POSETS OF COPIES, EMBEDDING MONOIDS, AND INTERPRETABILITY OF RELATIONAL STRUCTURES

Miloš Kurilić

Department of Mathematics and Informatics, University of Novi Sad, Serbia

August 21, 2014

Contents

Contents

- The poset of copies of a structure

Contents

- The poset of copies of a structure
- Posets of copies and embedding monoids (under construction)

Contents

- The poset of copies of a structure
- Posets of copies and embedding monoids (under construction)
- Posets of copies of bi-interpretable structures (under construction)

Relational structures and complete Boolean algebras

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

$$
\mathbb{P}(\mathbb{X})=\left\{A \subset X:\left\langle A,\left\langle\rho_{i} \cap A^{n_{i}}: i \in I\right\rangle\right\rangle \cong \mathbb{X}\right\}
$$

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

$$
\mathbb{P}(\mathbb{X})=\left\{A \subset X:\left\langle A,\left\langle\rho_{i} \cap A^{n_{i}}: i \in I\right\rangle\right\rangle \cong \mathbb{X}\right\}
$$

To \mathbb{X} we adjoin

- the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

$$
\mathbb{P}(\mathbb{X})=\left\{A \subset X:\left\langle A,\left\langle\rho_{i} \cap A^{n_{i}}: i \in I\right\rangle\right\rangle \cong \mathbb{X}\right\}
$$

To \mathbb{X} we adjoin

- the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$
- its separative quotient $\mathrm{sq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

$$
\mathbb{P}(\mathbb{X})=\left\{A \subset X:\left\langle A,\left\langle\rho_{i} \cap A^{n_{i}}: i \in I\right\rangle\right\rangle \cong \mathbb{X}\right\}
$$

To \mathbb{X} we adjoin

- the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$
- its separative quotient $\mathrm{sq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$
- its Boolean completion ro sq $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$

Relational structures and complete Boolean algebras

If $\mathbb{X}=\left\langle X,\left\langle\rho_{i}: i \in I\right\rangle\right\rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the set of domains of isomorphic substructures of \mathbb{X}, that is

$$
\mathbb{P}(\mathbb{X})=\left\{A \subset X:\left\langle A,\left\langle\rho_{i} \cap A^{n_{i}}: i \in I\right\rangle\right\rangle \cong \mathbb{X}\right\}
$$

To \mathbb{X} we adjoin

- the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$
- its separative quotient $\mathrm{sq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$
- its Boolean completion ro sq $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$

Theorem ([9])
$\operatorname{rosq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is a homogeneous c. B. a.
$\xrightarrow{\Pi}$

Countable binary structures [3]

The hierarchy of similarities between relational structures

The hierarchy of similarities between relational structures

$\mathbb{X}=\mathbb{Y}$

The hierarchy of similarities between relational structures

$\mathbb{X}=\mathbb{Y}$

The hierarchy of similarities between relational structures

Example: Countable scattered l. o.' s are in Column D

Example: Countable scattered l. o.' s are in Column D

Theorem ([5])
For each countable scattered linear order \mathbb{X}

- The poset $\mathrm{sq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is atomless and σ-closed

Example: Countable scattered l. o.' s are in Column D

Theorem ([5])
For each countable scattered linear order \mathbb{X}

- The poset $\mathrm{sq}\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is atomless and σ-closed
- Under $\mathbb{C H}$ we have $\langle\mathbb{P}(\mathbb{X}), \subset\rangle \equiv(P(\omega) / \text { Fin })^{+}$.

