Generic Extensions of Models of ZFC

Lev Bukovský

Institut of Mathematics, Faculty of Sciences,
University of P. J. Šafárik, Košice
e-mail: lev.bukovsky@upjs.sk
August 15, 2014

Notations and Terminology

M is a model if $\langle M, \in\rangle$ is a transitive model of ZFC , M is either countable set, or a class.
M_{2} is an extension of M_{1} if $M_{1} \subseteq M_{2}$ are models with same ordinals $\mathrm{On}^{M_{1}}=\mathrm{On}^{M_{2}}$.

Notations and Terminology

M is a model if $\langle M, \in\rangle$ is a transitive model of ZFC , M is either countable set, or a class.
M_{2} is an extension of M_{1} if $M_{1} \subseteq M_{2}$ are models with same ordinals $\mathrm{On}^{M_{1}}=\mathrm{On}^{M_{2}}$.
B. Balcar and P. Vopěnka 1967: If M_{2} is a model extension of M_{1} and $\mathcal{P}(\mathrm{On}) \cap M_{2} \subseteq M_{1}$, then $M_{1}=M_{2}$.

Notations and Terminology

M is a model if $\langle M, \in\rangle$ is a transitive model of ZFC , M is either countable set, or a class.
M_{2} is an extension of M_{1} if $M_{1} \subseteq M_{2}$ are models with same ordinals $\mathrm{On}^{M_{1}}=\mathrm{On}^{M_{2}}$.
B. Balcar and P. Vopěnka 1967: If M_{2} is a model extension of M_{1} and $\mathcal{P}(\mathrm{On}) \cap M_{2} \subseteq M_{1}$, then $M_{1}=M_{2}$.
M_{2} is an extension of $M_{1}, a \in M_{2}, a \subseteq M_{1}$ (or $a \subseteq O n$). Then $M_{1}[a]$ is the smallest model of ZFC such that $M_{1} \subseteq M_{1}[a]$ and $a \in M_{1}[a]$. Note that for $a, b \subseteq M_{1}, a, b \in M_{2}$ we have $M_{1}[a][b]=M_{1}[b][a]$.

Notations and Terminology

M is a model if $\langle M, \in\rangle$ is a transitive model of ZFC , M is either countable set, or a class.
M_{2} is an extension of M_{1} if $M_{1} \subseteq M_{2}$ are models with same ordinals $\mathrm{On}^{M_{1}}=\mathrm{On}^{M_{2}}$.
B. Balcar and P. Vopěnka 1967: If M_{2} is a model extension of M_{1} and $\mathcal{P}(\mathrm{On}) \cap M_{2} \subseteq M_{1}$, then $M_{1}=M_{2}$.
M_{2} is an extension of $M_{1}, a \in M_{2}, a \subseteq M_{1}$ (or $a \subseteq O n$). Then $M_{1}[a]$ is the smallest model of ZFC such that $M_{1} \subseteq M_{1}[a]$ and $a \in M_{1}[a]$. Note that for $a, b \subseteq M_{1}, a, b \in M_{2}$ we have $M_{1}[a][b]=M_{1}[b][a]$.
Let κ be an uncountable regular cardinal of M_{1}.

Notations and Terminology

M is a model if $\langle M, \in\rangle$ is a transitive model of ZFC , M is either countable set, or a class.
M_{2} is an extension of M_{1} if $M_{1} \subseteq M_{2}$ are models with same ordinals $\mathrm{On}^{M_{1}}=\mathrm{On}^{M_{2}}$.
B. Balcar and P. Vopěnka 1967: If M_{2} is a model extension of M_{1} and $\mathcal{P}(\mathrm{On}) \cap M_{2} \subseteq M_{1}$, then $M_{1}=M_{2}$.
M_{2} is an extension of $M_{1}, a \in M_{2}, a \subseteq M_{1}$ (or $a \subseteq O n$). Then $M_{1}[a]$ is the smallest model of ZFC such that $M_{1} \subseteq M_{1}[a]$ and $a \in M_{1}[a]$. Note that for $a, b \subseteq M_{1}, a, b \in M_{2}$ we have $M_{1}[a][b]=M_{1}[b][a]$.
Let κ be an uncountable regular cardinal of M_{1}. M_{2} is a κ-generic extension of M_{1} if there exists a poset $P \in M_{1}$, $|P| \leq \kappa$ and an M_{1}-generic ultrafilter G on P such that $M_{2}=M_{1}[G]$.

