Discrete subspaces of countably compact spaces

István Juhász

Alfréd Rényi Institute of Mathematics

Novi Sad, August, 2014

István Juhász (Rényi Institute)

Discrete subspaces

Novi Sad 2014 1 / 11

István Juhász (Rényi Institute)

æ

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

A D M A A A M M

-

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

DEFINITION

For a property P of subspaces of X, we say that X is P-bounded iff the closure in X of any subspace with P is compact.

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

DEFINITION

For a property P of subspaces of X, we say that X is P-bounded iff the closure in X of any subspace with P is compact.

So, *F*-bounded (and hence *D*-bounded) spaces are compact.

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

DEFINITION

For a property P of subspaces of X, we say that X is P-bounded iff the closure in X of any subspace with P is compact.

So, *F*-bounded (and hence *D*-bounded) spaces are compact.

COROLLARY

István Juhász (Rényi Institute)

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

DEFINITION

For a property P of subspaces of X, we say that X is P-bounded iff the closure in X of any subspace with P is compact.

So, *F*-bounded (and hence *D*-bounded) spaces are compact.

COROLLARY

Any non-isolated point of a compact T_2 space is discretely touchable,

FACT. (Folklore??)

If all free sequences in a topological space X have compact closure then X is compact.

DEFINITION

For a property P of subspaces of X, we say that X is P-bounded iff the closure in X of any subspace with P is compact.

So, *F*-bounded (and hence *D*-bounded) spaces are compact.

COROLLARY

Any non-isolated point of a compact T_2 space is discretely touchable, i.e. the accumulation point of a discrete set.

István Juhász (Rényi Institute)

Discrete subspaces

2

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

イロト イ団ト イヨト イヨト

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete.

.

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

So, compact T_2 spaces are weakly discretely generated.

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

So, compact T_2 spaces are weakly discretely generated. Also, countably tight compact T_2 spaces are discretely generated.

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

So, compact T_2 spaces are weakly discretely generated. Also, countably tight compact T_2 spaces are discretely generated.

EXAMPLE 1.

There is a compact T_2 space which is not discretely generated

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

So, compact T_2 spaces are weakly discretely generated. Also, countably tight compact T_2 spaces are discretely generated.

EXAMPLE 1.

There is a compact T_2 space which is not discretely generated (if there is an L-space).

・ロト ・四ト ・ヨト ・ヨト

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION

A space X is discretely generated iff $x \in \overline{A}$ implies $x \in \overline{D}$ for some $D \subset A$ discrete. X is weakly discretely generated iff $A \subset X$ not closed implies $\overline{D} \nsubseteq A$ for some $D \subset A$ discrete.

So, compact T_2 spaces are weakly discretely generated. Also, countably tight compact T_2 spaces are discretely generated.

EXAMPLE 1.

There is a compact T_2 space which is not discretely generated (if there is an L-space).

EXAMPLE 2.

Consistently, there is an ω -bounded (hence countably compact) regular space with a discretely untouchable point.

István Juhász (Rényi Institute)

Discrete subspaces

イロト イヨト イヨト イヨト

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. $Col(\lambda, \kappa)$:

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \rightarrow 2$ s.t.,

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$,

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t.

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t. $c(a_{\alpha,i}, a_{\beta,j}) = h(i,j)$ for any $\langle i, j \rangle \in \xi \times \xi$.

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_\alpha : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t. $c(a_{\alpha,i}, a_{\beta,j}) = h(i,j)$ for any $\langle i, j \rangle \in \xi \times \xi$.

FACT. (Shelah) For any κ , if $\lambda = (2^{\kappa})^{++} + \omega_4$ then $Col(\lambda, \kappa)$.

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_{\alpha} : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t. $c(a_{\alpha,i}, a_{\beta,j}) = h(i,j)$ for any $\langle i, j \rangle \in \xi \times \xi$.