Sub-example: Countable ordinals

Sub-example: Countable ordinals

Theorem ([6])
If

$$
\alpha=\omega^{\gamma_{n}+r_{n}} s_{n}+\cdots+\omega^{\gamma_{0}+r_{0}} s_{0}+k
$$

is a countably infinite ordinal presented in the Cantor normal form, then

Sub-example: Countable ordinals

Theorem ([6])

If

$$
\alpha=\omega^{\gamma_{n}+r_{n}} s_{n}+\cdots+\omega^{\gamma_{0}+r_{0}} s_{0}+k
$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$
\mathrm{sq}\langle\mathbb{P}(\alpha), \subset\rangle \cong \prod_{i=0}^{n}\left(\left(\mathrm{rp}^{r_{i}}\left(P\left(\omega^{\gamma_{i}}\right) / \mathcal{I}_{\omega^{\gamma_{i}}}\right)\right)^{+}\right)^{s_{i}}
$$

Sub-example: Countable ordinals

Theorem ([6])
If

$$
\alpha=\omega^{\gamma_{n}+r_{n}} s_{n}+\cdots+\omega^{\gamma_{0}+r_{0}} s_{0}+k
$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$
\begin{array}{r}
\operatorname{sq}\langle\mathbb{P}(\alpha), \subset\rangle \cong \prod_{i=0}^{n}\left(\left(\operatorname{rp}^{r_{i}}\left(P\left(\omega^{\gamma_{i}}\right) / \mathcal{I}_{\omega \gamma_{i}}\right)\right)^{+}\right)^{s_{i}} \\
\langle\mathbb{P}(\alpha), \subset\rangle \equiv \begin{cases}(P(\omega) / \text { Fin })^{+} & \text {if } \alpha<\omega+\omega\end{cases}
\end{array}
$$

Sub-example: Countable ordinals

Theorem ([6])
If

$$
\alpha=\omega^{\gamma_{n}+r_{n}} s_{n}+\cdots+\omega^{\gamma_{0}+r_{0}} s_{0}+k
$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$
\begin{array}{r}
\operatorname{sq}\langle\mathbb{P}(\alpha), \subset\rangle \cong \prod_{i=0}^{n}\left(\left(\operatorname{rp}^{r_{i}}\left(P\left(\omega^{\gamma_{i}}\right) / \mathcal{I}_{\omega^{\gamma_{i}}}\right)\right)^{+}\right)^{s_{i}} \\
\langle\mathbb{P}(\alpha), \subset\rangle \equiv \begin{cases}(P(\omega) / \text { Fin })^{+} & \text {if } \alpha<\omega+\omega \\
(P(\omega) / \text { Fin })^{+} * \pi & \text { if } \alpha \geq \omega+\omega\end{cases}
\end{array}
$$

where $[\omega] \Vdash$ " π is an ω_{1}-closed, separative atomless forcing".

Example: Countable non-scattered 1. o.'s are in Column C

Example: Countable non-scattered l. o.'s are in Column C

Theorem (with S. Todorčević, [10])
For each countable non-scattered linear order \mathbb{X} we have

$$
\langle\mathbb{P}(\mathbb{X}), \subset\rangle \equiv \mathbb{S} * \pi
$$

where

Example: Countable non-scattered l. o.'s are in Column C

Theorem (with S. Todorčević, [10])
For each countable non-scattered linear order \mathbb{X} we have

$$
\langle\mathbb{P}(\mathbb{X}), \subset\rangle \equiv \mathbb{S} * \pi
$$

where

- \mathbb{S} is the Sacks forcing

Example: Countable non-scattered l. o.'s are in Column C

Theorem (with S. Todorčević, [10])
For each countable non-scattered linear order \mathbb{X} we have

$$
\langle\mathbb{P}(\mathbb{X}), \subset\rangle \equiv \mathbb{S} * \pi
$$

where

- \mathbb{S} is the Sacks forcing
- π codes a σ-closed forcing

Example: Countable non-scattered l. o.'s are in Column C

Theorem (with S. Todorčević, [10])
For each countable non-scattered linear order \mathbb{X} we have

$$
\langle\mathbb{P}(\mathbb{X}), \subset\rangle \equiv \mathbb{S} * \pi
$$

where

- \mathbb{S} is the Sacks forcing
- π codes a σ-closed forcing
- $1_{\mathbb{S}} \Vdash \pi \equiv(P(\omega) / \text { Fin })^{+}$, under CH or PFA.