Notations and Terminology

M_{2} is a κ-C.C. generic extension of M_{1} if there exists a κ-C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_{1}$, complete in M_{1} and an M_{1}-generic ultrafilter G on B such that $M_{2}=M_{1}[G]$.

Notations and Terminology

M_{2} is a κ-C.C. generic extension of M_{1} if there exists a κ-C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_{1}$, complete in M_{1} and an M_{1}-generic ultrafilter G on B such that $M_{2}=M_{1}[G]$.
$B d_{M_{1}, M_{2}}(\kappa)$ says that

$$
\begin{gathered}
\left(\forall u \subseteq O n, u \in M_{2}\right)\left(\exists y \in M_{2}\right)\left(\exists a \in M_{1}\right) \\
\left(y \subseteq a \wedge|a|^{M_{1}}<\kappa \wedge u=\bigcup y\right)
\end{gathered}
$$

Notations and Terminology

M_{2} is a κ-C.C. generic extension of M_{1} if there exists a κ-C.C. (every antichain has cardinality smaller than κ) Boolean algebra $B \in M_{1}$, complete in M_{1} and an M_{1}-generic ultrafilter G on B such that $M_{2}=M_{1}[G]$.
$B d_{M_{1}, M_{2}}(\kappa)$ says that

$$
\begin{gathered}
\left(\forall u \subseteq O n, u \in M_{2}\right)\left(\exists y \in M_{2}\right)\left(\exists a \in M_{1}\right) \\
\left(y \subseteq a \wedge|a|^{M_{1}}<\kappa \wedge u=\bigcup y\right)
\end{gathered}
$$

$A p r_{M_{1}, M_{2}}(\kappa)$ says that

$$
\begin{aligned}
& \left(\forall f \in M_{2}, f \text { a function, } \operatorname{dom}(f) \in M_{1}, \operatorname{rng}(f) \subseteq M_{1}\right)\left(\exists g \in M_{1}\right. \\
& \operatorname{dom}(g)=\operatorname{dom}(f))(\forall x \in \operatorname{dom}(f))\left(f(x) \in g(x) \wedge|g(x)|^{M_{1}}<\kappa\right)
\end{aligned}
$$

Main Results

Theorem 1 (essentially P. Vopěnka)

M_{2} is a κ-generic extension of M_{1} if and only if $B d_{M_{1}, M_{2}}(\kappa)$ holds true.

Main Results

Theorem 1 (essentially P. Vopěnka)

M_{2} is a κ-generic extension of M_{1} if and only if $B d_{M_{1}, M_{2}}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43.

Main Results

Theorem 1 (essentially P. Vopěnka)

M_{2} is a κ-generic extension of M_{1} if and only if $B d_{M_{1}, M_{2}}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43. In [B2], we have proved the following

Theorem 2

M_{2} is a κ-C.C. generic extension of M_{1} if and only if $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true.

Main Results

Theorem 1 (essentially P. Vopěnka)

M_{2} is a κ-generic extension of M_{1} if and only if $B d_{M_{1}, M_{2}}(\kappa)$ holds true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43. In [B2], we have proved the following

Theorem 2

M_{2} is a κ-C.C. generic extension of M_{1} if and only if $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true.

Recently, another proof of Theorem 2 was given by S.D. Friedman, S. Fuchino and H. Sakai [FFS]. We present the idea of a proof of Theorem 2 that is different from those of [B2] and [FFS].

From Left to Right

The implications from left to right in both theorems are trivial.

From Left to Right

The implications from left to right in both theorems are trivial. Let $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset $P \in M_{1},|P|^{M_{1}}<\kappa$. If $u \subseteq O n, u \in M_{2}$, then there exists a relation $r \in M_{1}$ such that $u=r^{\prime \prime} G=\{\xi:(\exists y \in G)\langle y, \xi\rangle \in r\}$.

From Left to Right

The implications from left to right in both theorems are trivial. Let $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset $P \in M_{1},|P|^{M_{1}}<\kappa$. If $u \subseteq O n, u \in M_{2}$, then there exists a relation $r \in M_{1}$ such that $u=r^{\prime \prime} G=\{\xi:(\exists y \in G)\langle y, \xi\rangle \in r\}$. We can assume that $r \subseteq P \times O n$. Set

$$
a=\{\{\xi:\langle t, \xi\rangle \in r\}: t \in P\}, \quad y=\{\{\xi:\langle x, \xi\rangle \in r\}: x \in G\} .
$$

Then $|a|^{M_{1}}<\kappa$ and $x=\bigcup y$.

