POSETS OF COPIES, EMBEDDING MONOIDS, AND INTERPRETABILITY OF RELATIONAL STRUCTURES

Miloš Kurilić

Department of Mathematics and Informatics, University of Novi Sad, Serbia

August 21, 2014

(SETTOP 2014)

<ロ> <四> <四> <四> <三</p>

• The poset of copies of a structure

<ロト < 四ト < 三ト < 三ト

- The poset of copies of a structure
- Posets of copies and embedding monoids (under construction)

- The poset of copies of a structure
- Posets of copies and embedding monoids (under construction)
- Posets of copies of bi-interpretable structures (under construction)

• • • • • • • • • • • • •

Relational structures and complete Boolean algebras

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

イロト イポト イヨト イヨト

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

$$\mathbb{P}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \left\{ A \subset X : \left\langle A, \left\langle
ho_i \cap A^{n_i} : i \in I
ight
angle
ight
angle \cong \mathbb{X}
ight\}$$

イロト イポト イヨト イヨト

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

$$\mathbb{P}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \left\{ A \subset X : \left\langle A, \left\langle
ho_i \cap A^{n_i} : i \in I
ight
angle
ight
angle \cong \mathbb{X}
ight\}$$

To \mathbb{X} we adjoin

• the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

$$\mathbb{P}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \left\{ A \subset X : \left\langle A, \left\langle
ho_i \cap A^{n_i} : i \in I
ight
angle
ight
angle \cong \mathbb{X}
ight\}$$

To \mathbb{X} we adjoin

- the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$
- its separative quotient $sq \langle \mathbb{P}(\mathbb{X}), \subset \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 >

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

$$\mathbb{P}(\mathbb{X}) \hspace{.1in} = \hspace{.1in} \left\{ A \subset X : \left\langle A, \left\langle
ho_i \cap A^{n_i} : i \in I
ight
angle
ight
angle \cong \mathbb{X}
ight\}$$

To \mathbb{X} we adjoin

- the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$
- its separative quotient $sq \langle \mathbb{P}(\mathbb{X}), \subset \rangle$
- its Boolean completion ro sq⟨𝒫(𝔅), ⊂⟩

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\mathbb{X} = \langle X, \langle \rho_i : i \in I \rangle \rangle$ is a relational structure, by $\mathbb{P}(\mathbb{X})$ we denote the **set of domains of isomorphic substructures of** \mathbb{X} , that is

$$\mathbb{P}(\mathbb{X}) \quad = \quad \left\{ A \subset X : \left\langle A, \left\langle
ho_i \cap A^{n_i} : i \in I \right\rangle \right\rangle \cong \mathbb{X}
ight\}$$

To $\ensuremath{\mathbb{X}}$ we adjoin

- the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$
- its separative quotient $sq \langle \mathbb{P}(\mathbb{X}), \subset \rangle$
- its Boolean completion ro sq⟨𝒫(𝔅), ⊂⟩

Theorem ([9])

ro sq $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is a homogeneous c. B. a.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Posets of copies of structures

(SETTOP 2014)

(SETTOP 2014)

(SETTOP 2014)

(SETTOP 2014)

(SETTOP 2014)

(SETTOP 2014)

(SETTOP 2014)

The hierarchy of similarities between relational structures

The hierarchy of similarities between relational structures

• • • • • • • • • • • •

The hierarchy of similarities between relational structures

The hierarchy of similarities between relational structures

The hierarchy of similarities between relational structures

(SETTOP 2014)

Example: Countable scattered l. o.' s are in Column D

э

Theorem ([5])

For each countable scattered linear order $\ensuremath{\mathbb{X}}$

• The poset $sq \langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is atomless and σ -closed

• • • • • • • • • • • • •

Theorem ([5])

For each countable scattered linear order $\ensuremath{\mathbb{X}}$

- The poset $\operatorname{sq} \langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is atomless and σ -closed
- Under CH we have $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \equiv (P(\omega)/\operatorname{Fin})^+$.