Countable linear orders in the $A_{1}-D_{5}$ diagram

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

- $\mathbb{P}(\mathbb{X})=\{f[X]: f \in \operatorname{Emb}(\mathbb{X})\}$

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

- $\mathbb{P}(\mathbb{X})=\{f[X]: f \in \operatorname{Emb}(\mathbb{X})\}$
- $\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong \operatorname{asq}\left\langle\operatorname{Emb}(\mathbb{X}),\left(\preceq^{R}\right)^{-1}\right\rangle$

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

- $\mathbb{P}(\mathbb{X})=\{f[X]: f \in \operatorname{Emb}(\mathbb{X})\}$
- $\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong \operatorname{asq}\left\langle\operatorname{Emb}(\mathbb{X}),\left(\preceq^{R}\right)^{-1}\right\rangle$
- $\{f \in \operatorname{Emb}(\mathbb{X}): f$ is invertible $\}=\{f \in \operatorname{Emb}(\mathbb{X}): f$ is regular $\}=\operatorname{Aut}(\mathbb{X})$

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

- $\mathbb{P}(\mathbb{X})=\{f[X]: f \in \operatorname{Emb}(\mathbb{X})\}$
- $\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong \operatorname{asq}\left\langle\operatorname{Emb}(\mathbb{X}),\left(\preceq^{R}\right)^{-1}\right\rangle$
- $\{f \in \operatorname{Emb}(\mathbb{X}): f$ is invertible $\}=\{f \in \operatorname{Emb}(\mathbb{X}): f$ is regular $\}=\operatorname{Aut}(\mathbb{X})$
- $\left\{\mathrm{id}_{X}\right\}=\{f \in \operatorname{Emb}(\mathbb{X}): f$ is idempotent $\}$.

The poset $\mathbb{P}(\mathbb{X})$ and the monoid $\mathbb{E m b}(\mathbb{X})$

If $\mathbb{M}=\langle M, \cdot, e\rangle$ is a monoid (a semigroup with unity), the right Green's preorder on M is defined by

$$
x \preceq^{R} y \Leftrightarrow \exists z \in M \quad x z=y
$$

Fact
If \mathbb{X} is a relational structure and $\mathbb{E m b}(\mathbb{X})=\left\langle\operatorname{Emb}(\mathbb{X}), \circ, \mathrm{id}_{X}\right\rangle$ the corresponding monoid of self-embeddings of \mathbb{X}, then

- $\mathbb{P}(\mathbb{X})=\{f[X]: f \in \operatorname{Emb}(\mathbb{X})\}$
- $\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong \operatorname{asq}\left\langle\operatorname{Emb}(\mathbb{X}),\left(\preceq^{R}\right)^{-1}\right\rangle$
- $\{f \in \operatorname{Emb}(\mathbb{X}): f$ is invertible $\}=\{f \in \operatorname{Emb}(\mathbb{X}): f$ is regular $\}=\operatorname{Aut}(\mathbb{X})$
- $\left\{\mathrm{id}_{X}\right\}=\{f \in \operatorname{Emb}(\mathbb{X}): f$ is idempotent $\}$.

Theorem
If \mathbb{X} and \mathbb{Y} are relational structures, then

$$
\mathbb{X} \cong \mathbb{Y} \Rightarrow \mathbb{E} \operatorname{mb}(\mathbb{X}) \cong \mathbb{E} \operatorname{mb}(\mathbb{Y}) \Rightarrow\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong\langle\mathbb{P}(\mathbb{Y}), \subset\rangle
$$

An application of
 $\mathbb{E m b}(\mathbb{X}) \cong \mathbb{E m b}(\mathbb{Y}) \Rightarrow\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong\langle\mathbb{P}(\mathbb{Y}), \subset\rangle$

An application of
 $\mathbb{E m b}(\mathbb{X}) \cong \mathbb{E m b}(\mathbb{Y}) \Rightarrow\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong\langle\mathbb{P}(\mathbb{Y}), \subset\rangle$

Since $\mathbb{P}\left((0,1)_{\mathbb{Q}},<\right) \not \not \mathbb{P}\left([0,1]_{\mathbb{Q}},<\right)$ we have
$\mathbb{E m b}\left((0,1)_{\mathbb{Q}},<\right) \not \neq \mathbb{E m b}\left([0,1]_{\mathbb{Q}},<\right)$.