From Left to Right

The implications from left to right in both theorems are trivial. Let $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset $P \in M_{1},|P|^{M_{1}}<\kappa$. If $u \subseteq O n, u \in M_{2}$, then there exists a relation $r \in M_{1}$ such that $u=r^{\prime \prime} G=\{\xi:(\exists y \in G)\langle y, \xi\rangle \in r\}$. We can assume that $r \subseteq P \times O n$. Set

$$
a=\{\{\xi:\langle t, \xi\rangle \in r\}: t \in P\}, \quad y=\{\{\xi:\langle x, \xi\rangle \in r\}: x \in G\} .
$$

Then $|a|^{M_{1}}<\kappa$ and $x=\bigcup y$. If $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a M_{1}-complete κ-C.C. Boolean algebra $B \in M_{1}$, then for every $f: \alpha \longrightarrow \beta$, there exists a function $h: \alpha \times \beta \longrightarrow B, h \in M_{1}$ such that $f=h^{-1}(G)$.

From Left to Right

The implications from left to right in both theorems are trivial. Let $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset $P \in M_{1},|P|^{M_{1}}<\kappa$. If $u \subseteq O n, u \in M_{2}$, then there exists a relation $r \in M_{1}$ such that $u=r^{\prime \prime} G=\{\xi:(\exists y \in G)\langle y, \xi\rangle \in r\}$. We can assume that $r \subseteq P \times O n$. Set

$$
a=\{\{\xi:\langle t, \xi\rangle \in r\}: t \in P\}, \quad y=\{\{\xi:\langle x, \xi\rangle \in r\}: x \in G\} .
$$

Then $|a|^{M_{1}}<\kappa$ and $x=\bigcup y$. If $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a M_{1}-complete κ-C.C. Boolean algebra $B \in M_{1}$, then for every $f: \alpha \longrightarrow \beta$, there exists a function $h: \alpha \times \beta \longrightarrow B, h \in M_{1}$ such that $f=h^{-1}(G)$. We can assume that $h\left(\xi, \eta_{1}\right) \wedge h\left(\xi, \eta_{2}\right)=0$ for $\eta_{1} \neq \eta_{2}$. We set $g(\xi)=\{\eta: h(\xi, \eta) \neq 0\}$. Then $f(\xi) \in g(\xi)$ for each ξ. Since B is κ-C.C. we obtain $|g(\xi)|^{M_{1}}<\kappa$.

Lemmas

The theorem easily follows from the next three auxiliary results.

Lemmas

The theorem easily follows from the next three auxiliary results.

Lemma 3

If M_{2} is a generic extension of M_{1} and $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true, then M_{2} is a κ-C.C. generic extension of M_{1}

The proof is same as the argumentation in [B2] on p. 42, lines 14 28.

Lemmas

The theorem easily follows from the next three auxiliary results.

Lemma 3

If M_{2} is a generic extension of M_{1} and $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true, then M_{2} is a $\kappa-C . C$. generic extension of M_{1}

The proof is same as the argumentation in [B2] on p. 42, lines 14 28.

Lemma 4
If $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true and $\mathcal{P}(\kappa) \cap M_{2} \subseteq M_{1}$, then $M_{1}=M_{2}$.
The assertion of the lemma is same as that of Theorem 4.1 of [B2].

Main Lemma

The basic result is contained in
Lemma 5 (Main Lemma)
If $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true then for any set $a \in M_{2}, a \subseteq M_{1}$, the model $M_{1}[a]$ is a generic extension of M_{1}.

Main Lemma

The basic result is contained in

Lemma 5 (Main Lemma)

If $\operatorname{Apr}_{M_{1}, M_{2}}(\kappa)$ holds true then for any set $a \in M_{2}, a \subseteq M_{1}$, the model $M_{1}[a]$ is a generic extension of M_{1}.

The proofs of this lemma in [B2] and [FFS] are different. We present still another proof of this lemma. Independently J.L. Krivine found similar proof of a weaker result.

Support

A set $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support if for any relations $r_{1}, r_{2} \in M_{1}$ there exists a relation $r \in M_{1}$ such that $r^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma$, where $r^{\prime \prime} \sigma=\{u:(\exists v \in \sigma)[v, u] \in r\}$.

Support

A set $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support if for any relations $r_{1}, r_{2} \in M_{1}$ there exists a relation $r \in M_{1}$ such that $r^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma$, where $r^{\prime \prime} \sigma=\{u:(\exists v \in \sigma)[v, u] \in r\}$. If $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_{1}, y \in M_{1}[G]$, there exists a relation $r \in M_{1}$ such that $y=r^{\prime \prime} G$. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_{2} \cap \mathcal{P}\left(M_{1}\right)$ even $x=f^{-1}(G), f \in M_{1}$, where f is a function.