< □ > < □ > < □ > < □ >

Sub-example: Countable ordinals

(SETTOP 2014)

August 21, 2014 8 / 19

<ロト < 四ト < 三ト < 三ト

Theorem ([6])

If

$$\alpha = \omega^{\gamma_n + r_n} s_n + \dots + \omega^{\gamma_0 + r_0} s_0 + k$$

is a countably infinite ordinal presented in the Cantor normal form, then

Theorem ([6])

If

$$\alpha = \omega^{\gamma_n + r_n} s_n + \dots + \omega^{\gamma_0 + r_0} s_0 + k$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$\mathrm{sq}\langle \mathbb{P}(lpha),\subset
angle\cong\prod_{i=0}^n\left(\left(\mathrm{rp}^{r_i}(P(\omega^{\gamma_i})/\mathcal{I}_{\omega^{\gamma_i}})
ight)^+
ight)^{s_i}$$

Theorem ([6])

If

$$\alpha = \omega^{\gamma_n + r_n} s_n + \dots + \omega^{\gamma_0 + r_0} s_0 + k$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$\operatorname{sq}\langle \mathbb{P}(\alpha), \subset \rangle \cong \prod_{i=0}^{n} \left(\left(\operatorname{rp}^{r_{i}}(P(\omega^{\gamma_{i}})/\mathcal{I}_{\omega^{\gamma_{i}}}) \right)^{+} \right)^{s_{i}}$$
$$\langle \mathbb{P}(\alpha), \subset \rangle \equiv \left\{ \begin{array}{c} (P(\omega)/\operatorname{Fin})^{+} & \text{if } \alpha < \omega + \omega \end{array} \right.$$

Theorem ([6])

If

$$\alpha = \omega^{\gamma_n + r_n} s_n + \dots + \omega^{\gamma_0 + r_0} s_0 + k$$

is a countably infinite ordinal presented in the Cantor normal form, then

$$\operatorname{sq}\langle \mathbb{P}(\alpha), \subset \rangle \cong \prod_{i=0}^{n} \left(\left(\operatorname{rp}^{r_{i}}(P(\omega^{\gamma_{i}})/\mathcal{I}_{\omega^{\gamma_{i}}}) \right)^{+} \right)^{s_{i}}$$
$$\langle \mathbb{P}(\alpha), \subset \rangle \equiv \left\{ \begin{array}{cc} (P(\omega)/\operatorname{Fin})^{+} & \text{if } \alpha < \omega + \omega \\ (P(\omega)/\operatorname{Fin})^{+} * \pi & \text{if } \alpha \ge \omega + \omega \end{array} \right.$$

where $[\omega] \Vdash "\pi$ is an ω_1 -closed, separative atomless forcing".

• • • • • • • • • • • • • •

• • • • • • • • • • • •

Theorem (with S. Todorčević, [10])

For each countable non-scattered linear order \mathbb{X} we have

 $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \equiv \mathbb{S} \ast \pi$

where

• • • • • • • • • • • • •

Theorem (with S. Todorčević, [10])

For each countable non-scattered linear order X we have

 $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \equiv \mathbb{S} \ast \pi$

where

• S is the Sacks forcing

< □ > < □ > < □ > < □ >

Theorem (with S. Todorčević, [10])

For each countable non-scattered linear order \mathbb{X} we have

 $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \equiv \mathbb{S} \ast \pi$

where

- S is the Sacks forcing
- π codes a σ -closed forcing

Theorem (with S. Todorčević, [10])

For each countable non-scattered linear order \mathbb{X} we have

 $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \equiv \mathbb{S} \ast \pi$

where

- S is the Sacks forcing
- π codes a σ -closed forcing
- $1_{\mathbb{S}} \Vdash \pi \equiv (P(\omega)/\operatorname{Fin})^+$, under CH or PFA.

