Generic Extensions of Models of **ZFC**

Lev Bukovský

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk

August 15, 2014

æ

《曰》 《聞》 《臣》 《臣》

Notations and Terminology

M is a model if $\langle M, \in \rangle$ is a transitive model of **ZFC**, M is either countable set, or a class. M_2 is an extension of M_1 if $M_1 \subseteq M_2$ are models with same ordinals $\operatorname{On}^{M_1} = \operatorname{On}^{M_2}$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

M is a model if $\langle M, \in \rangle$ is a transitive model of **ZFC**, M is either countable set, or a class. M_2 is an extension of M_1 if $M_1 \subseteq M_2$ are models with same ordinals $\mathrm{On}^{M_1} = \mathrm{On}^{M_2}$.

B. Balcar and P. Vopěnka 1967: If M_2 is a model extension of M_1 and $\mathcal{P}(\mathrm{On}) \cap M_2 \subseteq M_1$, then $M_1 = M_2$.

M is a model if $\langle M,\in\rangle$ is a transitive model of ${\sf ZFC}$, M is either countable set, or a class.

 M_2 is an extension of M_1 if $M_1 \subseteq M_2$ are models with same ordinals $\mathrm{On}^{M_1} = \mathrm{On}^{M_2}$.

B. Balcar and P. Vopěnka 1967: If M_2 is a model extension of M_1 and $\mathcal{P}(On) \cap M_2 \subseteq M_1$, then $M_1 = M_2$.

 M_2 is an extension of M_1 , $a \in M_2$, $a \subseteq M_1$ (or $a \subseteq On$). Then $M_1[a]$ is the smallest model of **ZFC** such that $M_1 \subseteq M_1[a]$ and $a \in M_1[a]$. Note that for $a, b \subseteq M_1$, $a, b \in M_2$ we have $M_1[a][b] = M_1[b][a]$.

M is a model if $\langle M, \in \rangle$ is a transitive model of **ZFC**. M is either countable set, or a class.

 M_2 is an extension of M_1 if $M_1 \subseteq M_2$ are models with same ordinals $On^{M_1} = On^{M_2}$.

B. Balcar and P. Vopěnka 1967: If M_2 is a model extension of M_1 and $\mathcal{P}(\mathrm{On}) \cap M_2 \subset M_1$, then $M_1 = M_2$.

 M_2 is an extension of M_1 , $a \in M_2$, $a \subseteq M_1$ (or $a \subseteq On$). Then $M_1[a]$ is the smallest model of **ZFC** such that $M_1 \subseteq M_1[a]$ and $a \in M_1[a]$. Note that for $a, b \subseteq M_1, a, b \in M_2$ we have $M_1[a][b] = M_1[b][a].$

Let κ be an uncountable regular cardinal of M_1 .

M is a model if $\langle M,\in\rangle$ is a transitive model of ${\sf ZFC}$, M is either countable set, or a class.

 M_2 is an extension of M_1 if $M_1 \subseteq M_2$ are models with same ordinals $\mathrm{On}^{M_1} = \mathrm{On}^{M_2}$.

B. Balcar and P. Vopěnka 1967: If M_2 is a model extension of M_1 and $\mathcal{P}(On) \cap M_2 \subseteq M_1$, then $M_1 = M_2$.

 M_2 is an extension of M_1 , $a \in M_2$, $a \subseteq M_1$ (or $a \subseteq On$). Then $M_1[a]$ is the smallest model of **ZFC** such that $M_1 \subseteq M_1[a]$ and $a \in M_1[a]$. Note that for $a, b \subseteq M_1$, $a, b \in M_2$ we have $M_1[a][b] = M_1[b][a]$. Let κ be an uncountable regular cardinal of M_1 .

 M_2 is a κ -generic extension of M_1 if there exists a poset $P \in M_1$, $|P| \leq \kappa$ and an M_1 -generic ultrafilter G on P such that $M_2 = M_1[G]$.

э

 M_2 is a κ -C.C. generic extension of M_1 if there exists a κ -C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_1$, complete in M_1 and an M_1 -generic ultrafilter G on B such that $M_2 = M_1[G]$.