Support

A set $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support if for any relations $r_{1}, r_{2} \in M_{1}$ there exists a relation $r \in M_{1}$ such that $r^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma$, where $r^{\prime \prime} \sigma=\{u:(\exists v \in \sigma)[v, u] \in r\}$.
If $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_{1}, y \in M_{1}[G]$, there exists a relation $r \in M_{1}$ such that $y=r^{\prime \prime} G$. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_{2} \cap \mathcal{P}\left(M_{1}\right)$ even $x=f^{-1}(G), f \in M_{1}$, where f is a function.

Theorem 6 (P. Vopěnka)

If $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support, then $M_{1}[\sigma]$ is a generic extension of M_{1}.

Support

A set $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support if for any relations $r_{1}, r_{2} \in M_{1}$ there exists a relation $r \in M_{1}$ such that $r^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma$, where $r^{\prime \prime} \sigma=\{u:(\exists v \in \sigma)[v, u] \in r\}$.
If $M_{2}=M_{1}[G]$, where G is a generic ultrafilter on a poset, then G is a support. Actually, for every $y \subseteq M_{1}, y \in M_{1}[G]$, there exists a relation $r \in M_{1}$ such that $y=r^{\prime \prime} G$. If G is a generic ultrafilter on a Boolean algebra, then for any $x \in M_{2} \cap \mathcal{P}\left(M_{1}\right)$ even $x=f^{-1}(G), f \in M_{1}$, where f is a function.

Theorem 6 (P. Vopěnka)

If $\sigma \subseteq M_{1}, \sigma \in M_{2}$ is a support, then $M_{1}[\sigma]$ is a generic extension of M_{1}.

Nice simple proof was given by B. Balcar [Ba].

Support

If G is an M_{1} generic ultrafilter on a complete Boolean algebra B, we let

$$
r=\{\langle x, y\rangle: x, y \in B \backslash\{0\} \text { and } x \wedge y=0\}
$$

Support

If G is an M_{1} generic ultrafilter on a complete Boolean algebra B, we let

$$
r=\{\langle x, y\rangle: x, y \in B \backslash\{0\} \text { and } x \wedge y=0\}
$$

Then $r \in M_{1}$ and we have:
(i) r is a symmetric antireflexive relation.
(ii) $r^{\prime \prime}\{x\} \subseteq B \backslash G$ for any $x \in G$.
(iii) For any $u \subseteq B \backslash G, u \in M_{1}$, there exists an $x \in G$ such that $u \subseteq r^{\prime \prime}\{x\}$.

Support

If G is an M_{1} generic ultrafilter on a complete Boolean algebra B, we let

$$
r=\{\langle x, y\rangle: x, y \in B \backslash\{0\} \text { and } x \wedge y=0\} .
$$

Then $r \in M_{1}$ and we have:
(i) r is a symmetric antireflexive relation.
(ii) $r^{\prime \prime}\{x\} \subseteq B \backslash G$ for any $x \in G$.
(iii) For any $u \subseteq B \backslash G, u \in M_{1}$, there exists an $x \in G$ such that $u \subseteq r^{\prime \prime}\{x\}$.
Assume that $\sigma \subseteq a \in M_{1}$ is a support. Set

$$
\begin{gathered}
r_{1}=\{x\} \times \mathcal{P}(a) \cap M_{1} \text { for fixed } x \in \sigma, \\
r_{2}=\{\langle x, u\rangle: x \in u \wedge u \subseteq a\} \cap M_{1}
\end{gathered}
$$

Support

If G is an M_{1} generic ultrafilter on a complete Boolean algebra B, we let

$$
r=\{\langle x, y\rangle: x, y \in B \backslash\{0\} \text { and } x \wedge y=0\} .
$$

Then $r \in M_{1}$ and we have:
(i) r is a symmetric antireflexive relation.
(ii) $r^{\prime \prime}\{x\} \subseteq B \backslash G$ for any $x \in G$.
(iii) For any $u \subseteq B \backslash G, u \in M_{1}$, there exists an $x \in G$ such that

$$
u \subseteq r^{\prime \prime}\{x\}
$$

Assume that $\sigma \subseteq a \in M_{1}$ is a support. Set

$$
\begin{gathered}
r_{1}=\{x\} \times \mathcal{P}(a) \cap M_{1} \text { for fixed } x \in \sigma \\
r_{2}=\{\langle x, u\rangle: x \in u \wedge u \subseteq a\} \cap M_{1}
\end{gathered}
$$

