Measures on Suslinean spaces

Piotr Borodulin-Nadzieja

Novi Sad 2014

August 20, 2014

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Suslin's Problem

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Piotr Borodulin-Nadzieja

Novi Sad 2014

Suslin's Problem

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Piotr Borodulin-Nadzieja

Novi Sad 2014

Suslinean Space

Definition

A compact space is called *Suslinean* if it is ccc and non-separable.

Definition

A Boolean algebra is called *Suslinean* if it is ccc and not σ -centered.

Suslin's Hypothesis

There is no Suslinean linearly ordered space. (There is no Suslinean interval algebra)

Novi Sad 2014

Piotr Borodulin-Nadzieja

Suslinean Space

Definition

A compact space is called *Suslinean* if it is ccc and non-separable.

Definition

A Boolean algebra is called *Suslinean* if it is ccc and not σ -centered.

Suslin's Hypothesis

There is no Suslinean linearly ordered space. (There is no Suslinean interval algebra)

Novi Sad 2014

Piotr Borodulin-Nadzieja

Suslinean Space

Definition

A compact space is called *Suslinean* if it is ccc and non-separable.

Definition

A Boolean algebra is called *Suslinean* if it is ccc and not σ -centered.

Suslin's Hypothesis

There is no Suslinean linearly ordered space. (There is no Suslinean interval algebra)

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Consistency

Theorem

- $\diamond \implies \neg \mathsf{SH}$ [Jensen, 1972]
- $MA(\omega_1) \implies SH$ [Solovay, Tennenbaum, 1971]

Piotr Borodulin-Nadzieja

Novi Sad 2014

Consistency

Theorem

- $\diamond \implies \neg \mathsf{SH}$ [Jensen, 1972]
- $MA(\omega_1) \implies SH$ [Solovay, Tennenbaum, 1971]

Piotr Borodulin-Nadzieja

Novi Sad 2014

Consistency

Theorem

- $\diamond \implies \neg \mathsf{SH}$ [Jensen, 1972]
- $MA(\omega_1) \implies SH$ [Solovay, Tennenbaum, 1971]

Piotr Borodulin-Nadzieja

Novi Sad 2014

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Theorem [Juhasz, Sapirovsky, Tall 70's]

- $MA(\omega_1) \implies$ no Suslinean space of π -weight ω_1 ;
- $\mathsf{MA}(\omega_1) \implies$ no Suslinean first countable space;
- lacksquare MA (ω_1) \Longrightarrow no Suslinean space of countable tightness.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Theorem [Juhasz, Sapirovsky, Tall 70's]

- $MA(\omega_1) \implies$ no Suslinean space of π -weight ω_1 ;
- $MA(\omega_1) \implies$ no Suslinean first countable space;
- lacksquare MA (ω_1) \Longrightarrow no Suslinean space of countable tightness.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Theorem [Juhasz, Sapirovsky, Tall 70's]

- $MA(\omega_1) \implies$ no Suslinean space of π -weight ω_1 ;
- $MA(\omega_1) \implies$ no Suslinean first countable space;
- lacksquare MA (ω_1) \Longrightarrow no Suslinean space of countable tightness.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Suslin's Problem

Is there a linearly ordered compact space which is ccc and non-separable?

Theorem [Juhasz, Sapirovsky, Tall 70's]

- $MA(\omega_1) \implies$ no Suslinean space of π -weight ω_1 ;
- $MA(\omega_1) \implies$ no Suslinean first countable space;
- $MA(\omega_1) \implies$ no Suslinean space of countable tightness.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0,1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL, ...

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL, ...

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL, ...

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL,

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL,

Novi Sad 2014

Piotr Borodulin-Nadzieja

Novi Sad 2014

Small spaces

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL,

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL, ...

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A compact space is *small* if it cannot be mapped continuously onto $[0, 1]^{\omega_1}$. A Boolean algebra is *small* if it does not contain an uncountable independent family.

Examples

linearly ordered spaces, first-countable spaces, spaces of countable tightness, metrizable spaces, scattered spaces, Corson compacta, monotonically normal spaces, HS, HL, ...