Countable linear orders in the $A_1 - D_5$ diagram

	scattered l. o.'s	
	ω	D_5
$ \begin{bmatrix} \text{non-scatt.} \\ 1. \text{ o.'s} \\ \mathbb{Q} \\ \end{bmatrix} C_4 $	ω · ω	D_4
	$\omega + \omega$	<i>D</i> ₃

(SETTOP 2014)

August 21, 2014 10 / 19

• • • • • • • • • • • •

イロト イポト イヨト イヨト

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on *M* is defined by

<ロト < 四ト < 三ト < 三ト

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on *M* is defined by

 $x \preceq^R y \iff \exists z \in M \ xz = y$

<ロ> <四> <四> <四> <三</p>

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on M is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

< ロ > < 回 > < 回 > < 回 > < 回</p>

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on M is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

•
$$\mathbb{P}(\mathbb{X}) = \{f[X] : f \in \operatorname{Emb}(\mathbb{X})\}$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on M is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

•
$$\mathbb{P}(\mathbb{X}) = \{f[X] : f \in \operatorname{Emb}(\mathbb{X})\}$$

•
$$\langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \operatorname{asq} \langle \operatorname{Emb}(\mathbb{X}), (\preceq^R)^{-1} \rangle$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on *M* is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

- $\mathbb{P}(\mathbb{X}) = \{f[X] : f \in \operatorname{Emb}(\mathbb{X})\}\$
- $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \operatorname{asq} \langle \operatorname{Emb}(\mathbb{X}), (\preceq^R)^{-1} \rangle$
- $\{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is invertible}\} = \{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is regular}\} = \operatorname{Aut}(\mathbb{X})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on *M* is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

- $\mathbb{P}(\mathbb{X}) = \{f[X] : f \in \operatorname{Emb}(\mathbb{X})\}\$
- $\langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \operatorname{asq} \langle \operatorname{Emb}(\mathbb{X}), (\preceq^R)^{-1} \rangle$
- $\{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is invertible}\} = \{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is regular}\} = \operatorname{Aut}(\mathbb{X})$
- ${id_X} = {f \in Emb(\mathbb{X}) : f \text{ is idempotent}}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\mathbb{M} = \langle M, \cdot, e \rangle$ is a monoid (a semigroup with unity), the **right Green's preorder** on *M* is defined by $x \preceq^R y \iff \exists z \in M \ xz = y$

Fact

If X is a relational structure and $\mathbb{E}mb(X) = \langle Emb(X), \circ, id_X \rangle$ the corresponding monoid of self-embeddings of X, then

• $\mathbb{P}(\mathbb{X}) = \{f[X] : f \in \operatorname{Emb}(\mathbb{X})\}\$

•
$$\langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \operatorname{asq} \langle \operatorname{Emb}(\mathbb{X}), (\preceq^R)^{-1} \rangle$$

- $\{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is invertible}\} = \{f \in \operatorname{Emb}(\mathbb{X}) : f \text{ is regular}\} = \operatorname{Aut}(\mathbb{X})$
- ${id_X} = {f \in Emb(\mathbb{X}) : f \text{ is idempotent}}.$

Theorem

If $\mathbb X$ and $\mathbb Y$ are relational structures, then

$$\mathbb{X}\cong\mathbb{Y}\Rightarrow\mathbb{E}\mathrm{mb}(\mathbb{X})\cong\mathbb{E}\mathrm{mb}(\mathbb{Y})\Rightarrow\langle\mathbb{P}(\mathbb{X}),\subset\rangle\cong\langle\mathbb{P}(\mathbb{Y}),\subset\rangle$$

(SETTOP 2014)
An application of $\mathbb{E}mb(\mathbb{X}) \cong \mathbb{E}mb(\mathbb{Y}) \Rightarrow \langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \langle \mathbb{P}(\mathbb{Y}), \subset \rangle$

An application of $\mathbb{E}mb(\mathbb{X}) \cong \mathbb{E}mb(\mathbb{Y}) \Rightarrow \langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \langle \mathbb{P}(\mathbb{Y}), \subset \rangle$

