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Problem

Formulation

Describe maximal chains in partial orders of the form 〈P(X),⊂〉, for an
ultrahomogeneous relational structure X, where P(X) = {A ⊂ X : A ∼= X}.

Theorem (Our starting point, Kurilić 2010)

Linear order is isomorphic to a maximal chain in 〈P(Q, <) ∪ {∅} ,⊂〉 if and
only if it is complete, R-embeddable with minimum non-isolated.

Theorem (Kuratowski 1921)

Linear order is isomorphic to a maximal chain in 〈P(κ),⊂〉 if and only if it
is isomorphic to Init(L) for some linear order L of cardinality κ.

Open problem on maximal chains (1907)

Does every maximal chain in Rω contain (ω1, ω
∗
1) gap?
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Notation

LX - the class of order types of maximal chains in 〈P(X) ∪ {∅} ,⊂〉, for a
relational structure X;

CR - the class of order types of complete R-embeddable linear orders with
minimum non-isolated.
By complete we mean Dedekind-complete with minimum and
maximum.
Also, it holds that CR = the class of order types of compact sets of
reals K , such that minK ∈ K ′;

BR - the class of order types of boolean R-embeddable linear orders with
minimum non-isolated.
By boolean we mean complete with dense jumps.
Also, it holds that BR = the class of order types of nowhere dense
compact sets of reals K , such that minK ∈ K ′.

Borǐsa Kuzeljević (MI SANU) Chains of copies of relational structures August 2014. 3 / 11



Positive families
Definition

Let X be a countable set. We call P ⊂ P(X ) a positive family on a set X
if and only if:

∅ /∈ P;

A ∈ P ∧ B ∈ [A]<ω⇒ Ar B ∈ P;

A ∈ P ∧ A ⊂ B ⊂ X ⇒ B ∈ P;

∃A ∈ P |X r A| = ω.

For example, each non-principal ultrafilter is a positive family on ω, while
the set [ω]ω is the maximal positive family.

Theorem (Kurilić 2010)

Let P a positive family on ω. Then BR = LP .

Lemma

If there exists a positive family P ⊂ P(X) then BR ⊂ LX.
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Ultrahomogeneous relational structures

Definition

Relational structure X is ultrahomogeneous iff every isomorphism between
finite substructures of X can be extended to an automorphism of X.

Examples

rational line Q,

the countable random graph GRado ,

Henson graphs Hn (n > 2),

random poset D,

rational Urysohn space UQ,

Hilbert space `2 (viewed as a metric space). . .

Theorem

Let X be a countable ultrahomogeneous relational structure which satisfies
P(X) 6={X}. Then LX ⊂ CR.
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How to find maximal chains

Theorem

Let X be a countable relational structure and Q the set of rationals.

(A) If there exists a partition {Jn : n ∈ ω} of Q and a structure with the
domain Q of the same signature as X such that

(i) J0 is a dense subset of 〈Q, <〉;
(ii) Jn, n ∈ N, are coinitial subsets of 〈Q <〉;
(iii) J0 ∩ (−∞, x) ⊂ A ⊂ Q ∩ (−∞, x) implies A ∼= X, for all x ∈ R ∪ {∞};
(iv) J0 ∩ (−∞, q] ⊂ C ⊂ Q ∩ (−∞, q] implies C 6∼= X, for each q ∈ J0;

then for each uncountable R-embeddable complete linear order L with
minimum non-isolated, such that all initial segments of L \ {min L}
are uncountable there is a maximal chain in 〈P(X) ∪ {∅} ,⊂〉
isomorphic to L.

(B) If, in addition,

(v) for each countable complete linear order L with minimum non-isolated
there is a maximal chain in 〈P(X) ∪ {∅} ,⊂〉 isomorphic to L,

then LX = CR.
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Finding positive families

Lemma

The family P = {A ⊂ GRado : GRado \Kω ⊂∗ A} is a positive family on
GRado such that P ⊂ P(GRado).

Lemma

The family P = {B ⊂ D : D \ Aω ⊂∗ B} is a positive family on D such
that P ⊂ P(D).
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Finding positive families

Let X be any ultrahomogeneous relational structure (binary) whose age
satisfies strong (disjoint) amalgamation property. Define 〈P,≤〉 to be the
partial order of all pairs p = 〈Xp, ρp〉 such that:

Xp ∈ [Q]<ω;

p ∈ AgeX.

p ≤ q ⇐⇒ Xp ⊃ Xq ∧ X 2
p ∩ ρp = ρq.

Then the set
Dq = {p ∈ P : q ∈ Xp}

is dense in P for all q ∈ Q, and also the set

DB,K ,m = {p ∈ P : K ⊂ Xp ∧ (p � K 6CB ∨
∃q ∈ (mK ,mK + 1

m )Q p � (K ∪ {q}) ∼= B)}

is dense in P for all K ∈ [Q]<ω, B ∈ Age|K |+1X and m ∈ N.

Hence, there is a filter in P intersecting all these dense sets.
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Still finding positive families

We define a relational structure 〈Q, ρ〉 by ρ =
⋃

p∈G ρp.

Theorem

〈Q, ρ〉 ∼= X;

〈(−∞, x), ρ〉 ∼= X for any x ∈ R;

Theorem

If the family P is given by

P =

{
Q \

⋃
n∈Z Fn : Fn ∈

[
[n, n + 1)

]<ω
}
,

then for each A ∈ P we have 〈A, ρ〉 ∼= X. In particular, we have that
P ⊂ P(Q, ρ) is a positive family.
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Corrolary

Let L be an R-embeddable boolean linear order with minimum
non-isolated. Then there is a maximal chain L ⊂ 〈P(X) ∪ {∅} ,⊂〉
isomorphic to L.

Corrolary

Let X be a countable ultrahomogeneous relational structure. Then the
following conditions are equivalent:

there is a positive family P on X which satisfies P ⊂ P(X);

AgeX satisfies the strong amalgamation property.
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