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Notations and Terminology

M is a model if (M, €) is a transitive model of ZFC , M is either
countable set, or a class.

M> is an extension of M if M7 C My are models with same
ordinals On™1 = On2,
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Notations and Terminology

M is a model if (M, €) is a transitive model of ZFC , M is either
countable set, or a class.

M> is an extension of M if M7 C My are models with same
ordinals On™' = On™2,

B. Balcar and P. Vopénka 1967: If M, is a model extension of M,
and ’P(On) N My C My, then My = M.
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Notations and Terminology

M is a model if (M, €) is a transitive model of ZFC , M is either
countable set, or a class.

M> is an extension of M if M7 C My are models with same
ordinals On™' = On™2,

B. Balcar and P. Vopénka 1967: If M, is a model extension of M,
and ’P(On) N My C My, then My = M.

My is an extension of My, a € M, a € M; (or a € On). Then
M [a] is the smallest model of ZFC such that M; C M;[a] and

a € Mjla]. Note that for a,b C M, a,b € Ma we have

Mi[a)[b] = M [b][a].
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Notations and Terminology

M is a model if (M, €) is a transitive model of ZFC , M is either
countable set, or a class.

M> is an extension of M if M7 C My are models with same
ordinals On™' = On™2,

B. Balcar and P. Vopénka 1967: If M, is a model extension of M,
and ’P(On) N My C My, then My = M.

My is an extension of My, a € M, a € M; (or a € On). Then
M [a] is the smallest model of ZFC such that M; C M;[a] and

a € Mjla]. Note that for a,b C M, a,b € Ma we have

Mi[a)[b] = M [b][a].

Let x be an uncountable regular cardinal of M.
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Notations and Terminology

M is a model if (M, €) is a transitive model of ZFC , M is either
countable set, or a class.

M> is an extension of M if M7 C My are models with same
ordinals On™' = On™2,

B. Balcar and P. Vopénka 1967: If M, is a model extension of M,
and ’P(On) N My C My, then My = M.

My is an extension of My, a € M, a € M; (or a € On). Then
M [a] is the smallest model of ZFC such that M; C M;[a] and

a € Mjla]. Note that for a,b C M, a,b € Ma we have

Mi[a)[b] = M [b][a].

Let x be an uncountable regular cardinal of M.

My is a k-generic extension of M7 if there exists a poset P € My,
|P| < k and an M;-generic ultrafilter G on P such that

My = My [G].
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Notations and Terminology

My is a k-C.C. generic extension of M if there exists a x-C.C.
(every antichain has cardinality smaller than k) Boolean algebra
B € My, complete in My and an M;-generic ultrafilter G on B
such that My = M;[G].
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Notations and Terminology

My is a k-C.C. generic extension of M if there exists a x-C.C.
(every antichain has cardinality smaller than k) Boolean algebra
B € My, complete in My and an M;-generic ultrafilter G on B
such that My = M;[G].

Bd g, m, (k) says that

(Vu € On,u € M3)(3y € M)(Ja € M)
(yCaAla™ <kAu=y).

Institut of Mathematics, Faculty of Sciences, University of P. J. Safarik, Kosice e-mail: lev.bukovsky®upjs.sk

Generic Extensions of Models of ZFC



Notations and Terminology

My is a k-C.C. generic extension of M if there exists a x-C.C.
(every antichain has cardinality smaller than k) Boolean algebra
B € My, complete in My and an M;-generic ultrafilter G on B
such that My = M;[G].

Bd g, m, (k) says that

(Vu € On,u € M3)(3y € M)(Ja € M)
(yCaAla™ <kAu=y).

Aprar, v, (k) says that

(Vf € Ma, f a function,dom(f) € My, rng(f) C M;)(3g € M;,
dom(g) = dom(f))(Vx € dom(f)) (f(x) € g(z) A |g(x)[*t < k).
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Main Results

Theorem 1 (essentially P. Vopénka)

Moy is a k-generic extension of M; if and only if Bd, ar, (k) holds
true.
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Main Results

Theorem 1 (essentially P. Vopénka)

Moy is a k-generic extension of M; if and only if Bd, ar, (k) holds
true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43.
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Main Results

Theorem 1 (essentially P. Vopénka)

Moy is a k-generic extension of M; if and only if Bd, ar, (k) holds
true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43.
In [B2], we have proved the following

Theorem 2

My is a k-C.C. generic extension of M if and only if Apr, (k)
holds true.
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Main Results

Theorem 1 (essentially P. Vopénka)

Moy is a k-generic extension of M; if and only if Bd, ar, (k) holds
true.