FACT. (Shelah) For any κ , if $\lambda = (2^{\kappa})^{++} + \omega_4$ then $\operatorname{Col}(\lambda, \kappa)$.

THEOREM (J-Shelah)

If $\lambda = cf(\lambda) > \kappa^+$ and $Col(\lambda, \kappa)$ holds

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_{\alpha} : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t. $c(a_{\alpha,i}, a_{\beta,j}) = h(i,j)$ for any $\langle i, j \rangle \in \xi \times \xi$.

FACT. (Shelah) For any κ , if $\lambda = (2^{\kappa})^{++} + \omega_4$ then $Col(\lambda, \kappa)$.

THEOREM (J-Shelah)

If $\lambda = cf(\lambda) > \kappa^+$ and $Col(\lambda, \kappa)$ holds then the Cantor cube \mathbb{C}_{λ} has a dense κ -bounded subspace with a discretely untouchable point.

THEOREM (J-Shelah)

For every cardinal κ , there is a κ -bounded 0-dimensional T_2 space with a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is $c : [\lambda]^2 \to 2$ s.t., given $\xi < \kappa^+$ and $h : \xi \times \xi \to 2$, for any disjoint $\{A_{\alpha} : \alpha < \lambda\} \subset [\lambda]^{\xi}$ we have $\alpha < \beta < \lambda$ s.t. $c(a_{\alpha,i}, a_{\beta,j}) = h(i,j)$ for any $\langle i, j \rangle \in \xi \times \xi$.

FACT. (Shelah) For any κ , if $\lambda = (2^{\kappa})^{++} + \omega_4$ then $Col(\lambda, \kappa)$.

THEOREM (J-Shelah)

If $\lambda = cf(\lambda) > \kappa^+$ and $Col(\lambda, \kappa)$ holds then the Cantor cube \mathbb{C}_{λ} has a dense κ -bounded subspace with a discretely untouchable point.

FACT. (van Douwen) There is a countable, crowded, regular space in which every point is discretely untouchable.

István Juhász (Rényi Institute)

Discrete subspaces

István Juhász (Rényi Institute)

イロト イヨト イヨト イヨト

TRIVIAL FACT.

István Juhász (Rényi Institute)

Discrete subspaces

Novi Sad 2014 5 / 11

æ

イロト イヨト イヨト イヨト

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

イロト イ団ト イヨト イヨト

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

PROBLEM

What if λ is singular?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

PROBLEM

What if λ is singular?

THEOREM

If λ is singular and

$$\left(\sup\{\mathbf{2}^{\mathbf{2}^{\mu}}:\mu<\lambda\}\right)^{\mathsf{cf}(\lambda)} < \mathbf{2}^{\mathbf{2}^{\lambda}}$$

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

PROBLEM

What if λ is singular?

THEOREM

If λ is singular and

$$\left(\sup\{\mathbf{2}^{\mathbf{2}^{\mu}}:\mu<\lambda\}\right)^{\mathsf{cf}(\lambda)} < \mathbf{2}^{\mathbf{2}^{\lambda}}$$

then the Cantor cube $\mathbb{C}_{2^{\lambda}}$ has a dense subspace that is $(< \lambda)$ -bounded but not λ -bounded.

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

PROBLEM

What if λ is singular?

THEOREM

If λ is singular and

$$\left(\sup\{2^{2^{\mu}}:\mu<\lambda\}\right)^{\operatorname{cf}(\lambda)} < 2^{2^{\lambda}}$$

then the Cantor cube $\mathbb{C}_{2^{\lambda}}$ has a dense subspace that is $(< \lambda)$ -bounded but not λ -bounded.

In particular, this is so if λ is strong limit.

TRIVIAL FACT. If $\lambda = cf(\lambda)$ then the (ordered) space λ is $(< \lambda)$ -bounded but not λ -bounded.

PROBLEM

What if λ is singular?