An application of
 $\mathbb{E m b}(\mathbb{X}) \cong \mathbb{E m b}(\mathbb{Y}) \Rightarrow\langle\mathbb{P}(\mathbb{X}), \subset\rangle \cong\langle\mathbb{P}(\mathbb{Y}), \subset\rangle$

Since $\mathbb{P}\left((0,1)_{\mathbb{Q}},<\right) \not \not \mathbb{P}\left([0,1]_{\mathbb{Q}},<\right)$ we have
$\mathbb{E m b}\left((0,1)_{\mathbb{Q}},<\right) \not \approx \mathbb{E m b}\left([0,1]_{\mathbb{Q}},<\right)$.
$\left(\right.$ Comment: but sq $\left.\mathbb{P}\left((0,1)_{\mathbb{Q}},<\right) \cong \operatorname{sq} \mathbb{P}\left([0,1]_{\mathbb{Q}},<\right)\right)$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\text { left reversible } \quad \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v
$$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X}) \quad(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h)
$$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X})(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h) .
$$

Theorem

If \mathbb{X} is a relational structure, then

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X}) \quad(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h)
$$

Theorem

If \mathbb{X} is a relational structure, then

- $\mathbb{E m b}(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X}) \quad(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h)
$$

Theorem

If \mathbb{X} is a relational structure, then

- $\mathbb{E m b}(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$
- $\mathbb{E m b}(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is atomic (Column A)

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X}) \quad(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h)
$$

Theorem

If \mathbb{X} is a relational structure, then

- $\mathbb{E m b}(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$
- $\mathbb{E m b}(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is atomic (Column A)
- $\mathbb{E m b}(\mathbb{X})$ is right reversible $\Leftrightarrow \mathbb{X}$ has the amalgamation property for embeddings

Cancellativity commutativity and reversibility of $\operatorname{Emb}(\mathbb{X})$

A monoid $\mathbb{M}=\langle M, \cdot, e\rangle$ is

$$
\begin{aligned}
\text { left reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad x u=y v \\
\text { right reversible } & \Leftrightarrow \quad \forall x, y \quad \exists u, v \quad u x=v y
\end{aligned}
$$

If \mathbb{X} is a relational structure, a set $A \subset X$ will be called embedding-dense, we will write $A \in \operatorname{EDense}(\mathbb{X})$ iff

$$
\forall g, h \in \operatorname{Emb}(\mathbb{X}) \quad(g \upharpoonright A=h \upharpoonright A \Rightarrow g=h)
$$

Theorem

If \mathbb{X} is a relational structure, then

- $\mathbb{E m b}(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$
- $\mathbb{E m b}(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle\mathbb{P}(\mathbb{X}), \subset\rangle$ is atomic (Column A$)$
- $\mathbb{E m b}(\mathbb{X})$ is right reversible $\Leftrightarrow \mathbb{X}$ has the amalgamation property for embeddings
- $\mathbb{E m b}(\mathbb{X})$ is commutative $\Rightarrow \mathbb{E m b}(\mathbb{X})$ is cancellative, left reversible, and right reversible.

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem

$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem
$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Theorem
Each of the following conditions implies that $\mathbb{E m b}(\mathbb{X})$ embeds into a group

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem
$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Theorem
Each of the following conditions implies that $\mathbb{E m b}(\mathbb{X})$ embeds into a group

- $\mathbb{E m b}(\mathbb{X})$ is commutative

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem

$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Theorem
Each of the following conditions implies that $\mathbb{E m b}(\mathbb{X})$ embeds into a group

- $\mathbb{E m b}(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem

$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Theorem
Each of the following conditions implies that $\mathbb{E m b}(\mathbb{X})$ embeds into a group

- $\mathbb{E m b}(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic
- $\mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$ and \mathbb{X} has amalgamation for embeddings

Embeddability of $\operatorname{Emb}(\mathbb{X})$ into a group

Theorem
$\mathbb{E m b}(\mathbb{X})$ is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X})=\{X\}$

Theorem
Each of the following conditions implies that $\mathbb{E m b}(\mathbb{X})$ embeds into a group

- $\mathbb{E m b}(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic
- $\mathbb{P}(\mathbb{X}) \subset \operatorname{EDense}(\mathbb{X})$ and \mathbb{X} has amalgamation for embeddings

Proof. Using theorems of Grothendieck, Ore, and Dubreil.