Then

$$
\mathcal{P}(a) \cap M_{1}=r_{1}^{\prime \prime} \sigma \text { and }(\mathcal{P}(a) \backslash \mathcal{P}(a \backslash \sigma)) \cap M_{1}=r_{2}^{\prime \prime} \sigma
$$

Support

Since σ is a support, there exists a relation $r_{3} \in M_{1}$ such that

$$
r_{3}^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma=\mathcal{P}(a \backslash \sigma) \cap M_{1} .
$$

Support

Since σ is a support, there exists a relation $r_{3} \in M_{1}$ such that

$$
r_{3}^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma=\mathcal{P}(a \backslash \sigma) \cap M_{1} .
$$

Set

$$
r_{4}=\left\{\langle x, y\rangle:(\exists u)\left(y \in u \wedge\langle x, u\rangle \in r_{3}\right)\right\}, \quad r=r_{4} \cup r_{4}^{-1},
$$

Support

Since σ is a support, there exists a relation $r_{3} \in M_{1}$ such that

$$
r_{3}^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma=\mathcal{P}(a \backslash \sigma) \cap M_{1} .
$$

Set

$$
r_{4}=\left\{\langle x, y\rangle:(\exists u)\left(y \in u \wedge\langle x, u\rangle \in r_{3}\right)\right\}, \quad r=r_{4} \cup r_{4}^{-1},
$$

Then $r \in M_{1}$ is such that (i) - (iii) hold true. Considering r as the relation of disjointnees on the set a we define a preorder on a by

$$
x \leq y \equiv r^{\prime \prime}\{x\} \supseteq r^{\prime \prime}\{y\} .
$$

Support

Since σ is a support, there exists a relation $r_{3} \in M_{1}$ such that

$$
r_{3}^{\prime \prime} \sigma=r_{1}^{\prime \prime} \sigma \backslash r_{2}^{\prime \prime} \sigma=\mathcal{P}(a \backslash \sigma) \cap M_{1} .
$$

Set

$$
r_{4}=\left\{\langle x, y\rangle:(\exists u)\left(y \in u \wedge\langle x, u\rangle \in r_{3}\right)\right\}, \quad r=r_{4} \cup r_{4}^{-1}
$$

Then $r \in M_{1}$ is such that (i) - (iii) hold true. Considering r as the relation of disjointnees on the set a we define a preorder on a by

$$
x \leq y \equiv r^{\prime \prime}\{x\} \supseteq r^{\prime \prime}\{y\} .
$$

It is easy to show that σ is an M_{1}-generic ultrafilter on $\langle a, \leq\rangle$. Thus $M_{1}[\sigma]$ is a generic extension of M_{1}.

Main Lemma

We begin with the proof of Lemma 5 for $\kappa=\omega_{1}$ and a subset of ω_{0} following the proof in [B1].

Main Lemma

We begin with the proof of Lemma 5 for $\kappa=\omega_{1}$ and a subset of ω_{0} following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_{0}, a \in M_{2}$. If $\operatorname{Apr}_{M_{1}, M_{2}}\left(\omega_{1}\right)$ holds true, then $M_{1}[a]$ is a generic extension of M_{1}.

Main Lemma

We begin with the proof of Lemma 5 for $\kappa=\omega_{1}$ and a subset of ω_{0} following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_{0}, a \in M_{2}$. If Apr $_{M_{1}, M_{2}}\left(\omega_{1}\right)$ holds true, then $M_{1}[a]$ is a generic extension of M_{1}.

Proof. Let \mathcal{B} denote the family of Borel subsets of ${ }^{\omega_{0}} 2$. There exist a mapping $\#: \mathcal{B}^{M_{1}} \longrightarrow \mathcal{B}^{M_{2}}$ preserving complement and unions of countable families belonging to M_{1} - see R. Solovay [So].

Main Lemma

We begin with the proof of Lemma 5 for $\kappa=\omega_{1}$ and a subset of ω_{0} following the proof in [B1].

Theorem 7

Assume that $a \subseteq \omega_{0}, a \in M_{2}$. If Apr $_{M_{1}, M_{2}}\left(\omega_{1}\right)$ holds true, then $M_{1}[a]$ is a generic extension of M_{1}.

