultrahomogeneous partial orders*, Order doi:10.1007/s11083-014-9317-9.
- M. Kurilić, B. Kuzeljević, *Maximal chains of isomorphic chains of the Rado graph*, Acta Mathematica Hungarica 141, 1-10.

SQA