Everything is possible

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n \geq 3} C_{n}$	+	-	of course

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n \geq 3} C_{n}$	+	-	of course
G_{ω}	-	+	+

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n \geq 3} C_{n}$	+	-	of course
G_{ω}	-	+	+
$G_{\omega} \cup \bigcup_{n \geq 3} C_{n}$	-	-	+

Everything is possible

\mathbb{X}	$\mathbb{E m b}(\mathbb{X})$ a group	$\mathbb{E m b}(\mathbb{X})$ commutative	$\mathbb{E m b}(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n \geq 3} C_{n}$	+	-	of course
G_{ω}	-	+	+
$G_{\omega} \cup \bigcup_{n>3} C_{n}$	-	-	+
$\langle\omega,<\rangle$	-	-	-

Bi-interpretable structures

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,
- $f: S \rightarrow X$ is a surjection,

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in \mathbb{X} is definable in \mathbb{Y}.

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in \mathbb{X} is definable in \mathbb{Y}.

Then we write $f: \mathbb{Y} \rightsquigarrow \mathbb{X}$.

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in \mathbb{X} is definable in \mathbb{Y}.

Then we write $f: \mathbb{Y} \rightsquigarrow \mathbb{X}$.

- Structures \mathbb{X} and \mathbb{Y} are bi-interpretable iff there are interpretations

$$
f: \mathbb{Y} \rightsquigarrow \mathbb{X} \text { and } g: \mathbb{X} \rightsquigarrow \mathbb{Y}
$$

such that the compositions $f * g$ and $g * f$ are definable (in \mathbb{X} and \mathbb{Y} respectively).

Bi-interpretable structures

Let \mathbb{X} and \mathbb{Y} be relational structures of languages $L_{\mathbb{X}}$ and $L_{\mathbb{Y}}$.

- An interpretation of \mathbb{X} in \mathbb{Y} (without parameters) is a triple $\langle n, S, f\rangle$, where
- $n \in \mathbb{N}$,
- $S \subset Y^{n}$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in \mathbb{X} is definable in \mathbb{Y}.

Then we write $f: \mathbb{Y} \rightsquigarrow \mathbb{X}$.

- Structures \mathbb{X} and \mathbb{Y} are bi-interpretable iff there are interpretations

$$
f: \mathbb{Y} \rightsquigarrow \mathbb{X} \text { and } g: \mathbb{X} \rightsquigarrow \mathbb{Y}
$$

such that the compositions $f * g$ and $g * f$ are definable (in \mathbb{X} and \mathbb{Y} respectively).

Theorem

$$
\mathbb{X} \text { and } \mathbb{Y} \text { are quantifier-free bi-interpretable } \Rightarrow \operatorname{Emb}(\mathbb{X}) \cong \operatorname{Emb}(\mathbb{Y})
$$

An application: a dichotomy for ultrahomogeneous str.

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)^{c}$

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)^{c}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}$

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)^{c}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}$
- $\left(\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}\right)^{c}$.

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)^{c}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}$
- $\left(\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}\right)^{c}$.
(II) In the second case we have

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)^{c}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}$
- $\left(\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}\right)^{c}$.
(II) In the second case we have
- Either $\mathbb{P}(\mathbb{X}) \cong \mathbb{P}(\mathbb{Z})^{n}$, for some biconnected $\mathbb{Z} \in$ Cherlin's list and $n \geq 2$,

An application: a dichotomy for ultrahomogeneous str.

