On small expansions of $(\omega,<)$ and $(\omega+\omega^*,<)$

Dejan Ilić

Faculty of Transport and Traffic Engineering University of Belgrade

Novi Sad, August 2014

Definition: We say that T is *binary* if for every formula $\varphi(x_0, \ldots, x_n)$ there is a formula $\psi(x_0, \ldots, x_n)$, a Boolean combination of formulas in at most two variables such that φ and ψ are equivalent modulo T.

Theorem (Rubin): Let $\mathcal{M} = (M, <, P_i)_{i \in A}$ for some $A \subseteq \omega$. where P_i 's are arbitrary unary predicates and where < defines a linear order on infinite M. Then Th (\mathcal{M}) is binary.

御 と く き と く き と

Question: If $Th(\omega, <, ...)$ is small is it binary?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem:

- (1) There is no proper expansion of $(\omega, <)$ (or $(\omega + \omega^*, <)$) satisfying $CB(x = x) = \deg(x = x) = 1$.
- (2) Any expansion of $(\omega, <)$ (or $(\omega + \omega^*, <)$) satisfying CB(x = x) = 1 and deg(x = x) > 1 is an essentially unary expansion: Particularly
 - (a) Expansion of $(\omega, <)$ satisfying CB(x = x) = 1 and $\deg(x = x) = d$ is definitionally equivalent to $(\omega, <, P_d)$.
 - (b) Any expansion of (ω + ω*, <) in which ω is not a definable subset and satisfying CB(x = x) = 1 and deg(x = x) = d is definitionally equivalent to is a definitional expansion of (ω + ω*, <, B_{d,l}) for some integer *l*.

Question 2:Is every expansions of $(\omega, <)$ with small theoryessentially unary?No!

There is small expansion of $(\omega, <)$ which is not essentially unary!

< 注 → < 注 → □ 注

Example:

Let
$$\mathcal{M} = (\omega, <, P, f)$$
 where $P(x) \stackrel{def}{\iff} x \in \{y^2 \mid y \in \omega\}$ and $f(x) = ([\sqrt{x}] + 1)^2 + x - [\sqrt{x}]^2$.
CB $(x = x) = 2$.

 \mathcal{M} is not essentially unary expansion of ($\omega, <$).

□ > 《注 > 《注 > 二注