On small expansions of $(\omega,<)$ and $\left(\omega+\omega^{*},<\right)$

Dejan Ilić

Faculty of Transport and Traffic Engineering University of Belgrade

Novi Sad, August 2014

Definition: We say that T is binary if for every formula $\varphi\left(x_{0}, \ldots, x_{n}\right)$ there is a formula $\psi\left(x_{0}, \ldots, x_{n}\right)$, a Boolean combination of formulas in at most two variables such that φ and ψ are equivalent modulo T.

Theorem (Rubin): Let $\mathcal{M}=\left(M,<, P_{i}\right)_{i \in A}$ for some $A \subseteq \omega$. where P_{i} 's are arbitrary unary predicates and where $<$ defines a linear order on infinite M. Then $\operatorname{Th}(\mathcal{M})$ is binary.

Question: If $\operatorname{Th}(\omega,<, \ldots)$ is small is it binary?

Theorem:

(1) There is no proper expansion of $(\omega,<)$ (or $\left.\left(\omega+\omega^{*},<\right)\right)$ satisfying $C B(x=x)=\operatorname{deg}(x=x)=1$.
(2) Any expansion of $(\omega,<)$ (or $\left(\omega+\omega^{*},<\right)$) satisfying $C B(x=x)=1$ and $\operatorname{deg}(x=x)>1$ is an essentially unary expansion: Particularly
(a) Expansion of $(\omega,<)$ satisfying $C B(x=x)=1$ and $\operatorname{deg}(x=x)=d$ is definitionally equivalent to $\left(\omega,<, P_{d}\right)$.
(b) Any expansion of $\left(\omega+\omega^{*},<\right)$ in which ω is not a definable subset and satisfying $C B(x=x)=1$ and $\operatorname{deg}(x=x)=d$ is definitionally equivalent to is a definitional expansion of $\left(\omega+\omega^{*},<, B_{d, I}\right)$ for some integer I.

Question 2: Is every expansions of $(\omega,<)$ with small theory essentially unary?
Answer to Q2: No!
There is small expansion of $(\omega,<)$ which is not essentially unary!

Example:

Let $\mathcal{M}=(\omega,<, P, f)$ where $P(x) \stackrel{\text { def }}{\Longleftrightarrow} x \in\left\{y^{2} \mid y \in \omega\right\}$ and $f(x)=([\sqrt{x}]+1)^{2}+x-[\sqrt{x}]^{2}$.
$\mathrm{CB}(x=x)=2$.
\mathcal{M} is not essentially unary expansion of $(\omega,<)$.