Novi Sad 2014

Piotr Borodulin-Nadzieja

Small spaces in Suslinean context

Fact

Let $\kappa > \mathfrak{c}$. The space 2^{κ} is Suslinean.

The ultimate version of Suslin's hypothesis

USH = "there is no small Suslinean space".

Theorem [Todorčević 2000]

¬USH.

The server is shown

Piotr Borodulin-Nadzieja

Small spaces in Suslinean context

Fact

Let $\kappa > \mathfrak{c}$. The space 2^{κ} is Suslinean.

The ultimate version of Suslin's hypothesis

USH = "there is no small Suslinean space".

Theorem [Todorčević 2000]

¬USH.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Small spaces in Suslinean context

Fact

Let $\kappa > \mathfrak{c}$. The space 2^{κ} is Suslinean.

The ultimate version of Suslin's hypothesis

USH = "there is no small Suslinean space".

Theorem [Todorčević 2000]

¬USH.

Piotr Borodulin-Nadzieja

Novi Sad 2014

The problem

Problem

Is there a small Suslinean space supporting a measure?

Definition

A compact space supports a measure if there is a (Radon) measure μ such that each nonempty open subset is μ -positive. A Boolean algebra supports a measure if there is a finitely additive measure μ such that each nonzero element is μ -positive.

The problem

Problem

Is there a small Suslinean space supporting a measure?

Definition

A compact space supports a measure if there is a (Radon) measure μ such that each nonempty open subset is μ -positive. A Boolean algebra supports a measure if there is a finitely additive measure μ such that each nonzero element is μ -positive.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

The problem

Problem

Is there a small Suslinean space supporting a measure?

Definition

A compact space supports a measure if there is a (Radon) measure μ such that each nonempty open subset is μ -positive. A Boolean algebra supports a measure if there is a finitely additive measure μ such that each nonzero element is μ -positive.

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

- \blacksquare \mathfrak{A}_0 is trivial,
- $\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$ for limit γ ,
- there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

- \mathfrak{A}_0 is trivial,
- $\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$ for limit γ ,
- there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

\$\mathbf{A}_0\$ is trivial,

•
$$\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$$
 for limit γ ,

• there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

\$\mathbf{A}_0\$ is trivial,

•
$$\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$$
 for limit γ ,

• there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

\$\mathbf{A}_0\$ is trivial,

•
$$\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$$
 for limit γ ,

• there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Definition

A Boolean algebra \mathfrak{A} is *minimally generated* if $\mathfrak{A} = \bigcup \mathfrak{A}_{\alpha}$, where

\$\mathbf{A}_0\$ is trivial,

•
$$\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$$
 for limit γ ,

• there is no \mathfrak{B} such that $\mathfrak{A}_{\alpha} \subsetneq \mathfrak{B} \subsetneq \mathfrak{A}_{\alpha+1}$.

Examples of Stone spaces of m.g. algebras (colored)

Minimally generated Suslinean algebras

Theorem [PBN]

Suslin Hypothesis is equivalent to "there is no Suslinean minimally generated algebra".

Piotr Borodulin-Nadzieja

Novi Sad 2014

Minimally generated Suslinean algebras

Theorem [PBN]

Suslin Hypothesis is equivalent to "there is no Suslinean minimally generated algebra".

Piotr Borodulin-Nadzieja

Novi Sad 2014

Uniformly regular measures

Definition

A measure μ on a Boolean algebra \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{B} \subseteq \mathfrak{A}$ such that

$$\mu(A) = \sup\{\mu(B) \colon B \in \mathcal{B}, B \subseteq A\}$$

for each $A \in \mathfrak{A}$.

Remark

If \mathfrak{A} supports a uniformly regular measure, then it has a countable π -base (and, consequently, is σ -centered).
Uniformly regular measures

Definition

A measure μ on a Boolean algebra \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{B} \subseteq \mathfrak{A}$ such that

$$\mu(A) = \sup\{\mu(B) \colon B \in \mathcal{B}, B \subseteq A\}$$

for each $A \in \mathfrak{A}$.

Remark

If \mathfrak{A} supports a uniformly regular measure, then it has a countable π -base (and, consequently, is σ -centered).