For a proof see [VH], p. 207 or [B2], Theorem 3.3, p. 43.
In [B2], we have proved the following

Theorem 2

My is a k-C.C. generic extension of M if and only if Apr, (k)
holds true.

Recently, another proof of Theorem 2 was given by S.D. Friedman,
S. Fuchino and H. Sakai [FFS]. We present the idea of a proof of
Theorem 2 that is different from those of [B2] and [FFS].
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From Left to Right

The implications from left to right in both theorems are trivial.
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From Left to Right

The implications from left to right in both theorems are trivial.
Let My = M;[G], where G is a generic ultrafilter on a poset
P c My, |[PIM < k. If uC On, u € My, then there exists a
relation r € M such that u =r"G ={¢: (3y € G) (y,&) € r}.
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From Left to Right

The implications from left to right in both theorems are trivial.
Let My = M;[G], where G is a generic ultrafilter on a poset

P c My, |[PIM < k. If uC On, u € My, then there exists a
relation r € M such that u =r"G ={¢: (3y € G) (y,&) € r}.
We can assume that » C P x On. Set

a={{&:t,&) ert:teP}, y={{&:(x,§) ert:xe G}

Then |a|* < k and z = Jy.
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From Left to Right

The implications from left to right in both theorems are trivial.
Let My = M;[G], where G is a generic ultrafilter on a poset

P c My, |[PIM < k. If uC On, u € My, then there exists a
relation r € M such that u =r"G ={¢: (3y € G) (y,&) € r}.
We can assume that » C P x On. Set

a={{&:t,&) ert:teP}, y={{&:(x,§) ert:xe G}

Then |a|* < k and z = Jy.

If My = M;[G], where G is a generic ultrafilter on a M;-complete
k-C.C. Boolean algebra B € M, then for every f : a« — 3, there
exists a function h: a x f — B, h € M such that f = h=1(G).
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From Left to Right

The implications from left to right in both theorems are trivial.
Let My = M;[G], where G is a generic ultrafilter on a poset

P c My, |[PIM < k. If uC On, u € My, then there exists a
relation r € M such that u =r"G ={¢: (3y € G) (y,&) € r}.
We can assume that » C P x On. Set

a={{&:t,&) ert:teP}, y={{&:(x,§) ert:xe G}

Then |a|* < k and z = Jy.

If My = M;[G], where G is a generic ultrafilter on a M;-complete
k-C.C. Boolean algebra B € M, then for every f : a« — 3, there
exists a function h: a x f — B, h € M such that f = h=1(G).
We can assume that A(&,m1) A h(€,12) = 0 for n1 # n2. We set

g(€) = {n : h(€,n) #0}. Then f(&) € g(€) for each . Since B is
1-C.C. we obtain |g(¢&)|M < k.
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Lemmas

The theorem easily follows from the next three auxiliary results.
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Lemmas

The theorem easily follows from the next three auxiliary results.

Lemma 3

If My is a generic extension of My and Aprys, i, (k) holds true,
then Ms is a k-C.C. generic extension of M

The proof is same as the argumentation in [B2] on p. 42, lines 14 —
28.
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Lemmas

The theorem easily follows from the next three auxiliary results.

Lemma 3

If My is a generic extension of My and Apry, a, (k) holds true,
then Ms is a k-C.C. generic extension of M

The proof is same as the argumentation in [B2] on p. 42, lines 14 —

Lemma 4

If Aprar, v, (k) holds true and P(k) N My C My, then My = M.

)
0

The assertion of the lemma is same as that of Theorem 4.1 of [B2].
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Main Lemma

The basic result is contained in

Lemma 5 (Main Lemma)

If Aprar, i, (k) holds true then for any set a € My, a C M, the
model M;[a] is a generic extension of Mj.
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Main Lemma

The basic result is contained in

Lemma 5 (Main Lemma)

If Aprar, i, (k) holds true then for any set a € My, a C M, the
model M;[a] is a generic extension of Mj.

The proofs of this lemma in [B2] and [FFS] are different. We
present still another proof of this lemma.
Independently J.L. Krivine found similar proof of a weaker result.
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Support

A set 0 C My, 0 € My is a support if for any relations
71,79 € M; there exists a relation » € M7 such that
"o =r{o\ rio, where r’o = {u: (Jv € o) [v,u] € r}.
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A set 0 C My, 0 € My is a support if for any relations

71,79 € M; there exists a relation » € M7 such that

"o =r{o\ rio, where r’o = {u: (Jv € o) [v,u] € r}.