 M_2 is a κ -C.C. generic extension of M_1 if there exists a κ -C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_1$, complete in M_1 and an M_1 -generic ultrafilter G on B such that $M_2 = M_1[G]$. $Bd_{M_1,M_2}(\kappa)$ says that

$$\begin{aligned} (\forall u \subseteq On, u \in M_2) (\exists y \in M_2) (\exists a \in M_1) \\ (y \subseteq a \land |a|^{M_1} < \kappa \land u = \bigcup y). \end{aligned}$$

 M_2 is a κ -C.C. generic extension of M_1 if there exists a κ -C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_1$, complete in M_1 and an M_1 -generic ultrafilter G on B such that $M_2 = M_1[G]$. $Bd_{M_1,M_2}(\kappa)$ says that

$$(\forall u \subseteq On, u \in M_2) (\exists y \in M_2) (\exists a \in M_1) (y \subseteq a \land |a|^{M_1} < \kappa \land u = \bigcup y).$$

 $Apr_{M_1,M_2}(\kappa)$ says that

 $(\forall f \in M_2, f \text{ a function}, \operatorname{dom}(f) \in M_1, \operatorname{rng}(f) \subseteq M_1) (\exists g \in M_1, \operatorname{dom}(g) = \operatorname{dom}(f)) (\forall x \in \operatorname{dom}(f)) (f(x) \in g(x) \land |g(x)|^{M_1} < \kappa).$

 M_2 is a $\kappa\text{-generic}$ extension of M_1 if and only if $Bd_{M_1,M_2}(\kappa)$ holds true.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

 M_2 is a $\kappa\text{-generic}$ extension of M_1 if and only if $Bd_{M_1,M_2}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

 M_2 is a $\kappa\text{-generic}$ extension of M_1 if and only if $Bd_{M_1,M_2}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43. In [B2], we have proved the following

Theorem 2

 M_2 is a $\kappa\text{-}C.C.$ generic extension of M_1 if and only if $Apr_{M_1,M_2}(\kappa)$ holds true.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

 M_2 is a $\kappa\text{-generic}$ extension of M_1 if and only if $Bd_{M_1,M_2}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43. In [B2], we have proved the following

Theorem 2

 M_2 is a $\kappa\text{-}C.C.$ generic extension of M_1 if and only if $Apr_{M_1,M_2}(\kappa)$ holds true.

Recently, another proof of Theorem 2 was given by S.D. Friedman, S. Fuchino and H. Sakai [FFS]. We present the idea of a proof of Theorem 2 that is different from those of [B2] and [FFS].

э

The implications from left to right in both theorems are trivial.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

The implications from left to right in both theorems are trivial. Let $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset $P \in M_1$, $|P|^{M_1} < \kappa$. If $u \subseteq On$, $u \in M_2$, then there exists a relation $r \in M_1$ such that $u = r''G = \{\xi : (\exists y \in G) \langle y, \xi \rangle \in r\}$.

The implications from left to right in both theorems are trivial. Let $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset $P \in M_1$, $|P|^{M_1} < \kappa$. If $u \subseteq On$, $u \in M_2$, then there exists a relation $r \in M_1$ such that $u = r''G = \{\xi : (\exists y \in G) \langle y, \xi \rangle \in r\}$. We can assume that $r \subseteq P \times On$. Set

$$a = \{\{\xi : \langle t, \xi \rangle \in r\} : t \in P\}, \quad y = \{\{\xi : \langle x, \xi \rangle \in r\} : x \in G\}.$$

Then $|a|^{M_1} < \kappa$ and $x = \bigcup y$.