THEOREM

If λ is singular and

$$\left(\sup\{2^{2^{\mu}}:\mu<\lambda\}\right)^{\operatorname{cf}(\lambda)} < 2^{2^{\lambda}}$$

then the Cantor cube $\mathbb{C}_{2^{\lambda}}$ has a dense subspace that is $(< \lambda)$ -bounded but not λ -bounded.

In particular, this is so if λ is strong limit.

From now on, all spaces are T_1 .

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

(4) (5) (4) (5)

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

4 A N

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact T_2 example exists under CH.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact T_2 example exists under CH.

SEPARATION 2.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact T_2 example exists under CH.

SEPARATION 2. (i) Any countably compact infinite space in which all compact subspaces are finite.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact T_2 example exists under CH.

SEPARATION 2. (i) Any countably compact infinite space in which all compact subspaces are finite.

(ii) The Franklin-Rajagopalan space is locally compact T_2 and sequentially compact but not ωD -bounded.

From now on, all spaces are T_1 .

 $\omega D \equiv$ "countable discrete"

 ω -bounded $\Rightarrow \omega D$ -bounded \Rightarrow countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point $p \in \omega^*$ that is ω -touchable but not ωD -touchable.

So, $\omega^* \setminus \{p\}$ is ωD -bounded but not ω -bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact T_2 example exists under CH.

SEPARATION 2. (i) Any countably compact infinite space in which all compact subspaces are finite.

(ii) The Franklin-Rajagopalan space is locally compact T_2 and sequentially compact but not ωD -bounded. Under CH, it is first countable.

István Juhász (Rényi Institute)

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < cov(\mathcal{M})$ then X is ω -bounded.

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < cov(\mathcal{M})$ then X is ω -bounded.

 $\kappa < \mathfrak{p} \Leftrightarrow MA_{\kappa}(\sigma - \text{centered}),$

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < \operatorname{cov}(\mathcal{M})$ then X is ω -bounded.

$$\kappa < \mathfrak{p} \Leftrightarrow MA_{\kappa}(\sigma - \text{centered}),$$

 $\kappa < \operatorname{cov}(\mathcal{M}) \Leftrightarrow MA_{\kappa}(\operatorname{countable}).$

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < cov(\mathcal{M})$ then X is ω -bounded.

$$\kappa < \mathfrak{p} \Leftrightarrow MA_{\kappa}(\sigma - \text{centered}),$$

 $\kappa < \operatorname{cov}(\mathcal{M}) \Leftrightarrow MA_{\kappa}(\operatorname{countable}).$

So, $\mathfrak{p} \leq \operatorname{cov}(\mathcal{M})$

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < \operatorname{cov}(\mathcal{M})$ then X is ω -bounded.

$$\kappa < \mathfrak{p} \Leftrightarrow MA_{\kappa}(\sigma - \text{centered}),$$

$$\kappa < \operatorname{cov}(\mathcal{M}) \Leftrightarrow MA_{\kappa}(\operatorname{countable}).$$

So, $\mathfrak{p} \leq \mathsf{cov}(\mathcal{M})$ and $\mathfrak{p} < \mathsf{cov}(\mathcal{M})$ is consistent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If X is regular, countably compact, and $L(X) < \mathfrak{p}$ then X is ω -bounded.

THEOREM (J-Soukup-Szentmiklóssy)

If X is regular, ωD -bounded, and $L(X) < \operatorname{cov}(\mathcal{M})$ then X is ω -bounded.

$$\kappa < \mathfrak{p} \Leftrightarrow MA_{\kappa}(\sigma - \text{centered}),$$

$$\kappa < \operatorname{cov}(\mathcal{M}) \Leftrightarrow MA_{\kappa}(\operatorname{countable}).$$

So, $\mathfrak{p} \leq \mathsf{cov}(\mathcal{M})$ and $\mathfrak{p} < \mathsf{cov}(\mathcal{M})$ is consistent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

István Juhász (Rényi Institute)

Image: A math a math

BIG OPEN PROBLEM:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

(ii) If $\mathfrak{b} > \omega_1$ then ωD -bounded and countably tight regular spaces are ω -bounded.