If My = M;[G], where G is a generic ultrafilter on a poset, then G
is a support. Actually, for every y C My, y € M;[G], there exists

a relation r € M such that y = 7”"G. If G is a generic ultrafilter
on a Boolean algebra, then for any = € My N'P(Mj) even

r = f7YQ), f € My, where f is a function.
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Support

A set 0 C My, 0 € My is a support if for any relations

71,79 € M; there exists a relation » € M7 such that

"o =r{o\ rio, where r’o = {u: (Jv € o) [v,u] € r}.

If My = M;[G], where G is a generic ultrafilter on a poset, then G
is a support. Actually, for every y C My, y € M;[G], there exists

a relation r € M such that y = 7”"G. If G is a generic ultrafilter
on a Boolean algebra, then for any = € My N'P(Mj) even

r = f7YQ), f € My, where f is a function.

Theorem 6 (P. Vopénka)

If o C My, o € My is a support, then M,[o] is a generic extension
of Ml.
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Support

A set 0 C My, 0 € My is a support if for any relations

71,79 € M; there exists a relation » € M7 such that

"o =r{o\ rio, where r’o = {u: (Jv € o) [v,u] € r}.

If My = M;[G], where G is a generic ultrafilter on a poset, then G
is a support. Actually, for every y C My, y € M;[G], there exists

a relation r € M such that y = 7”"G. If G is a generic ultrafilter
on a Boolean algebra, then for any = € My N'P(Mj) even

r = f7YQ), f € My, where f is a function.

Theorem 6 (P. Vopénka)

If o C My, o € My is a support, then M,[o] is a generic extension
of Ml.

Nice simple proof was given by B. Balcar [Ba].
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Support

If G is an M; generic ultrafilter on a complete Boolean algebra B,
we let
r={{z,y):z,y € B\ {0} and z Ay = 0}.

Institut of Mathematics, Faculty of Sciences, University of P. J. Safarik, Kosice e-mail: lev.bukovsky®upjs.sk

Extensions of Models of ZFC



If G is an M; generic ultrafilter on a complete Boolean algebra B,
we let
r={(z,y):x,y € B\ {0} and z Ay = 0}.

Then r € My and we have:

(i) 7 is a symmetric antireflexive relation.

(ii) »"{z} C B\ G for any z € G.

(iii) Forany u C B\ G, u € My, there exists an = € G such that

u C r'"{z}.
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If G is an M; generic ultrafilter on a complete Boolean algebra B,
we let
r={(z,y):x,y € B\ {0} and z Ay = 0}.

Then r € My and we have:

(i) 7 is a symmetric antireflexive relation.

(ii) »"{z} C B\ G for any z € G.
(iii) Forany u C B\ G, u € My, there exists an = € G such that

u Cr'’{x}.
Assume that ¢ C a € M is a support. Set
r1 = {x} x P(a) N M; for fixed = € o,
ro ={(z,u) :x €unuCa}lnM.
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If G is an M; generic ultrafilter on a complete Boolean algebra B,
we let
r={(z,y):x,y € B\ {0} and z Ay = 0}.

Then r € My and we have:

(i) 7 is a symmetric antireflexive relation.

(ii) »"{z} C B\ G for any z € G.
(iii) Forany u C B\ G, u € My, there exists an = € G such that

u Cr'’{x}.
Assume that ¢ C a € M is a support. Set
r1 = {x} x P(a) N M; for fixed = € o,
ro ={(z,u) :x €unuCa}lnM.
Then

Pla)N My =r{c and (P(a) \ P(a\ o)) N M; =rjo.
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Support

Since o is a support, there exists a relation r3 € M7 such that

rio =rio\rho="P(a\ o) N M.
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Support

Since o is a support, there exists a relation r3 € M7 such that

rio =rio\rho="P(a\ o) N M.

rg = {{z,y) : 3u) (y € uA{z,u) €r3)}, r=ryU 7‘4_1,
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Since o is a support, there exists a relation r3 € M7 such that
rio =rio\rho="P(a\ o) N M.
Set
rg = {{z,y) : 3u) (y € uA{z,u) €r3)}, r=ryU 7‘4_1,

Then r € M; is such that (i) — (iii) hold true. Considering r as the
relation of disjointnees on the set a we define a preorder on a by

z<y=r"{a} 20"y}
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Since o is a support, there exists a relation r3 € M7 such that
rio =rio\rho="P(a\ o) N M.
Set
rg = {{z,y) : 3u) (y € uA{z,u) €r3)}, r=ryU 7‘4_1,

Then r € M; is such that (i) — (iii) hold true. Considering r as the
relation of disjointnees on the set a we define a preorder on a by

z<y=r"{a} 20"y}

It is easy to show that o is an M;-generic ultrafilter on (a, <).
Thus Mj[o] is a generic extension of M.
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Main Lemma

We begin with the proof of Lemma 5 for k = wy and a subset of wy
following the proof in [B1].
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Main Lemma

We begin with the proof of Lemma 5 for k = wy and a subset of wy
following the proof in [B1].