The enlargement of a binary structure $\mathbb{X}=\langle X, \rho\rangle$ is the structure $\mathbb{X}_{e}:=\left\langle X, \rho_{e}\right\rangle$, where

$$
x \rho_{e} y \Leftrightarrow x \rho y \vee(x \neq y \wedge \neg x \rho y \wedge \neg y \rho x)
$$

Theorem
(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure \mathbb{X} we have

- Either \mathbb{X} is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
- $\bigcup_{\kappa} \mathbb{Y}_{e}$
- $\left(\bigcup_{K} \mathbb{Y}_{e}\right)^{c}$
- $\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}$
- $\left(\left(\bigcup_{\kappa} \mathbb{Y}_{e}\right)_{r e}\right)^{c}$.
(II) In the second case we have
- Either $\mathbb{P}(\mathbb{X}) \cong \mathbb{P}(\mathbb{Z})^{n}$, for some biconnected $\mathbb{Z} \in$ Cherlin's list and $n \geq 2$,
- Or sq $\mathbb{P}(\mathbb{X})$ is an atomless σ-closed poset (Column D$)$ and, hence, $\mathbb{P}(\mathbb{X}) \equiv(P(\omega) / \text { Fin })^{+}$, under $\mathbf{C H}$.

Proof

(I) Using Ramsey's theorem.

Proof

(I) Using Ramsey's theorem. (II) If $\mathbb{Y}=\bigcup_{k} \mathbb{Z}$ then

Proof

(I) Using Ramsey's theorem.
(II) If $\mathbb{Y}=\bigcup_{k} \mathbb{Z}$ then
$\left(\left(\bigcup_{m}\left(\bigcup_{k} \mathbb{Z}\right)_{e}\right)_{r e}\right)^{c}$ and $\bigcup_{m k} \mathbb{Z}$ are quantifier free bi-interpretable and, hence,

Proof

(I) Using Ramsey's theorem.
(II) If $\mathbb{Y}=\bigcup_{k} \mathbb{Z}$ then
$\left(\left(\bigcup_{m}\left(\bigcup_{k} \mathbb{Z}\right)_{e}\right)_{r e}\right)^{c}$ and $\bigcup_{m k} \mathbb{Z}$ are quantifier free bi-interpretable and, hence,

$$
\mathbb{P}(\mathbb{X}) \cong \mathbb{P}\left(\bigcup_{m k} \mathbb{Z}\right) \cong \mathbb{P}(\mathbb{Z})^{m k}
$$

B. Balcar, P. Vopěnka, On systems of almost disjoint sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972) 421-424
B. Balcar, P. Simon, Disjoint refinement, in: J. D. Monk and R. Bonnet (Eds.), Handbook of Boolean algebras, Vol. 2, 333-388, Elsevier Science Publishers B.V., Amsterdam, 1989.
M. S. Kurilić, From A_{1} to D_{5} : Towards a forcing-related classification of relational structures, J. Symbolic Logic (to appear).
M. S. Kurilić, Maximally embeddable components, Arch. Math. Logic 52,7 (2013) 793-808.
M. S. Kurilić, Posets of copies of countable scattered linear orders, Ann. Pure Appl. Logic, 165 (2014) 895-912.
M. S. Kurilić, Forcing with copies of countable ordinals, Proc. Amer. Math. Soc. (to appear).
M. S. Kurilić, Isomorphic and strongly connected components, Arch. Math. Logic (to appear).
M. S. Kurilić, Embedding-minimal and embedding-maximal structures, in preparation.
M. S. Kurilić, Different Similarities, submitted.
M. S. Kurilić, S. Todorčević, Forcing by non-scattered sets, Ann. Pure Appl. Logic 163 (2012) 1299-1308.
M. S. Kurilić, S. Todorčević, Forcing by isomorphic substructures of the Rado graph, submitted.
R. Laver, On Fraïssé's order type conjecture, Ann. of Math. 93,2 (1971) 89-111.
S. Shelah, O. Spinas, The distributivity numbers of $P(\omega) /$ fin and its square, Trans. Amer. Math. Soc. 352,5 (2000) 2023-2047.
A. Szymański, Zhou Hao Xua, The behaviour of $\omega^{2^{*}}$ under some consequences of Martin's axiom, General topology and its relations to modern analysis and algebra, V (Prague, 1981), 577-584, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983.
P. Vopěnka, A. Pultr, Z. Hedrlín, A rigid relation exists on any set, Comment. Math. Univ. Carolinae 6 (1965) 149-155.