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

(ii) If $\mathfrak{b} > \omega_1$ then ωD -bounded and countably tight regular spaces are ω -bounded.

NOTE. (i) There is an ωD -bounded but not ωN -bounded Tychonov space.

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

(ii) If $\mathfrak{b} > \omega_1$ then ωD -bounded and countably tight regular spaces are ω -bounded.

NOTE. (i) There is an ωD -bounded but not ωN -bounded Tychonov space.

(ii) If $c = \omega_1$ then (by Hernandez-Gutierrez) there is a first countable, ωD -bounded but not ω -bounded, locally compact T_2 space.

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

(ii) If $\mathfrak{b} > \omega_1$ then ωD -bounded and countably tight regular spaces are ω -bounded.

NOTE. (i) There is an ωD -bounded but not ωN -bounded Tychonov space.

(ii) If $c = \omega_1$ then (by Hernandez-Gutierrez) there is a first countable, ωD -bounded but not ω -bounded, locally compact T_2 space.

PROBLEM

Does $\mathfrak{b} = \omega_1$ imply the existence of an ωD -bounded and countably tight (or first countable) regular space which is not ω -bounded?

István Juhász (Rényi Institute)

BIG OPEN PROBLEM: Is it consistent that countably compact, first countable (or even countably tight), regular spaces are ω -bounded?

THEOREM (J-Soukup-Szentmiklóssy)

(i) ωD -bounded and countably tight regular spaces are ωN -bounded.

(ii) If $\mathfrak{b} > \omega_1$ then ωD -bounded and countably tight regular spaces are ω -bounded.

NOTE. (i) There is an ωD -bounded but not ωN -bounded Tychonov space.

(ii) If $c = \omega_1$ then (by Hernandez-Gutierrez) there is a first countable, ωD -bounded but not ω -bounded, locally compact T_2 space.

PROBLEM

Does $\mathfrak{b} = \omega_1$ imply the existence of an ωD -bounded and countably tight (or first countable) regular space which is not ω -bounded?

István Juhász (Rényi Institute)

István Juhász (Rényi Institute)

æ

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

István Juhász (Rényi Institute)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ \big(|\boldsymbol{D} \cap \boldsymbol{U}| < \omega \big) \}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ (|\boldsymbol{D} \cap \boldsymbol{U}| < \omega) \}$$

LEMMA

If X is regular then $\mathcal{I}(S, \mathcal{U})$ is a *P*-ideal.

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ (|\boldsymbol{D} \cap \boldsymbol{U}| < \omega) \}$$

LEMMA

If X is regular then $\mathcal{I}(S, \mathcal{U})$ is a *P*-ideal.

THEOREM (J-Soukup-Szentmiklóssy)

Let *X* be regular, countably compact, and countably tight. Then for any countable $A \subset \overline{\mathcal{UU}} \setminus \overline{\mathcal{UU}}$ there is $D \in \mathcal{I}(S, \mathcal{U})$ s.t. $A \subset \overline{D}$.

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ (|\boldsymbol{D} \cap \boldsymbol{U}| < \omega) \}$$

LEMMA

If X is regular then $\mathcal{I}(S, \mathcal{U})$ is a *P*-ideal.

THEOREM (J-Soukup-Szentmiklóssy)

Let *X* be regular, countably compact, and countably tight. Then for any countable $A \subset \overline{\mathcal{UU}} \setminus \overline{\mathcal{UU}}$ there is $D \in \mathcal{I}(S, \mathcal{U})$ s.t. $A \subset \overline{D}$.

The proof of ωD -bounded $\Rightarrow \omega N$ -bounded easily follows.

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ (|\boldsymbol{D} \cap \boldsymbol{U}| < \omega) \}$$

LEMMA

If X is regular then $\mathcal{I}(S, \mathcal{U})$ is a *P*-ideal.