Proof. Let \mathcal{B} denote the family of Borel subsets of ${ }^{\omega_{0}} 2$. There exist a mapping $\#: \mathcal{B}^{M_{1}} \longrightarrow \mathcal{B}^{M_{2}}$ preserving complement and unions of countable families belonging to M_{1} - see R. Solovay [So]. If $a \in{ }^{\omega_{0}} 2 \cap M_{2}$ we set

$$
j(a)=\left\{A \in \mathcal{B}^{M_{1}}: a \in \#(A)\right\}
$$

Evidently $M_{1}[a]=M_{1}[j(a)]$. We show that $j(a)$ is a support.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_{1}$ there exists a function $h \in M_{1}$ such that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_{1}$ there exists
a function $h \in M_{1}$ such that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.
Let $\kappa=\left(2^{\aleph_{0}}\right)^{M_{1}}, \lambda=\left(2^{\kappa}\right)^{M_{1}}$.

Proof of Theorem 7

We begin with showing that for any relation $r \in M_{1}$ there exists a function $h \in M_{1}$ such that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.
Let $\kappa=\left(2^{\aleph_{0}}\right)^{M_{1}}, \lambda=\left(2^{\kappa}\right)^{M_{1}}$.
Let $\left\{u_{\xi}: \xi \in \kappa\right\}$ and $\left\{v_{\eta}: \eta \in \lambda\right\}$ be enumerations of $\mathcal{B}^{M_{1}}$ and $\mathcal{P}\left(\mathcal{B}^{M_{1}}\right) \cap M_{1}$, respectively. We can assume that $r \subseteq \mathcal{B}^{M_{1}} \times M_{1}$.
Then there exists a set $\left\{a_{\eta}: \eta \in \lambda\right\} \in M_{1}$ of pairwise disjoint sets such that

$$
r=\bigcup_{\eta \in \lambda} v_{\eta} \times a_{\eta}
$$

Proof of Theorem 7

We begin with showing that for any relation $r \in M_{1}$ there exists a function $h \in M_{1}$ such that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.
Let $\kappa=\left(2^{\aleph_{0}}\right)^{M_{1}}, \lambda=\left(2^{\kappa}\right)^{M_{1}}$.
Let $\left\{u_{\xi}: \xi \in \kappa\right\}$ and $\left\{v_{\eta}: \eta \in \lambda\right\}$ be enumerations of $\mathcal{B}^{M_{1}}$ and $\mathcal{P}\left(\mathcal{B}^{M_{1}}\right) \cap M_{1}$, respectively. We can assume that $r \subseteq \mathcal{B}^{M_{1}} \times M_{1}$.
Then there exists a set $\left\{a_{\eta}: \eta \in \lambda\right\} \in M_{1}$ of pairwise disjoint sets such that

$$
r=\bigcup_{\eta \in \lambda} v_{\eta} \times a_{\eta}
$$

We let $f(\eta)$ to be the smallest ξ such that $u_{\xi} \in j(a) \cap v_{\eta}$ if $j(a) \cap v_{\eta} \neq \emptyset$ and $f(\eta)=0$ otherwise. By the assumptions, there exists a function $g \in M_{1}, \operatorname{dom}(g)=\lambda$ and such that for each $\xi \in \lambda$ we have $f(\xi) \in g(\xi)$ and $|g(\xi)|^{M_{1}} \leq \aleph_{0}$.

Proof of Theorem 7

For $t \in a_{\eta}$ we set $h(t)=\bigcup\left\{u_{\xi}: u_{\xi} \in v_{\eta} \wedge \xi \in g(\eta)\right\}$. Evidently $h \in M_{1}$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_{1}}$.

Proof of Theorem 7

For $t \in a_{\eta}$ we set $h(t)=\bigcup\left\{u_{\xi}: u_{\xi} \in v_{\eta} \wedge \xi \in g(\eta)\right\}$. Evidently $h \in M_{1}$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_{1}}$.
One can easily show that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.

Proof of Theorem 7

For $t \in a_{\eta}$ we set $h(t)=\bigcup\left\{u_{\xi}: u_{\xi} \in v_{\eta} \wedge \xi \in g(\eta)\right\}$. Evidently $h \in M_{1}$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_{1}}$.
One can easily show that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.
Now, if $y_{i}=h_{i}^{-1}(j(a))$, where $h_{i} \in M_{1}$ are functions with values in $\mathcal{B}_{M_{1}}$ for $i=1,2$, we set

$$
h(t)= \begin{cases}h_{1}(t) \backslash h_{2}(t) & \text { if } t \in \operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right), \\ h_{1}(t) & \text { if } t \in \operatorname{dom}\left(h_{1}\right) \backslash \operatorname{dom}\left(h_{2}\right) .\end{cases}
$$

Then $h \in M_{1}$ and $y_{1} \backslash y_{2}=h^{-1}(j(a))$.

