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Posets of copies of structures

Relational structures and complete Boolean algebras

If X = 〈X, 〈ρi : i ∈ I〉〉 is a relational structure,
by P(X) we denote the set of domains of isomorphic substructures of X, that is

P(X) =
{

A ⊂ X :
〈

A, 〈ρi ∩ Ani : i ∈ I〉
〉
∼= X

}
To X we adjoin

• the poset 〈P(X),⊂〉
• its separative quotient sq〈P(X),⊂〉
• its Boolean completion ro sq〈P(X),⊂〉

Theorem ([9])

ro sq〈P(X),⊂〉 is a homogeneous c. B. a.
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Posets of copies of structures

The hierarchy of similarities between relational structures
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Posets of copies of structures

Example: Countable scattered l. o.’ s are in Column D

Theorem ([5])

For each countable scattered linear order X
• The poset sq〈P(X),⊂〉 is atomless and σ-closed
• Under CH we have 〈P(X),⊂〉 ≡ (P(ω)/Fin)+.
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Posets of copies of structures

Sub-example: Countable ordinals

Theorem ([6])

If
α = ωγn+rnsn + · · ·+ ωγ0+r0s0 + k

is a countably infinite ordinal presented in the Cantor normal form, then

sq〈P(α),⊂〉 ∼=
n∏

i=0

((
rpri(P(ωγi)/Iωγi )

)+)si

〈P(α),⊂〉 ≡
{

(P(ω)/Fin)+ if α < ω + ω
(P(ω)/Fin)+ ∗ π if α ≥ ω + ω

where [ω] 
 “π is an ω1-closed, separative atomless forcing”.

(SETTOP 2014) August 21, 2014 8 / 19



Posets of copies of structures

Sub-example: Countable ordinals

Theorem ([6])

If
α = ωγn+rnsn + · · ·+ ωγ0+r0s0 + k

is a countably infinite ordinal presented in the Cantor normal form, then

sq〈P(α),⊂〉 ∼=
n∏

i=0

((
rpri(P(ωγi)/Iωγi )

)+)si

〈P(α),⊂〉 ≡
{

(P(ω)/Fin)+ if α < ω + ω
(P(ω)/Fin)+ ∗ π if α ≥ ω + ω

where [ω] 
 “π is an ω1-closed, separative atomless forcing”.

(SETTOP 2014) August 21, 2014 8 / 19



Posets of copies of structures

Sub-example: Countable ordinals

Theorem ([6])

If
α = ωγn+rnsn + · · ·+ ωγ0+r0s0 + k

is a countably infinite ordinal presented in the Cantor normal form, then

sq〈P(α),⊂〉 ∼=
n∏

i=0

((
rpri(P(ωγi)/Iωγi )

)+)si

〈P(α),⊂〉 ≡
{

(P(ω)/Fin)+ if α < ω + ω
(P(ω)/Fin)+ ∗ π if α ≥ ω + ω

where [ω] 
 “π is an ω1-closed, separative atomless forcing”.

(SETTOP 2014) August 21, 2014 8 / 19



Posets of copies of structures

Sub-example: Countable ordinals

Theorem ([6])

If
α = ωγn+rnsn + · · ·+ ωγ0+r0s0 + k

is a countably infinite ordinal presented in the Cantor normal form, then

sq〈P(α),⊂〉 ∼=
n∏

i=0

((
rpri(P(ωγi)/Iωγi )

)+)si

〈P(α),⊂〉 ≡
{

(P(ω)/Fin)+ if α < ω + ω

(P(ω)/Fin)+ ∗ π if α ≥ ω + ω

where [ω] 
 “π is an ω1-closed, separative atomless forcing”.

(SETTOP 2014) August 21, 2014 8 / 19



Posets of copies of structures

Sub-example: Countable ordinals

Theorem ([6])

If
α = ωγn+rnsn + · · ·+ ωγ0+r0s0 + k

is a countably infinite ordinal presented in the Cantor normal form, then

sq〈P(α),⊂〉 ∼=
n∏

i=0

((
rpri(P(ωγi)/Iωγi )

)+)si

〈P(α),⊂〉 ≡
{

(P(ω)/Fin)+ if α < ω + ω
(P(ω)/Fin)+ ∗ π if α ≥ ω + ω

where [ω] 
 “π is an ω1-closed, separative atomless forcing”.

(SETTOP 2014) August 21, 2014 8 / 19



Posets of copies of structures

Example: Countable non-scattered l. o.’s are in Column C

Theorem (with S. Todorčević, [10])

For each countable non-scattered linear order X we have

〈P(X),⊂〉 ≡ S ∗ π

where
• S is the Sacks forcing
• π codes a σ-closed forcing
• 1S 
 π ≡ (P(ω)/Fin)+, under CH or PFA.
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Posets of copies of structures

Countable linear orders in the A1 − D5 diagram

scattered
l. o.’s

non-scatt.
l. o.’s

Q

ω

ω · ω

ω + ω

C4

D3

D4

D5
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The monoid of self-embeddings

The poset P(X) and the monoid Emb(X)

If M = 〈M, ·, e〉 is a monoid (a semigroup with unity), the right Green’s preorder on M is defined by

x �R y ⇔ ∃z ∈ M xz = y

Fact
If X is a relational structure and Emb(X) = 〈Emb(X), ◦, idX〉 the
corresponding monoid of self-embeddings of X, then
• P(X) = {f [X] : f ∈ Emb(X)}
• 〈P(X),⊂〉 ∼= asq〈Emb(X), (�R)−1〉
• {f ∈ Emb(X) : f is invertible} = {f ∈ Emb(X) : f is regular} = Aut(X)
• {idX} = {f ∈ Emb(X) : f is idempotent}.