Since $\mathbb{P}((0,1)_{\mathbb{Q}},<) \cong \mathbb{P}([0,1]_{\mathbb{Q}},<)$ we have

 $\mathbb{E}\mathrm{mb}((0,1)_{\mathbb{Q}},<) \ncong \mathbb{E}\mathrm{mb}([0,1]_{\mathbb{Q}},<).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An application of $\mathbb{E}mb(\mathbb{X}) \cong \mathbb{E}mb(\mathbb{Y}) \Rightarrow \langle \mathbb{P}(\mathbb{X}), \subset \rangle \cong \langle \mathbb{P}(\mathbb{Y}), \subset \rangle$

Since $\mathbb{P}((0,1)_{\mathbb{Q}},<) \cong \mathbb{P}([0,1]_{\mathbb{Q}},<)$ we have

 $\mathbb{E}\mathrm{mb}((0,1)_{\mathbb{Q}},<) \ncong \mathbb{E}\mathrm{mb}([0,1]_{\mathbb{Q}},<).$

(Comment: but sq $\mathbb{P}((0,1)_{\mathbb{Q}},<) \cong$ sq $\mathbb{P}([0,1]_{\mathbb{Q}},<)$)

イロト 不得 トイヨト イヨト 二日

The monoid of self-embeddings

Cancellativity commutativity and reversibility of $\text{Emb}(\mathbb{X})$

• • • • • • • • • • • •

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible $\Leftrightarrow \forall x, y \exists u, v xu = yv$

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible	\Leftrightarrow	$\forall x, y$	$\exists u,v$	xu = yv
right reversible	\Leftrightarrow	$\forall x, y$	$\exists u, v$	ux = vy

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible $\Leftrightarrow \forall x, y \exists u, v xu = yv$ **right reversible** $\Leftrightarrow \forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible $\Leftrightarrow \forall x, y \exists u, v xu = yv$ **right reversible** $\Leftrightarrow \forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible \Leftrightarrow $\forall x, y \exists u, v xu = yv$ right reversible \Leftrightarrow $\forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

Theorem

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible $\Leftrightarrow \forall x, y \exists u, v \ xu = yv$ **right reversible** $\Leftrightarrow \forall x, y \exists u, v \ ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

Theorem

- If \mathbb{X} is a relational structure, then
 - $\mathbb{E}mb(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible \Leftrightarrow $\forall x, y \exists u, v xu = yv$ **right reversible** \Leftrightarrow $\forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

Theorem

- $\mathbb{E}mb(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$
- $\mathbb{E}mb(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is atomic (Column A)

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible \Leftrightarrow $\forall x, y \exists u, v xu = yv$ right reversible \Leftrightarrow $\forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in EDense(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

Theorem

- $\mathbb{E}mb(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$
- $\mathbb{E}mb(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is atomic (Column A)
- Emb(X) is right reversible ⇔ X has the amalgamation property for embeddings

A monoid $\mathbb{M} = \langle M, \cdot, e \rangle$ is

left reversible $\Leftrightarrow \forall x, y \exists u, v xu = yv$ **right reversible** $\Leftrightarrow \forall x, y \exists u, v ux = vy$

If X is a relational structure, a set $A \subset X$ will be called **embedding-dense**, we will write $A \in \text{EDense}(X)$ iff

 $\forall g, h \in \operatorname{Emb}(\mathbb{X}) \ (g \upharpoonright A = h \upharpoonright A \Rightarrow g = h).$

Theorem

- $\mathbb{E}mb(\mathbb{X})$ is cancellative $\Leftrightarrow \mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$
- $\mathbb{E}mb(\mathbb{X})$ is left reversible \Leftrightarrow the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ is atomic (Column A)
- Emb(X) is right reversible ⇔ X has the amalgamation property for embeddings
- Emb(X) is commutative ⇒ Emb(X) is cancellative, left reversible, and right reversible.