Novi Sad 2014

Piotr Borodulin-Nadzieja <u>Measur</u>es on Suslinean spaces

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If \mathfrak{T} is ccc and SH holds, then \mathfrak{T} is countable;
- One can define a measure u on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If \mathfrak{T} is ccc and SH holds, then \mathfrak{T} is countable;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If I is ccc and SH holds, then I is countable;
- One can define a measure u on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If \mathfrak{T} is ccc and SH holds, then \mathfrak{T} is countable;
- One can define a measure u on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If \mathfrak{T} is ccc and SH holds, then \mathfrak{T} is countable;
- One can define a measure ν on ℑ;
- Since 𝔄 is m.g. over 𝔅, ν can be extended to μ on 𝔄 such that 𝔅 approximates μ from below.

Theorem [PBN]

Suslin Hypothesis is equivalent to "every ccc minimally generated Boolean algebra supports a uniformly regular measure".

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- If \mathfrak{T} is ccc and SH holds, then \mathfrak{T} is countable;
- One can define a measure ν on ℑ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Fact

If \mathfrak{A} is minimally generated and supports a measure, then \mathfrak{A} supports a uniformly regular measure (and, consequently, is σ -centered).

- Assume A is minimally generated;
- A contains a dense tree algebra I such that A is minimally generated over I;
- \mathfrak{A} supports a measure, so \mathfrak{T} is countable;
- Hence, there is a strictly positive measure ν on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Fact

If \mathfrak{A} is minimally generated and supports a measure, then \mathfrak{A} supports a uniformly regular measure (and, consequently, is σ -centered).

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- ${\mathfrak A}$ supports a measure, so ${\mathfrak T}$ is countable;
- Hence, there is a strictly positive measure u on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Fact

If \mathfrak{A} is minimally generated and supports a measure, then \mathfrak{A} supports a uniformly regular measure (and, consequently, is σ -centered).

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- A supports a measure, so T is countable;
- Hence, there is a strictly positive measure u on \mathfrak{T} ;
- Since 𝔅 is m.g. over 𝔅, ν can be extended to μ on 𝔅 such that 𝔅 approximates μ from below.

Fact

If \mathfrak{A} is minimally generated and supports a measure, then \mathfrak{A} supports a uniformly regular measure (and, consequently, is σ -centered).

- Assume A is minimally generated;
- A contains a dense tree algebra T such that A is minimally generated over T;
- I supports a measure, so I is countable;
- Hence, there is a strictly positive measure u on \mathfrak{T} ;
- Since A is m.g. over T, ν can be extended to μ on A such that T approximates μ from below.

Kunen's space

Theorem [Kunen_1981]

There is a Corson compact space supporting a non-separable measure

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf\{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Kunen's space

Theorem [Kunen 1981]

There is a Corson compact space supporting a non-separable measure

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf\{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Novi Sad 2014

Piotr Borodulin-Nadzieja

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf\{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Fact

The standard measure on 2^{ω_1} is non-separable.

Fact

If K is big, then it carries a non-separable measure.

Theorem [Fremlin 1997]

 $MA(\omega_1)$ implies that small spaces carry only separable measures.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf\{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Fact

The standard measure on 2^{ω_1} is non-separable.

Fact

If K is big, then it carries a non-separable measure.

Theorem [Fremlin 1997]

 $MA(\omega_1)$ implies that small spaces carry only separable measures.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf\{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Fact

The standard measure on 2^{ω_1} is non-separable.

Fact

If K is big, then it carries a non-separable measure.

Theorem [Fremlin 1997]

 $MA(\omega_1)$ implies that small spaces carry only separable measures.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Definition

A measure μ is separable if there is a countable family \mathcal{A} of measurable sets such that $\inf \{\mu(A \bigtriangleup E) : A \in \mathcal{A}\} = 0$ for every measurable E.

Fact

The standard measure on 2^{ω_1} is non-separable.

Fact

If K is big, then it carries a non-separable measure.