Proof of Theorem 7

For $t \in a_{\eta}$ we set $h(t)=\bigcup\left\{u_{\xi}: u_{\xi} \in v_{\eta} \wedge \xi \in g(\eta)\right\}$. Evidently $h \in M_{1}$ and $\operatorname{rng}(h) \subseteq \mathcal{B}^{M_{1}}$.
One can easily show that $r^{\prime \prime} j(a)=h^{-1}(j(a))$.
Now, if $y_{i}=h_{i}^{-1}(j(a))$, where $h_{i} \in M_{1}$ are functions with values in $\mathcal{B}_{M_{1}}$ for $i=1,2$, we set

$$
h(t)= \begin{cases}h_{1}(t) \backslash h_{2}(t) & \text { if } t \in \operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right), \\ h_{1}(t) & \text { if } t \in \operatorname{dom}\left(h_{1}\right) \backslash \operatorname{dom}\left(h_{2}\right) .\end{cases}
$$

Then $h \in M_{1}$ and $y_{1} \backslash y_{2}=h^{-1}(j(a))$.
The theorem follows by Theorem 6.

Proof of Lemma 5

Proof of Lemma 5.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$. One can find a set $b \subseteq \omega_{0}$ such that $M_{1}[a][G]=M_{1}[b]$. We show that $\operatorname{Apr}_{M_{1}[G], M_{1}[b]}\left(\omega_{1}\right)$ holds true.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$. One can find a set $b \subseteq \omega_{0}$ such that $M_{1}[a][G]=M_{1}[b]$. We show that $\operatorname{Apr}_{M_{1}[G], M_{1}[b]}\left(\omega_{1}\right)$ holds true.
Let $f: \alpha \longrightarrow \beta, f \in M_{1}[b]$.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$. One can find a set $b \subseteq \omega_{0}$ such that $M_{1}[a][G]=M_{1}[b]$. We show that $A p r_{M_{1}[G], M_{1}[b]}\left(\omega_{1}\right)$ holds true.
Let $f: \alpha \longrightarrow \beta, f \in M_{1}[b]$.
Then there is a function $g: \alpha \longrightarrow\left([\beta]^{\leq \lambda}\right)^{M_{1}[a]}$ such that $f(\xi) \in g(\xi)$ for each $\xi \in \alpha$.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$. One can find a set $b \subseteq \omega_{0}$ such that $M_{1}[a][G]=M_{1}[b]$. We show that $A p r_{M_{1}[G], M_{1}[b]}\left(\omega_{1}\right)$ holds true.
Let $f: \alpha \longrightarrow \beta, f \in M_{1}[b]$.
Then there is a function $g: \alpha \longrightarrow([\beta] \leq \lambda)^{M_{1}[a]}$ such that $f(\xi) \in g(\xi)$ for each $\xi \in \alpha$.
Since $\operatorname{Apr}_{M_{1}, M_{1}[a]}(\lambda)$, every set from $\left([\beta]^{\leq \lambda}\right)^{M_{1}[a]}$ is a subset of a set from $\left([\beta]^{\leq \lambda}\right)^{M_{1}}$.

Proof of Lemma 5

Proof of Lemma 5. Let $a \subseteq \lambda$. We may assume that λ is a non-limit cardinal in $M_{1}[a]$ and $\lambda \geq \kappa$. Then $\operatorname{Apr}_{M_{1}, M_{2}}(\lambda)$ holds true.
Let G be an $M_{1}[a]$-generic ultrafilter over ${ }^{<\omega_{0}} \lambda$. Note that $M_{1}[a][G]=M_{1}[G][a]$ and G is also M_{1}-generic over ${ }^{<\omega} \lambda$.
One can find a set $b \subseteq \omega_{0}$ such that $M_{1}[a][G]=M_{1}[b]$. We show that $A p r_{M_{1}[G], M_{1}[b]}\left(\omega_{1}\right)$ holds true.
Let $f: \alpha \longrightarrow \beta, f \in M_{1}[b]$.
Then there is a function $g: \alpha \longrightarrow\left([\beta]^{\leq \lambda}\right)^{M_{1}[a]}$ such that $f(\xi) \in g(\xi)$ for each $\xi \in \alpha$.
Since $\operatorname{Apr}_{M_{1}, M_{1}[a]}(\lambda)$, every set from $\left([\beta]^{\leq \lambda}\right)^{M_{1}[a]}$ is a subset of a set from $\left([\beta]^{\leq \lambda}\right)^{M_{1}}$.
So, we may assume that all values of g are in $\left([\beta]^{\leq \lambda}\right)^{M_{1}}$. Now, by $\operatorname{Apr}_{M_{1}, M_{1}[a]}(\lambda)$ there exists a function $h: \alpha \longrightarrow\left[\left([\beta]^{\leq \lambda}\right)^{M_{1}}\right]^{<\lambda}$ such that $g(\xi) \in h(\xi)$ for each $\xi \in \alpha$.