The monoid of self-embeddings

Embeddability of $\text{Emb}(\mathbb{X})$ into a group

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

• • • • • • • • • • • •

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

Theorem

Each of the following conditions implies that $\mathbb{E}mb(\mathbb{X})$ embeds into a group

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

Theorem

Each of the following conditions implies that $\mathbb{E}mb(\mathbb{X})$ embeds into a group

• $\mathbb{E}mb(\mathbb{X})$ is commutative

< □ > < □ > < □ > < □ >

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

Theorem

Each of the following conditions implies that $\mathbb{E}mb(\mathbb{X})$ embeds into a group

- $\mathbb{E}mb(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic

• □ ▶ • • • • • • • • •

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

Theorem

Each of the following conditions implies that $\mathbb{E}mb(\mathbb{X})$ embeds into a group

- $\mathbb{E}mb(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic
- $\mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$ and \mathbb{X} has amalgamation for embeddings

• □ ▶ • • □ ▶ • • □ ▶ • •

Theorem

 \mathbb{E} mb(\mathbb{X}) is a (retract of a) group $\Leftrightarrow \mathbb{P}(\mathbb{X}) = \{X\}$

Theorem

Each of the following conditions implies that $\mathbb{E}mb(\mathbb{X})$ embeds into a group

- $\mathbb{E}mb(\mathbb{X})$ is commutative
- $\mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$ and $\mathbb{P}(\mathbb{X})$ is atomic
- $\mathbb{P}(\mathbb{X}) \subset EDense(\mathbb{X})$ and \mathbb{X} has amalgamation for embeddings

Proof. Using theorems of Grothendieck, Ore, and Dubreil.

• • • • • • • • • • • • •

	X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
--	---	------------------------------------	--	--

X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course

X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n\geq 3} C_n$	+	-	of course

X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n\geq 3} C_n$	+	-	of course
G_{ω}	-	+	+

X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n\geq 3} C_n$	+	-	of course
G_{ω}	-	+	+
$G_{\omega} \cup \bigcup_{n \geq 3} C_n$	-	-	+

X	$\mathbb{E}mb(\mathbb{X})$ a group	$\mathbb{E}mb(\mathbb{X})$ commutative	$\mathbb{E}mb(\mathbb{X})$ embeddable into a group
$G_{\mathbb{Z}}$	+	+	of course
$\bigcup_{n\geq 3} C_n$	+	-	of course
G_{ω}	-	+	+
$G_{\omega} \cup \bigcup_{n \geq 3} C_n$	-	-	+
$\langle \omega, < \rangle$	-	-	-

Let X and Y be relational structures of languages L_X and L_Y .

Let X and Y be relational structures of languages L_X and L_Y .

• An interpretation of X in Y (without parameters) is a triple (n, S, f), where

Let X and Y be relational structures of languages L_X and L_Y .

- An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where
 - $n \in \mathbb{N}$,

イロン イロン イヨン イヨン

Let X and Y be relational structures of languages L_X and L_Y .

- An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where
 - $\begin{array}{ll} & n \in \mathbb{N}, \\ & S \subset Y^n, \end{array}$

Let X and Y be relational structures of languages L_X and L_Y .

- An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where
 - $n \in \mathbb{N}$,
 - $S \subset Y^n$,
 - $f: S \to X$ is a surjection,

Let X and Y be relational structures of languages L_X and L_Y .

- An interpretation of X in Y (without parameters) is a triple (n, S, f), where
 - $n \in \mathbb{N}$,
 - $S \subset Y^n$,
 - $f: S \to X$ is a surjection,
 - the pre-image of each set definable in X is definable in Y.

Let X and Y be relational structures of languages L_X and L_Y .

• An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where

- $n \in \mathbb{N}$,
- $S \subset Y^n$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in X is definable in Y.

Then we write $f : \mathbb{Y} \rightsquigarrow \mathbb{X}$.
Bi-interpretable structures

Let X and Y be relational structures of languages L_X and L_Y .

• An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where

- $n \in \mathbb{N}$,
- $S \subset Y^n$,
- $f: S \rightarrow X$ is a surjection,
- the pre-image of each set definable in X is definable in Y.