Theorem
If X and Y are relational structures, then

X ∼= Y⇒ Emb(X) ∼= Emb(Y)⇒ 〈P(X),⊂〉 ∼= 〈P(Y),⊂〉
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The monoid of self-embeddings

An application of
Emb(X) ∼= Emb(Y)⇒ 〈P(X),⊂〉 ∼= 〈P(Y),⊂〉

Since P((0, 1)Q, <) 6∼= P([0, 1]Q, <) we have

Emb((0, 1)Q, <) 6∼= Emb([0, 1]Q, <).

(Comment: but sqP((0, 1)Q, <) ∼= sqP([0, 1]Q, <))

(SETTOP 2014) August 21, 2014 12 / 19



The monoid of self-embeddings

An application of
Emb(X) ∼= Emb(Y)⇒ 〈P(X),⊂〉 ∼= 〈P(Y),⊂〉

Since P((0, 1)Q, <) 6∼= P([0, 1]Q, <) we have

Emb((0, 1)Q, <) 6∼= Emb([0, 1]Q, <).

(Comment: but sqP((0, 1)Q, <) ∼= sqP([0, 1]Q, <))

(SETTOP 2014) August 21, 2014 12 / 19



The monoid of self-embeddings

An application of
Emb(X) ∼= Emb(Y)⇒ 〈P(X),⊂〉 ∼= 〈P(Y),⊂〉

Since P((0, 1)Q, <) 6∼= P([0, 1]Q, <) we have

Emb((0, 1)Q, <) 6∼= Emb([0, 1]Q, <).

(Comment: but sqP((0, 1)Q, <) ∼= sqP([0, 1]Q, <))

(SETTOP 2014) August 21, 2014 12 / 19



The monoid of self-embeddings

Cancellativity commutativity and reversibility of Emb(X)

A monoid M = 〈M, ·, e〉 is

left reversible ⇔ ∀x, y ∃u, v xu = yv

right reversible ⇔ ∀x, y ∃u, v ux = vy

If X is a relational structure, a set A ⊂ X will be called embedding-dense, we will write A ∈ EDense(X) iff

∀g, h ∈ Emb(X) (g � A = h � A⇒ g = h).

Theorem

If X is a relational structure, then
• Emb(X) is cancellative⇔ P(X) ⊂ EDense(X)
• Emb(X) is left reversible⇔ the poset 〈P(X),⊂〉 is atomic (Column A)
• Emb(X) is right reversible⇔ X has the amalgamation property for

embeddings
• Emb(X) is commutative⇒ Emb(X) is cancellative, left reversible, and

right reversible.
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The monoid of self-embeddings

Embeddability of Emb(X) into a group

Theorem

Emb(X) is a (retract of a) group⇔ P(X) = {X}

Theorem

Each of the following conditions implies that Emb(X) embeds into a group
• Emb(X) is commutative
• P(X) ⊂ EDense(X) and P(X) is atomic
• P(X) ⊂ EDense(X) and X has amalgamation for embeddings

Proof. Using theorems of Grothendieck, Ore, and Dubreil.
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The monoid of self-embeddings

Everything is possible

X Emb(X) a group Emb(X) commutative Emb(X) embeddable into a group
GZ + + of course⋃

n≥3 Cn + - of course
Gω - + +

Gω ∪
⋃

n≥3 Cn - - +
〈ω,<〉 - - -
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Bi-interpretable structures

Bi-interpretable structures

Let X and Y be relational structures of languages LX and LY .

• An interpretation of X in Y (without parameters) is a triple 〈n, S, f〉, where
- n ∈ N,
- S ⊂ Yn ,
- f : S→ X is a surjection,
- the pre-image of each set definable in X is definable in Y.

Then we write f : Y  X.

• Structures X and Y are bi-interpretable iff there are interpretations

f : Y  X and g : X  Y

such that the compositions f ∗ g and g ∗ f are definable (in X and Y respectively).

Theorem

X and Y are quantifier-free bi-interpretable ⇒ Emb(X) ∼= Emb(Y).
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Bi-interpretable structures

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure X = 〈X, ρ〉 is the structure Xe := 〈X, ρe〉, where

xρey ⇔ xρy ∨ (x 6= y ∧ ¬xρy ∧ ¬yρx)

Theorem

(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure X we have

• Either X is biconnected

• Or there is an ultrahomogeneous digraph Y (i.e. Y ∈ Cherlin’s list) and a cardinal
2 ≤ κ ≤ ω such that X is isomorphic to one of the following structures:

•
⋃

κ Ye
• (
⋃

κ Ye)
c

• (
⋃

κ Ye)re
• ((

⋃
κ Ye)re)

c.
(II) In the second case we have

• Either P(X) ∼= P(Z)n, for some biconnected Z ∈ Cherlin’s list and n ≥ 2,

• Or sqP(X) is an atomless σ-closed poset (Column D) and, hence,
P(X) ≡ (P(ω)/ Fin)+, under CH.
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Bi-interpretable structures

Proof

(I) Using Ramsey’s theorem.

(II) If Y =
⋃

k Z then

((
⋃

m(
⋃

k Z)e)re)
c and

⋃
mk Z are quantifier free bi-interpretable and, hence,

P(X) ∼= P(
⋃

mk Z) ∼= P(Z)mk.
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