Theorem 7

Assume that a C wy, a € Ma. If Apryg, m,(w1) holds true, then
M [a] is a generic extension of M.
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Main Lemma

We begin with the proof of Lemma 5 for k = wy and a subset of wy
following the proof in [B1].

Theorem 7

Assume that a C wy, a € Ma. If Apryg, m,(w1) holds true, then
M [a] is a generic extension of M.

Proof. Let I3 denote the family of Borel subsets of “02. There exist
a mapping # : BM — BM2 preserving complement and unions of
countable families belonging to M; — see R. Solovay [So].
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Main Lemma

We begin with the proof of Lemma 5 for k = wy and a subset of wy
following the proof in [B1].

Theorem 7

Assume that a C wy, a € Ma. If Apryg, m,(w1) holds true, then
M [a] is a generic extension of M.

Proof. Let I3 denote the family of Borel subsets of “02. There exist
a mapping # : BM — BM2 preserving complement and unions of
countable families belonging to M; — see R. Solovay [So].

If a € “02 N My we set

jla)={A e BM :q e #(A)}.

Evidently M;[a] = M;[j(a)]. We show that j(a) is a support.
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Proof of Theorem 7

We begin with showing that for any relation r € M; there exists
a function h € My such that v"j(a) = h=1(j(a)).
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Proof of Theorem 7

We begin with showing that for any relation r € M; there exists
a function h € My such that v"j(a) = h=1(j(a)).
Let k = (2%0)M1 X = (27)M1,
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Proof of Theorem 7

We begin with showing that for any relation r € M; there exists
a function h € My such that v"j(a) = h=1(j(a)).

Let k = (2R0)M1 )\ = (2/)M1,

Let {u¢ : & € } and {v, : 7 € A} be enumerations of BM! and
P(BM1) N Mj, respectively. We can assume that r C BM1 x Mj.
Then there exists a set {a, : n € A} € M of pairwise disjoint sets

such that
r= U (A
neX
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Proof of Theorem 7

We begin with showing that for any relation r € M; there exists
a function h € My such that v"j(a) = h=1(j(a)).

Let k = (2R0)M1 )\ = (2/)M1,

Let {u¢ : & € } and {v, : 7 € A} be enumerations of BM! and
P(BM1) N Mj, respectively. We can assume that r C BM1 x Mj.
Then there exists a set {a, : n € A} € M of pairwise disjoint sets

such that
r= U Uy X Q.
neX
We let f(n) to be the smallest £ such that u¢ € j(a) Ny, if

j(a) Nw, # 0 and f(n) = 0 otherwise. By the assumptions, there
exists a function g € Mj, dom(g) = A and such that for each £ € A

we have f(&) € g(€) and |g(§)[" < Ro.
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Proof of Theorem 7

For t € a, we set h(t) = J{ue¢ : u¢ € vy A§ € g(n)}. Evidently
h € M; and rng(h) C BM:
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Proof of Theorem 7

For t € a, we set h(t) = J{ue¢ : u¢ € vy A§ € g(n)}. Evidently
h € M; and rng(h) C BM:
One can easily show that 7"j(a) = h=1(j(a)).
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Proof of Theorem 7

For t € a, we set h(t) = J{ue¢ : u¢ € vy A§ € g(n)}. Evidently
h € M; and rng(h) C B,

One can easily show that 7"j(a) = h=1(j(a)).

Now, if y; = h; '(j(a)), where h; € My are functions with values
in By, fori=1,2, we set

N (t) \ ha(t) if t € dom(hy) N dom(hsg),
ht) = { I (1) if ¢ € dom(hy) \ dom(hs).

Then h € My and 31 \ y2 = h~1(j(a)).
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Proof of Theorem 7

For t € a, we set h(t) = J{ue¢ : u¢ € vy A§ € g(n)}. Evidently
h € M; and rng(h) C B,

One can easily show that 7"j(a) = h=1(j(a)).

Now, if y; = h; '(j(a)), where h; € My are functions with values
in By, fori=1,2, we set

N (t) \ ha(t) if t € dom(hy) N dom(hsg),
ht) = { I (1) if ¢ € dom(hy) \ dom(hs).