THEOREM (J-Soukup-Szentmiklóssy)

Let *X* be regular, countably compact, and countably tight. Then for any countable $A \subset \overline{\mathcal{UU}} \setminus \overline{\mathcal{UU}}$ there is $D \in \mathcal{I}(S, \mathcal{U})$ s.t. $A \subset \overline{D}$.

The proof of ωD -bounded $\Rightarrow \omega N$ -bounded easily follows.

COROLLARY

Regular, countably compact, and countably tight spaces are discretely determined.

István Juhász (Rényi Institute)

On the proof

DEFINITION. Let X be any space, $\mathcal{U} \subset \tau(X)$ disjoint, $S \subset \cup \mathcal{U}$ dense.

$$\mathcal{I}(\boldsymbol{S}, \mathcal{U}) = \{ \boldsymbol{D} \in [\boldsymbol{S}]^{\leq \omega} : \forall \ \boldsymbol{U} \in \mathcal{U} \ (|\boldsymbol{D} \cap \boldsymbol{U}| < \omega) \}$$

LEMMA

If X is regular then $\mathcal{I}(S, \mathcal{U})$ is a *P*-ideal.

THEOREM (J-Soukup-Szentmiklóssy)

Let *X* be regular, countably compact, and countably tight. Then for any countable $A \subset \overline{\mathcal{UU}} \setminus \overline{\mathcal{UU}}$ there is $D \in \mathcal{I}(S, \mathcal{U})$ s.t. $A \subset \overline{D}$.

The proof of ωD -bounded $\Rightarrow \omega N$ -bounded easily follows.

COROLLARY

Regular, countably compact, and countably tight spaces are discretely determined.

István Juhász (Rényi Institute)

István Juhász (Rényi Institute)

Э.

 ω -boundedness is fully productive,

Э.

 ω -boundedness is fully productive, countable compactness is not productive at all.

э

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

< ロ > < 同 > < 回 > < 回 >

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

< ロ > < 同 > < 回 > < 回 >

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and

A B F A B F

A D M A A A M M

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_i : i \in I \setminus \{j\}$ } is finite.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_i : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_j : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 $\omega \textit{D}\text{-bounded}$

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_i : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_j : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded. Weakly bounded spaces are countably compact.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_i : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded. Weakly bounded spaces are countably compact.

THEOREM (J-S-Sz)

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_i : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded. Weakly bounded spaces are countably compact.

THEOREM (J-S-Sz)

(i) The product of < t weakly bounded spaces is weakly bounded.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_j : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded. Weakly bounded spaces are countably compact.

THEOREM (J-S-Sz)

(i) The product of < t weakly bounded spaces is weakly bounded.

(ii) The product of t weakly bounded spaces is countably compact.

 ω -boundedness is fully productive, countable compactness is not productive at all.

From now on, all spaces are T_2 .

THEOREM (J-S-Sz)

If Π { $X_i : i \in I$ } is ωD -bounded but not ω -bounded, then there is $j \in I$ s.t. X_j is not ω -bounded and Π { $X_j : i \in I \setminus \{j\}$ } is finite.

DEFINITION. *X* is weakly bounded iff for each $A \in [X]^{\omega}$ there is $B \in [A]^{\omega}$ s.t. \overline{B} is compact.

 ω *D*-bounded and sequentially compact spaces are both weakly bounded. Weakly bounded spaces are countably compact.

THEOREM (J-S-Sz)

(i) The product of < t weakly bounded spaces is weakly bounded.

(ii) The product of t weakly bounded spaces is countably compact.

István Juhász (Rényi Institute)

Discrete subspaces

Novi Sad 2014 11 / 11

æ

▲□▶ ▲圖▶ ▲国▶ ▲国≯

THANK YOU FOR YOUR ATTENTION !

István Juhász (Rényi Institute)

Э.