The implications from left to right in both theorems are trivial. Let $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset $P \in M_1$, $|P|^{M_1} < \kappa$. If $u \subseteq On$, $u \in M_2$, then there exists a relation $r \in M_1$ such that $u = r''G = \{\xi : (\exists y \in G) \langle y, \xi \rangle \in r\}$. We can assume that $r \subseteq P \times On$. Set

$$a = \{\{\xi : \langle t, \xi \rangle \in r\} : t \in P\}, \quad y = \{\{\xi : \langle x, \xi \rangle \in r\} : x \in G\}.$$

Then $|a|^{M_1} < \kappa$ and $x = \bigcup y$. If $M_2 = M_1[G]$, where G is a generic ultrafilter on a M_1 -complete κ -C.C. Boolean algebra $B \in M_1$, then for every $f : \alpha \longrightarrow \beta$, there exists a function $h : \alpha \times \beta \longrightarrow B$, $h \in M_1$ such that $f = h^{-1}(G)$.

The implications from left to right in both theorems are trivial. Let $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset $P \in M_1$, $|P|^{M_1} < \kappa$. If $u \subseteq On$, $u \in M_2$, then there exists a relation $r \in M_1$ such that $u = r''G = \{\xi : (\exists y \in G) \langle y, \xi \rangle \in r\}$. We can assume that $r \subseteq P \times On$. Set

$$a = \{\{\xi : \langle t, \xi \rangle \in r\} : t \in P\}, \quad y = \{\{\xi : \langle x, \xi \rangle \in r\} : x \in G\}.$$

Then $|a|^{M_1} < \kappa$ and $x = \bigcup y$. If $M_2 = M_1[G]$, where G is a generic ultrafilter on a M_1 -complete κ -C.C. Boolean algebra $B \in M_1$, then for every $f : \alpha \longrightarrow \beta$, there exists a function $h : \alpha \times \beta \longrightarrow B$, $h \in M_1$ such that $f = h^{-1}(G)$. We can assume that $h(\xi, \eta_1) \wedge h(\xi, \eta_2) = 0$ for $\eta_1 \neq \eta_2$. We set $g(\xi) = \{\eta : h(\xi, \eta) \neq 0\}$. Then $f(\xi) \in g(\xi)$ for each ξ . Since B is κ -C.C. we obtain $|g(\xi)|^{M_1} < \kappa$.

The theorem easily follows from the next three auxiliary results.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

The theorem easily follows from the next three auxiliary results.

Lemma 3

If M_2 is a generic extension of M_1 and $Apr_{M_1,M_2}(\kappa)$ holds true, then M_2 is a κ -C.C. generic extension of M_1

The proof is same as the argumentation in [B2] on p. 42, lines 14 - 28.

The theorem easily follows from the next three auxiliary results.

Lemma 3

If M_2 is a generic extension of M_1 and $Apr_{M_1,M_2}(\kappa)$ holds true, then M_2 is a κ -C.C. generic extension of M_1

The proof is same as the argumentation in [B2] on p. 42, lines 14 - 28.

Lemma 4

If $Apr_{M_1,M_2}(\kappa)$ holds true and $\mathcal{P}(\kappa) \cap M_2 \subseteq M_1$, then $M_1 = M_2$.

The assertion of the lemma is same as that of Theorem 4.1 of [B2].

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

The basic result is contained in

Lemma 5 (Main Lemma)

If $Apr_{M_1,M_2}(\kappa)$ holds true then for any set $a \in M_2$, $a \subseteq M_1$, the model $M_1[a]$ is a generic extension of M_1 .

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

The basic result is contained in

Lemma 5 (Main Lemma)

If $Apr_{M_1,M_2}(\kappa)$ holds true then for any set $a \in M_2$, $a \subseteq M_1$, the model $M_1[a]$ is a generic extension of M_1 .

The proofs of this lemma in [B2] and [FFS] are different. We present still another proof of this lemma. Independently J.L. Krivine found similar proof of a weaker result.