A Note

Set $d(\xi)=\bigcup h(\xi)$. Then $d \in M_{1}$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_{1}} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_{0}$.

A Note

Set $d(\xi)=\bigcup h(\xi)$. Then $d \in M_{1}$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_{1}} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_{0}$.
Thus, by Theorem $7, M_{1}[b]$ is a generic extension of $M_{1}[G]$, hence a generic extension of M_{1} as well. Since $M_{1}[a] \subseteq M_{1}[b], M_{1}[a]$ is a generic extension of M_{1}.

A Note

Set $d(\xi)=\bigcup h(\xi)$. Then $d \in M_{1}$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_{1}} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_{0}$.
Thus, by Theorem 7, $M_{1}[b]$ is a generic extension of $M_{1}[G]$, hence a generic extension of M_{1} as well. Since $M_{1}[a] \subseteq M_{1}[b], M_{1}[a]$ is a generic extension of M_{1}.
A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless κ-C.C. Boolean algebra, then the first cardinal λ such that B is not (λ, κ))-distributive is $\lambda \leq \kappa$.

A Note

Set $d(\xi)=\bigcup h(\xi)$. Then $d \in M_{1}$ and $f(\xi) \in d(\xi)$ for each $\xi \in \alpha$. Since $|d(\xi)|^{M_{1}} \leq \lambda$ we have $|d(\xi)|^{M[G]} \leq \aleph_{0}$.
Thus, by Theorem $7, M_{1}[b]$ is a generic extension of $M_{1}[G]$, hence a generic extension of M_{1} as well. Since $M_{1}[a] \subseteq M_{1}[b], M_{1}[a]$ is a generic extension of M_{1}.
A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless κ-C.C. Boolean algebra, then the first cardinal λ such that B is not $(\lambda, \kappa))$-distributive is $\lambda \leq \kappa$.

A complete ω_{1}-C.C. $\left(\aleph_{0}, \aleph_{0}\right)$-distributive $\left(\aleph_{1}, \aleph_{0}\right)$-non-distributive Boolean algebra produces a Souslin tree. Therefore

Corollary 9

If $\mathcal{P}\left(\omega_{0}\right) \cap M_{2} \subseteq M_{1}, \mathcal{P}\left(\omega_{1}\right) \cap M_{2} \nsubseteq M_{1}$ and $A p r_{M_{1}, M_{2}}\left(\omega_{1}\right)$ holds true, then there exists a Souslin continuum in M_{1}.

A Note

The proof of Lemma 5 in [B2] is based on an embedding of the free κ-complete Boolean algebra with λ generators constructed in M_{1} preserving $<\kappa$ unions of sets from M_{1} into the similar Boolean algebra constructed in M_{2}.

A Note

The proof of Lemma 5 in [B2] is based on an embedding of the free κ-complete Boolean algebra with λ generators constructed in M_{1} preserving $<\kappa$ unions of sets from M_{1} into the similar Boolean algebra constructed in M_{2}.
The presented proof reduced this problem to the \aleph_{1}-free Boolean algebra with \aleph_{0} generators \mathcal{B}.

Thanks

Thanks for attention

Institut of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Košice e-mail: lev.bukovsky@upjs.sk Generic Extensions of Models of ZFC

Bibliography

冨［Ba］Balcar B．，A theorem on supports in the theory of semisets，Comment．Math．Univ．Carolinae， 14 （1973），1－6．
［B1］Bukovský L．，Ensembles génériques d＇entiers，C．R．Acad． Sc．Paris， 273 （1971），753－755．
［［B2］Bukovský L．，Characterization of generic extensions of models of set theory，Fund．Math．， 83 （1973），35－46．
囯［FFS］Friedman S．D．，Fuchino S．and Sakai H．，On the set－generic multiverse，preprint．
［So］Solovay R．，A model of set theory in which every set of reals is Lebesgue measurable，Ann．of Math． 92 （1970），1－56．

击［VH］Vopěnka P．and Hájek P．，The Theory of Semisets，， Academia，Prague 1972.