Then we write $f : \mathbb{Y} \rightsquigarrow \mathbb{X}$.

Structures X and Y are bi-interpretable iff there are interpretations

 $f: \mathbb{Y} \rightsquigarrow \mathbb{X} \text{ and } g: \mathbb{X} \rightsquigarrow \mathbb{Y}$

such that the compositions f * g and g * f are definable (in X and Y respectively).

Bi-interpretable structures

Let X and Y be relational structures of languages L_X and L_Y .

• An interpretation of X in Y (without parameters) is a triple $\langle n, S, f \rangle$, where

- $n \in \mathbb{N}$,
- $S \subset Y^n$,
- f : S → X is a surjection,
- the pre-image of each set definable in X is definable in Y.

Then we write $f : \mathbb{Y} \rightsquigarrow \mathbb{X}$.

Structures X and Y are bi-interpretable iff there are interpretations

 $f: \mathbb{Y} \rightsquigarrow \mathbb{X} \text{ and } g: \mathbb{X} \rightsquigarrow \mathbb{Y}$

such that the compositions f * g and g * f are definable (in X and Y respectively).

Theorem

 \mathbb{X} and \mathbb{Y} are quantifier-free bi-interpretable \Rightarrow $\text{Emb}(\mathbb{X}) \cong \text{Emb}(\mathbb{Y})$.

	177	гт	0	D	20	11	140
્ર	E.		υ	r	20	Л	14,

Bi-interpretable structures

An application: a dichotomy for ultrahomogeneous str.

• • • • • • • • • • • • •

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

イロト 不得 とくき とくき とうき

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure $\mathbb X$ we have

• Either X is biconnected

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \le \kappa \le \omega$ such that \mathbb{X} is isomorphic to one of the following structures:
 - $\bigcup_{\kappa} \mathbb{Y}_{e}$

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \le \kappa \le \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \le \kappa \le \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$
• $(\bigcup_{\kappa} \mathbb{Y}_{e})_{re}$

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \leq \kappa \leq \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$
• $(\bigcup_{\kappa} \mathbb{Y}_{e})_{re}$
• $((\bigcup_{\kappa} \mathbb{Y}_{e})_{re})^{c}$

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure $\mathbb X$ we have

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \le \kappa \le \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$
• $(\bigcup_{\kappa} \mathbb{Y}_{e})_{re}$
• $((\bigcup_{\kappa} \mathbb{Y}_{e})_{re})^{c}$

(II) In the second case we have

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure $\mathbb X$ we have

- Either X is biconnected
- Or there is an ultrahomogeneous digraph \mathbb{Y} (i.e. $\mathbb{Y} \in$ Cherlin's list) and a cardinal $2 \le \kappa \le \omega$ such that \mathbb{X} is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$
• $(\bigcup_{\kappa} \mathbb{Y}_{e})_{re}$
• $((\bigcup_{\kappa} \mathbb{Y}_{e})_{re})^{c}$.

(II) In the second case we have

• Either $\mathbb{P}(\mathbb{X}) \cong \mathbb{P}(\mathbb{Z})^n$, for some biconnected $\mathbb{Z} \in$ Cherlin's list and $n \ge 2$,

The **enlargement** of a binary structure $\mathbb{X} = \langle X, \rho \rangle$ is the structure $\mathbb{X}_e := \langle X, \rho_e \rangle$, where

 $x\rho_e y \Leftrightarrow x\rho y \lor (x \neq y \land \neg x\rho y \land \neg y\rho x)$

Theorem

(I) For each countable ultrahomogeneous reflexive or irreflexive binary structure $\mathbb X$ we have

- Either X is biconnected
- Or there is an ultrahomogeneous digraph Y (i.e. Y ∈ Cherlin's list) and a cardinal 2 ≤ κ ≤ ω such that X is isomorphic to one of the following structures:

•
$$\bigcup_{\kappa} \mathbb{Y}_{e}$$

• $(\bigcup_{\kappa} \mathbb{Y}_{e})^{c}$
• $(\bigcup_{\kappa} \mathbb{Y}_{e})_{re}$
• $((\bigcup_{\kappa} \mathbb{Y}_{e})_{re})^{c}$.