A set $\sigma \subseteq M_1$, $\sigma \in M_2$ is a **support** if for any relations $r_1, r_2 \in M_1$ there exists a relation $r \in M_1$ such that $r''\sigma = r''_1\sigma \setminus r''_2\sigma$, where $r''\sigma = \{u : (\exists v \in \sigma) [v, u] \in r\}$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

A set $\sigma \subseteq M_1$, $\sigma \in M_2$ is a **support** if for any relations $r_1, r_2 \in M_1$ there exists a relation $r \in M_1$ such that $r''\sigma = r_1''\sigma \setminus r_2''\sigma$, where $r''\sigma = \{u : (\exists v \in \sigma) [v, u] \in r\}$. If $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_1$, $y \in M_1[G]$, there exists a relation $r \in M_1$ such that y = r''G. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_2 \cap \mathcal{P}(M_1)$ even $x = f^{-1}(G)$, $f \in M_1$, where f is a function.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

(日本) (日本) (日本)

3

A set $\sigma \subseteq M_1$, $\sigma \in M_2$ is a **support** if for any relations $r_1, r_2 \in M_1$ there exists a relation $r \in M_1$ such that $r''\sigma = r_1''\sigma \setminus r_2''\sigma$, where $r''\sigma = \{u : (\exists v \in \sigma) [v, u] \in r\}$. If $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_1$, $y \in M_1[G]$, there exists a relation $r \in M_1$ such that y = r''G. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_2 \cap \mathcal{P}(M_1)$ even $x = f^{-1}(G), f \in M_1$, where f is a function.

Theorem 6 (P. Vopěnka)

If $\sigma \subseteq M_1$, $\sigma \in M_2$ is a support, then $M_1[\sigma]$ is a generic extension of M_1 .

イロト イポト イヨト イヨト

3

A set $\sigma \subseteq M_1$, $\sigma \in M_2$ is a **support** if for any relations $r_1, r_2 \in M_1$ there exists a relation $r \in M_1$ such that $r''\sigma = r_1''\sigma \setminus r_2''\sigma$, where $r''\sigma = \{u : (\exists v \in \sigma) [v, u] \in r\}$. If $M_2 = M_1[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_1$, $y \in M_1[G]$, there exists a relation $r \in M_1$ such that y = r''G. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_2 \cap \mathcal{P}(M_1)$ even $x = f^{-1}(G), f \in M_1$, where f is a function.

Theorem 6 (P. Vopěnka)

If $\sigma \subseteq M_1$, $\sigma \in M_2$ is a support, then $M_1[\sigma]$ is a generic extension of M_1 .

イロト イポト イヨト イヨト

3

Nice simple proof was given by B. Balcar [Ba].

If G is an ${\cal M}_1$ generic ultrafilter on a complete Boolean algebra ${\cal B},$ we let

$$r = \{ \langle x, y \rangle : x, y \in B \setminus \{0\} \text{ and } x \wedge y = 0 \}.$$

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

If G is an ${\cal M}_1$ generic ultrafilter on a complete Boolean algebra ${\cal B},$ we let

$$r = \{ \langle x, y \rangle : x, y \in B \setminus \{0\} \text{ and } x \wedge y = 0 \}.$$

Then $r \in M_1$ and we have:

(i)
$$r$$
 is a symmetric antireflexive relation.
(ii) $r''\{x\} \subseteq B \setminus G$ for any $x \in G$.

(iii) For any $u \subseteq B \setminus G$, $u \in M_1$, there exists an $x \in G$ such that $u \subseteq r''\{x\}$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

If G is an M_1 generic ultrafilter on a complete Boolean algebra B, we let

$$r = \{ \langle x, y \rangle : x, y \in B \setminus \{0\} \text{ and } x \wedge y = 0 \}.$$

Then $r \in M_1$ and we have:

- (i) r is a symmetric antireflexive relation.
- (ii) $r''\{x\} \subseteq B \setminus G$ for any $x \in G$.
- (iii) For any $u \subseteq B \setminus G$, $u \in M_1$, there exists an $x \in G$ such that $u \subseteq r''\{x\}$.

Assume that $\sigma \subseteq a \in M_1$ is a support. Set

$$r_1 = \{x\} \times \mathcal{P}(a) \cap M_1 \text{ for fixed } x \in \sigma, r_2 = \{\langle x, u \rangle : x \in u \land u \subseteq a\} \cap M_1.$$

If G is an M_1 generic ultrafilter on a complete Boolean algebra B, we let

$$r = \{ \langle x, y \rangle : x, y \in B \setminus \{0\} \text{ and } x \wedge y = 0 \}.$$

Then $r \in M_1$ and we have:

- ${
 m (i)}~~r$ is a symmetric antireflexive relation.
- (ii) $r''\{x\} \subseteq B \setminus G$ for any $x \in G$.
- (iii) For any $u \subseteq B \setminus G$, $u \in M_1$, there exists an $x \in G$ such that $u \subseteq r''\{x\}$.