Then h € M; and y1 \ y2 = h~1(j(a)).
The theorem follows by Theorem 6. O]
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is
a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.

One can find a set b C wy such that M;[a][G] = M;[b]. We show
that ApTMl[G’},Ml[b] (wl) holds true.
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.

One can find a set b C wy such that M;[a][G] = M;[b]. We show
that ApTMl[G’},Ml[b] (wl) holds true.

Let f:a— 3, f € M[b].
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.

One can find a set b C wy such that M;[a][G] = M;[b]. We show
that ApTMl[G’},Ml[b] (wl) holds true.

Let f:a— 3, f € M[b].

Then there is a function g : @ — ([8]=*)M11e] such that

f(&) € g(¢) for each € € .
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.

One can find a set b C wy such that M;[a][G] = M;[b]. We show
that ApTMl[G’},Ml[b] (wl) holds true.

Let f:a— 3, f € M[b].

Then there is a function g : @ — ([8]=*)M11e] such that

f(&) € g(¢) for each € € .

Since Aprag, ary[q) (M), every set from ([f]
a set from ([B]=M)M1.

=MMilal s 3 subset of
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Proof of Lemma 5

Proof of Lemma 5. Let a C A. We may assume that A is

a non-limit cardinal in Mj[a] and XA > k. Then Apras, ar, (A) holds
true.

Let G be an M;[a]-generic ultrafilter over <“° X\.Note that
Mi[a][G] = M1[G][a] and G is also M;j-generic over <“\.

One can find a set b C wy such that M;[a][G] = M;[b]. We show
that ApTMl[G’},Ml[b] (wl) holds true.

Let f:a— 3, f € M[b].

Then there is a function g : @ — ([8]=*)M11e] such that

f(&) € g(¢) for each € € .

Since Aprag, ary[q) (M), every set from ([f]
a set from ([B]=M)M1.

So, we may assume that all values of g are in ([3]=*)M1. Now, by
Apra, (o) (A) there exists a function b v — [([B]=4)M1]<A
such that g(§) € h(§) for each ¢ € a.

=MMilal s 3 subset of
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Set d(§) = Jh(§). Then d € My and f(&) € d(&) for each £ € a.
Since |d(&)|M < X we have |d(¢)|MIE] < .
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Set d(&) = Jh(&). Then d € M; and f(§) € d(&) for each £ € a.
Since |d(&)|M < X we have |d(¢)|MIE] < .

Thus, by Theorem 7, M;[b] is a generic extension of M;[G], hence
a generic extension of M as well. Since M [a] C M;[b], Mi[a] is
a generic extension of Mj. O
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A Note

Set d(&) = Jh(&). Then d € M; and f(§) € d(&) for each £ € a.
Since |d(&)|M < X we have |d(¢)|MIE] < .

Thus, by Theorem 7, M;[b] is a generic extension of M;[G], hence
a generic extension of M as well. Since M [a] C M;[b], Mi[a] is
a generic extension of Mj. O
A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless k-C.C. Boolean algebra, then the first
cardinal \ such that B is not (A, k))-distributive is A < k.
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Set d(&) = Jh(&). Then d € M; and f(§) € d(&) for each £ € a.
Since |d(&)|M < X we have |d(¢)|MIE] < .

Thus, by Theorem 7, M;[b] is a generic extension of M;[G], hence
a generic extension of M as well. Since M [a] C M;[b], Mi[a] is
a generic extension of Mj. O
A proof of Lemma 4 is based on the following

Lemma 8

If B is a complete atomless k-C.C. Boolean algebra, then the first
cardinal \ such that B is not (A, k))-distributive is A < k.

A complete wi-C.C. (Rg, Xg)-distributive (X1, Xg)-non-distributive
Boolean algebra produces a Souslin tree. Therefore
Corollary 9

/fP(wo) N My C My, P(wl) N My g M, and Aper,MQ(wl) holds
true, then there exists a Souslin continuum in Mj.
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A Note

The proof of Lemma 5 in [B2] is based on an embedding of the free
r-complete Boolean algebra with \ generators constructed in My

preserving <r unions of sets from M into the similar Boolean
algebra constructed in M.
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The proof of Lemma 5 in [B2] is based on an embedding of the free
r-complete Boolean algebra with \ generators constructed in My
preserving <r unions of sets from M into the similar Boolean
algebra constructed in M.

The presented proof reduced this problem to the N;-free Boolean
algebra with Ny generators B.
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Thanks for attention
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