Theorem [Fremlin 1997]

 $MA(\omega_1)$ implies that small spaces carry only separable measures.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\mathrm{measure \ algebras}}(\omega_1)$,
- $lacksymbol{2}^{\omega_1}$ can be covered by ω_1 nullsets,
- $lacksim \omega_1$ is not a precaliber of measure algebras,

Definition

 ω_1 is a precaliber for \mathfrak{A} if every uncountable family of elements of \mathfrak{A} has an uncountable centered subfamily.

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\mathrm{measure\ algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- lacksquare ω_1 is not a precaliber of measure algebras,

Definition

 ω_1 is a precaliber for \mathfrak{A} if every uncountable family of elements of \mathfrak{A} has an uncountable centered subfamily.

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\mathrm{measure\ algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,

Definition

 ω_1 is a precaliber for \mathfrak{A} if every uncountable family of elements of \mathfrak{A} has an uncountable centered subfamily.

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\mathrm{measure\ algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,

Definition

 ω_1 is a precaliber for ${\mathfrak A}$ if every uncountable family of elements of ${\mathfrak A}$ has an uncountable centered subfamily.

Piotr Borodulin-Nadzieja

Theorem [Kunen, van Mill 1995

The following are equivalent

- $\neg \mathsf{MA}_{\text{measure algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,
- there is a Corson compactum supporting a non-separable measure.

Definition

K is Corson compact if it is homeomorphic to a compact subset of $\Sigma([0,1]^{\kappa})$ for some κ , where

$\Sigma([0,1]^{\kappa}) = \{x \in [0,1]^{\kappa} \colon |\operatorname{supp}(x)| = \aleph_0\}.$

Piotr Borodulin-Nadzieja

Novi Sad 2014

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\text{measure algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,
- there is a Corson compactum supporting a non-separable measure.

Definition

K is Corson compact if it is homeomorphic to a compact subset of $\Sigma([0,1]^{\kappa})$ for some κ , where

$$\Sigma([0,1]^{\kappa}) = \{x \in [0,1]^{\kappa} \colon |\operatorname{supp}(x)| = \aleph_0\}.$$

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\text{measure algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,
- there is a Corson compactum supporting a non-separable measure.
- there is a Suslinean Corson compactum supporting a measure.

Fact

If a Corson compactum is separable, then it is metrizable. There is no non-separable measure on a metrizable space.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Theorem [Kunen, van Mill 1995]

The following are equivalent

- $\neg \mathsf{MA}_{\text{measure algebras}}(\omega_1)$,
- 2^{ω_1} can be covered by ω_1 nullsets,
- ω_1 is not a precaliber of measure algebras,
- there is a Corson compactum supporting a non-separable measure.
- there is a Suslinean Corson compactum supporting a measure.

Fact

If a Corson compactum is separable, then it is metrizable. There is no non-separable measure on a metrizable space.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

- Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;
- Let $X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$ is centered};
- X is Corson compact;
- X is not separable;
- X supports a measure.

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

- Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;
- Let $X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$ is centered};
- X is Corson compact;
- X is not separable;
- X supports a measure.

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;

• Let
$$X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$$
 is centered};

- X is Corson compact;
- X is not separable;
- X supports a measure.

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

- Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;
- Let $X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$ is centered};
- X is Corson compact;
- X is not separable;
- X supports a measure.

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

- Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;
- Let $X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$ is centered};
- X is Corson compact;
- X is not separable;
- X supports a measure.

Theorem [Džamonja, Plebanek 2004]

Assume ω_1 is not a precaliber of measure algebras. Then there is a Corson compact non-separable space supporting a measure.

Proof.

• Let $(A_{\alpha})_{\alpha < \omega_1}$ be a witness for \neg precaliber_{ma} (ω_1) ;

• Let
$$X = \{x \in 2^{\omega_1} : \{A_\alpha : x(\alpha) = 1\}$$
 is centered};

- X is Corson compact;
- X is not separable;
- X supports a measure.

 $\operatorname{cov}(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that inf $\{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let \mathfrak{A} be generated by $(F_{lpha})_{lpha<\omega_1}$;
- Stone(A) is Corson compact;
- Stone (\mathfrak{A}) supports a non-separable measure.