Assume that $\sigma \subseteq a \in M_1$ is a support. Set

$$r_1 = \{x\} \times \mathcal{P}(a) \cap M_1 \text{ for fixed } x \in \sigma, r_2 = \{\langle x, u \rangle : x \in u \land u \subseteq a\} \cap M_1.$$

Then

$$\mathcal{P}(a) \cap M_1 = r_1''\sigma$$
 and $(\mathcal{P}(a) \setminus \mathcal{P}(a \setminus \sigma)) \cap M_1 = r_2''\sigma$.

Since σ is a support, there exists a relation $r_3 \in M_1$ such that

$$r_3''\sigma = r_1''\sigma \setminus r_2''\sigma = \mathcal{P}(a \setminus \sigma) \cap M_1.$$

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

Since σ is a support, there exists a relation $r_3 \in M_1$ such that

$$r_3''\sigma = r_1''\sigma \setminus r_2''\sigma = \mathcal{P}(a \setminus \sigma) \cap M_1.$$

Set

$$r_4 = \{ \langle x, y \rangle : (\exists u) \, (y \in u \land \langle x, u \rangle \in r_3) \}, \quad r = r_4 \cup r_4^{-1},$$

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

Since σ is a support, there exists a relation $r_3 \in M_1$ such that

$$r_3''\sigma = r_1''\sigma \setminus r_2''\sigma = \mathcal{P}(a \setminus \sigma) \cap M_1.$$

Set

$$r_4 = \{ \langle x, y \rangle : (\exists u) \, (y \in u \land \langle x, u \rangle \in r_3) \}, \quad r = r_4 \cup r_4^{-1},$$

Then $r \in M_1$ is such that (i) – (iii) hold true. Considering r as the relation of disjointnees on the set a we define a preorder on a by

$$x \le y \equiv r''\{x\} \supseteq r''\{y\}.$$

Since σ is a support, there exists a relation $r_3 \in M_1$ such that

$$r_3''\sigma = r_1''\sigma \setminus r_2''\sigma = \mathcal{P}(a \setminus \sigma) \cap M_1.$$

Set

$$r_4 = \{ \langle x, y \rangle : (\exists u) \, (y \in u \land \langle x, u \rangle \in r_3) \}, \quad r = r_4 \cup r_4^{-1},$$

Then $r \in M_1$ is such that (i) – (iii) hold true. Considering r as the relation of disjointnees on the set a we define a preorder on a by

$$x \le y \equiv r''\{x\} \supseteq r''\{y\}.$$

It is easy to show that σ is an M_1 -generic ultrafilter on $\langle a, \leq \rangle$. Thus $M_1[\sigma]$ is a generic extension of M_1 .

We begin with the proof of Lemma 5 for $\kappa = \omega_1$ and a subset of ω_0 following the proof in [B1].

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

We begin with the proof of Lemma 5 for $\kappa=\omega_1$ and a subset of ω_0 following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_0$, $a \in M_2$. If $Apr_{M_1,M_2}(\omega_1)$ holds true, then $M_1[a]$ is a generic extension of M_1 .

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

We begin with the proof of Lemma 5 for $\kappa = \omega_1$ and a subset of ω_0 following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_0$, $a \in M_2$. If $Apr_{M_1,M_2}(\omega_1)$ holds true, then $M_1[a]$ is a generic extension of M_1 .

Proof. Let \mathcal{B} denote the family of Borel subsets of ${}^{\omega_0}2$. There exist a mapping $\# : \mathcal{B}^{M_1} \longrightarrow \mathcal{B}^{M_2}$ preserving complement and unions of countable families belonging to M_1 – see R. Solovay [So].