(II) In the second case we have

- Either $\mathbb{P}(\mathbb{X}) \cong \mathbb{P}(\mathbb{Z})^n$, for some biconnected $\mathbb{Z} \in$ Cherlin's list and $n \ge 2$,
- Or sq $\mathbb{P}(\mathbb{X})$ is an atomless σ -closed poset (Column D) and, hence, $\mathbb{P}(\mathbb{X}) \equiv (P(\omega)/\operatorname{Fin})^+$, under CH.

(SETTOP 2014)

(I) Using Ramsey's theorem.

<ロト < 四ト < 三ト < 三ト

(I) Using Ramsey's theorem. (II) If $\mathbb{Y} = \bigcup_k \mathbb{Z}$ then

<ロト < 四ト < 三ト < 三ト

- (I) Using Ramsey's theorem. (II) If $\mathbb{Y} = \bigcup_k \mathbb{Z}$ then
 - $((\bigcup_m (\bigcup_k \mathbb{Z})_e)_{re})^c$ and $\bigcup_{mk} \mathbb{Z}$ are quantifier free bi-interpretable and, hence,

(I) Using Ramsey's theorem. (II) If $\mathbb{Y} = \bigcup_k \mathbb{Z}$ then

 $((\bigcup_m (\bigcup_k \mathbb{Z})_e)_{re})^c$ and $\bigcup_{mk} \mathbb{Z}$ are quantifier free bi-interpretable and, hence, $\mathbb{P}(\mathbb{X}) \cong \mathbb{P}(\bigcup_{mk} \mathbb{Z}) \cong \mathbb{P}(\mathbb{Z})^{mk}.$

イロト 不得 とくき とくき とうき

- i

ì

M. S. Kurilić, From A1 to D5: Towards a forcing-related classification of relational structures, J. Symbolic Logic (to appear).

B. Balcar, P. Simon, Disjoint refinement, in: J. D. Monk and R. Bonnet (Eds.), Handbook of Boolean algebras, Vol. 2, 333-388,

B. Balcar, P. Vopěnka, On systems of almost disjoint sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972) 421-424.

- M. S. Kurilić, Maximally embeddable components, Arch. Math. Logic 52,7 (2013) 793-808.
- M. S. Kurilić, Posets of copies of countable scattered linear orders, Ann. Pure Appl. Logic, 165 (2014) 895-912.
- M. S. Kurilić, Forcing with copies of countable ordinals, Proc. Amer. Math. Soc. (to appear).
- M. S. Kurilić, Isomorphic and strongly connected components, Arch. Math. Logic (to appear).
- M. S. Kurilić, Embedding-minimal and embedding-maximal structures, in preparation.
- M. S. Kurilić, Different Similarities, submitted.

Elsevier Science Publishers B.V., Amsterdam, 1989.

- M. S. Kurilić, S. Todorčević, Forcing by non-scattered sets, Ann. Pure Appl. Logic 163 (2012) 1299-1308.
- M. S. Kurilić, S. Todorčević, Forcing by isomorphic substructures of the Rado graph, submitted.
- R. Laver, On Fraïssé's order type conjecture, Ann. of Math. 93,2 (1971) 89-111.
- S. Shelah, O. Spinas, The distributivity numbers of $P(\omega)/\text{fin}$ and its square, Trans. Amer. Math. Soc. 352,5 (2000) 2023–2047.
- A. Szymański, Zhou Hao Xua, The behaviour of ω^{2*} under some consequences of Martin's axiom, General topology and its relations to modern analysis and algebra, V (Prague, 1981), 577-584, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983.
- P. Vopěnka, A. Pultr, Z. Hedrlín, A rigid relation exists on any set, Comment. Math. Univ. Carolinae 6 (1965) 149-155.

(SETTOP 2014)