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

We begin with the proof of Lemma 5 for $\kappa = \omega_1$ and a subset of ω_0 following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_0$, $a \in M_2$. If $Apr_{M_1,M_2}(\omega_1)$ holds true, then $M_1[a]$ is a generic extension of M_1 .

Proof. Let \mathcal{B} denote the family of Borel subsets of ${}^{\omega_0}2$. There exist a mapping $\# : \mathcal{B}^{M_1} \longrightarrow \mathcal{B}^{M_2}$ preserving complement and unions of countable families belonging to M_1 – see R. Solovay [So]. If $a \in {}^{\omega_0}2 \cap M_2$ we set

$$j(a) = \{A \in \mathcal{B}^{M_1} : a \in \#(A)\}.$$

э

Evidently $M_1[a] = M_1[j(a)]$. We show that j(a) is a support.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_1$ there exists a function $h \in M_1$ such that $r''j(a) = h^{-1}(j(a))$.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_1$ there exists a function $h \in M_1$ such that $r''j(a) = h^{-1}(j(a))$. Let $\kappa = (2^{\aleph_0})^{M_1}$, $\lambda = (2^{\kappa})^{M_1}$.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_1$ there exists a function $h \in M_1$ such that $r''j(a) = h^{-1}(j(a))$. Let $\kappa = (2^{\aleph_0})^{M_1}$, $\lambda = (2^{\kappa})^{M_1}$. Let $\{u_{\xi} : \xi \in \kappa\}$ and $\{v_{\eta} : \eta \in \lambda\}$ be enumerations of \mathcal{B}^{M_1} and $\mathcal{P}(\mathcal{B}^{M_1}) \cap M_1$, respectively. We can assume that $r \subseteq \mathcal{B}^{M_1} \times M_1$. Then there exists a set $\{a_{\eta} : \eta \in \lambda\} \in M_1$ of pairwise disjoint sets such that

$$r = \bigcup_{\eta \in \lambda} v_{\eta} \times a_{\eta}.$$

We begin with showing that for any relation $r \in M_1$ there exists a function $h \in M_1$ such that $r''j(a) = h^{-1}(j(a))$. Let $\kappa = (2^{\aleph_0})^{M_1}$, $\lambda = (2^{\kappa})^{M_1}$. Let $\{u_{\xi} : \xi \in \kappa\}$ and $\{v_{\eta} : \eta \in \lambda\}$ be enumerations of \mathcal{B}^{M_1} and $\mathcal{P}(\mathcal{B}^{M_1}) \cap M_1$, respectively. We can assume that $r \subseteq \mathcal{B}^{M_1} \times M_1$. Then there exists a set $\{a_{\eta} : \eta \in \lambda\} \in M_1$ of pairwise disjoint sets such that

$$r = \bigcup_{\eta \in \lambda} v_{\eta} \times a_{\eta}.$$

We let $f(\eta)$ to be the smallest ξ such that $u_{\xi} \in j(a) \cap v_{\eta}$ if $j(a) \cap v_{\eta} \neq \emptyset$ and $f(\eta) = 0$ otherwise. By the assumptions, there exists a function $g \in M_1$, dom $(g) = \lambda$ and such that for each $\xi \in \lambda$ we have $f(\xi) \in g(\xi)$ and $|g(\xi)|^{M_1} \leq \aleph_0$.

For $t \in a_\eta$ we set $h(t) = \bigcup \{ u_\xi : u_\xi \in v_\eta \land \xi \in g(\eta) \}$. Evidently $h \in M_1$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_1}$.

For $t \in a_{\eta}$ we set $h(t) = \bigcup \{u_{\xi} : u_{\xi} \in v_{\eta} \land \xi \in g(\eta)\}$. Evidently $h \in M_1$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_1}$. One can easily show that $r''j(a) = h^{-1}(j(a))$.

For $t \in a_{\eta}$ we set $h(t) = \bigcup \{u_{\xi} : u_{\xi} \in v_{\eta} \land \xi \in g(\eta)\}$. Evidently $h \in M_1$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_1}$. One can easily show that $r''j(a) = h^{-1}(j(a))$. Now, if $y_i = h_i^{-1}(j(a))$, where $h_i \in M_1$ are functions with values in \mathcal{B}_{M_1} for i = 1, 2, we set

$$h(t) = \begin{cases} h_1(t) \setminus h_2(t) & \text{if } t \in \operatorname{dom}(h_1) \cap \operatorname{dom}(h_2), \\ h_1(t) & \text{if } t \in \operatorname{dom}(h_1) \setminus \operatorname{dom}(h_2). \end{cases}$$

Then $h \in M_1$ and $y_1 \setminus y_2 = h^{-1}(j(a))$.

For $t \in a_{\eta}$ we set $h(t) = \bigcup \{u_{\xi} : u_{\xi} \in v_{\eta} \land \xi \in g(\eta)\}$. Evidently $h \in M_1$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_1}$. One can easily show that $r''j(a) = h^{-1}(j(a))$. Now, if $y_i = h_i^{-1}(j(a))$, where $h_i \in M_1$ are functions with values in \mathcal{B}_{M_1} for i = 1, 2, we set

$$h(t) = \begin{cases} h_1(t) \setminus h_2(t) & \text{if } t \in \operatorname{dom}(h_1) \cap \operatorname{dom}(h_2), \\ h_1(t) & \text{if } t \in \operatorname{dom}(h_1) \setminus \operatorname{dom}(h_2). \end{cases}$$

Then $h \in M_1$ and $y_1 \setminus y_2 = h^{-1}(j(a))$. The theorem follows by Theorem 6.

Proof of Lemma 5.

シック・ 叫 (中)・(山)・(日)・

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$.Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$.Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$. One can find a set $b \subseteq \omega_0$ such that $M_1[a][G] = M_1[b]$. We show that $Apr_{M_1[G],M_1[b]}(\omega_1)$ holds true.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$.Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$. One can find a set $b \subseteq \omega_0$ such that $M_1[a][G] = M_1[b]$. We show that $Apr_{M_1[G],M_1[b]}(\omega_1)$ holds true. Let $f : \alpha \longrightarrow \beta$, $f \in M_1[b]$.

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$.Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$. One can find a set $b \subseteq \omega_0$ such that $M_1[a][G] = M_1[b]$. We show that $Apr_{M_1[G],M_1[b]}(\omega_1)$ holds true. Let $f : \alpha \longrightarrow \beta$, $f \in M_1[b]$. Then there is a function $g : \alpha \longrightarrow ([\beta]^{\leq \lambda})^{M_1[a]}$ such that $f(\xi) \in g(\xi)$ for each $\xi \in \alpha$.

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$. Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$. One can find a set $b \subseteq \omega_0$ such that $M_1[a][G] = M_1[b]$. We show that $Apr_{M_1[G],M_1[b]}(\omega_1)$ holds true. Let $f : \alpha \longrightarrow \beta$, $f \in M_1[b]$. Then there is a function $g : \alpha \longrightarrow ([\beta]^{\leq \lambda})^{M_1[a]}$ such that $f(\xi) \in g(\xi)$ for each $\xi \in \alpha$. Since $Apr_{M_1,M_1[a]}(\lambda)$, every set from $([\beta]^{\leq \lambda})^{M_1[a]}$ is a subset of a set from $([\beta]^{\leq \lambda})^{M_1}$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: Iev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_1[a]$ and $\lambda \geq \kappa$. Then $Apr_{M_1,M_2}(\lambda)$ holds true.

Let G be an $M_1[a]$ -generic ultrafilter over ${}^{<\omega_0}\lambda$. Note that $M_1[a][G] = M_1[G][a]$ and G is also M_1 -generic over ${}^{<\omega}\lambda$. One can find a set $b \subseteq \omega_0$ such that $M_1[a][G] = M_1[b]$. We show that $Apr_{M_1[G],M_1[b]}(\omega_1)$ holds true. Let $f : \alpha \longrightarrow \beta$, $f \in M_1[b]$. Then there is a function $g: \alpha \longrightarrow ([\beta]^{\leq \lambda})^{M_1[a]}$ such that $f(\xi) \in q(\xi)$ for each $\xi \in \alpha$. Since $Apr_{M_1,M_1[a]}(\lambda)$, every set from $(\lceil \beta \rceil^{\leq \lambda})^{M_1[a]}$ is a subset of a set from $([\beta] \leq \lambda)^{M_1}$ So, we may assume that all values of g are in $(\lceil \beta \rceil^{\leq \lambda})^{M_1}$. Now, by $Apr_{M_1,M_1[a]}(\lambda)$ there exists a function $h: \alpha \longrightarrow [([\beta]^{\leq \lambda})^{M_1}]^{<\lambda}$ such that $q(\xi) \in h(\xi)$ for each $\xi \in \alpha$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

< < >> < < < >> <</p>

Set $d(\xi) = \bigcup h(\xi)$. Then $d \in M_1$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_1} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_0$.

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

Set $d(\xi) = \bigcup h(\xi)$. Then $d \in M_1$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_1} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_0$. Thus, by Theorem 7, $M_1[b]$ is a generic extension of $M_1[G]$, hence a generic extension of M_1 as well. Since $M_1[a] \subseteq M_1[b]$, $M_1[a]$ is

a generic extension of M_1 .

Set $d(\xi) = \bigcup h(\xi)$. Then $d \in M_1$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_1} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_0$.

Thus, by Theorem 7, $M_1[b]$ is a generic extension of $M_1[G]$, hence a generic extension of M_1 as well. Since $M_1[a] \subseteq M_1[b]$, $M_1[a]$ is a generic extension of M_1 .

A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless κ -C.C. Boolean algebra, then the first cardinal λ such that B is not (λ, κ))-distributive is $\lambda \leq \kappa$.

Set $d(\xi) = \bigcup h(\xi)$. Then $d \in M_1$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_1} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_0$.

Thus, by Theorem 7, $M_1[b]$ is a generic extension of $M_1[G]$, hence a generic extension of M_1 as well. Since $M_1[a] \subseteq M_1[b]$, $M_1[a]$ is a generic extension of M_1 .

A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless κ -C.C. Boolean algebra, then the first cardinal λ such that B is not (λ, κ))-distributive is $\lambda \leq \kappa$.

A complete ω_1 -C.C. (\aleph_0, \aleph_0)-distributive (\aleph_1, \aleph_0)-non-distributive Boolean algebra produces a Souslin tree. Therefore

Corollary 9

If $\mathcal{P}(\omega_0) \cap M_2 \subseteq M_1$, $\mathcal{P}(\omega_1) \cap M_2 \nsubseteq M_1$ and $Apr_{M_1,M_2}(\omega_1)$ holds true, then there exists a Souslin continuum in M_1 .

The proof of Lemma 5 in [B2] is based on an embedding of the free κ -complete Boolean algebra with λ generators constructed in M_1 preserving $<\kappa$ unions of sets from M_1 into the similar Boolean algebra constructed in M_2 .

The proof of Lemma 5 in [B2] is based on an embedding of the free κ -complete Boolean algebra with λ generators constructed in M_1 preserving $<\kappa$ unions of sets from M_1 into the similar Boolean algebra constructed in M_2 .

The presented proof reduced this problem to the \aleph_1 -free Boolean algebra with \aleph_0 generators \mathcal{B} .

Thanks for attention

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

3

Bibliography

- [Ba] Balcar B., A theorem on supports in the theory of semisets, Comment. Math. Univ. Carolinae, 14 (1973), 1–6.
- [B1] Bukovský L., Ensembles génériques d'entiers, C.R. Acad. Sc. Paris, 273 (1971), 753–755.
- [B2] Bukovský L., Characterization of generic extensions of models of set theory, Fund. Math., 83 (1973), 35–46.
- **[**FFS] Friedman S.D., Fuchino S. and Sakai H., *On the set-generic multiverse*, preprint.
- [So] Solovay R., A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1–56.

[VH] Vopěnka P. and Hájek P., The Theory of Semisets, Academia, Prague 1972.