Piotr Borodulin-Nadzieja Measures on Suslinean spaces

 $\operatorname{cov}(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that inf $\{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let $\mathfrak A$ be generated by $(F_{lpha})_{lpha<\omega_1}$;
- Stone(A) is Corson compact;
- Stone(A) supports a non-separable measure.

 $\operatorname{cov}(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that $\inf \{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let $\mathfrak A$ be generated by $(F_lpha)_{lpha<\omega_1};$
- Stone(A) is Corson compact;
- Stone(A) supports a non-separable measure.

 $cov(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that $\inf \{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let ${\mathfrak A}$ be generated by $({\mathcal F}_lpha)_{lpha<\omega_1};$
- Stone(A) is Corson compact;
- Stone(A) supports a non-separable measure.

 $cov(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that $\inf \{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let ${\mathfrak A}$ be generated by $({\mathcal F}_lpha)_{lpha<\omega_1};$
- Stone(𝔅) is Corson compact;
- Stone(𝔅) supports a non-separable measure
General framework

 $\operatorname{cov}(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

- Assume $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ is increasing and covers 2^{ω_1} ;
- Let $F_{\alpha} \subseteq 2^{\omega_1} \setminus \bigcup_{\xi < \alpha} N_{\xi}$ be closed such that inf $\{\lambda(F_{\alpha} \bigtriangleup A) : A \in \mathfrak{A}_{\alpha}\} = 0$, where \mathfrak{A}_{α} is the algebra generated by $\{F_{\xi} : \xi < \alpha\}$;
- Let $\mathfrak A$ be generated by $(\mathcal F_lpha)_{lpha<\omega_1}$;
- Stone(A) is Corson compact;
- Stone(\mathfrak{A}) supports a non-separable measure.

Non-separable measure without $MA_{ma}(\omega_1)$

 $cov(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

Theorem [Plebanek 1997]

The assumption on covering can be relaxed to "there is a family $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ whose union intersects each perfect subset of 2^{ω_1} ". Consequently, it is consistent that $MA_{ma}(\omega_1)$ holds and there is a small space with a non-separable measure.

Non-separable measure without $MA_{ma}(\omega_1)$

 $cov(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

Theorem [Plebanek 1997]

The assumption on covering can be relaxed to "there is a family $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ whose union intersects each perfect subset of 2^{ω_1} ". Consequently, it is consistent that $MA_{ma}(\omega_1)$ holds and there is a small space with a non-separable measure.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Measures on Suslinean spaces

Non-separable measure without $MA_{ma}(\omega_1)$

 $\operatorname{cov}(\mathcal{N}_{\omega_1}) = \omega_1$ implies that there is a Corson compact space supporting a non-separable measure.

Theorem [Plebanek 1997]

The assumption on covering can be relaxed to "there is a family $(N_{\alpha})_{\alpha < \omega_1} \subseteq \mathcal{N}_{\omega_1}$ whose union intersects each perfect subset of 2^{ω_1} ". Consequently, it is consistent that $MA_{ma}(\omega_1)$ holds and there is a small space with a non-separable measure.

Piotr Borodulin-Nadzieja

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E_α*: *α* < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- **D**_A's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E_α*: *α* < *ω*₁} ⊆ Borel(2^{*ω*1}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- D_A's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- D_A's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- D_A 's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- **D**_A's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n\}$
- D_A 's and P_{α} 's are in $\mathcal{N}_{\omega \times \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$

For
$$\alpha < \omega_1$$
 let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n \}$

D_A's and
$$P_{\alpha}$$
's are in $\mathcal{N}_{\omega imes \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

- WLOG $\mathfrak{A} \subseteq \operatorname{Borel}(2^{\omega_1})/\mathcal{N}_{\omega_1};$
- Let *E* = {*E*_α: α < ω₁} ⊆ Borel(2^{ω₁}) be a set of representatives of 𝔄⁺ and let *F* be the field generated by *E*;
- Work in $2^{\omega \times \omega_1}$ instead of 2^{ω_1} ;
- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$

For
$$\alpha < \omega_1$$
 let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} : r_n \notin E_{\alpha} \text{ for all } n \}$

D_A's and
$$P_{\alpha}$$
's are in $\mathcal{N}_{\omega imes \omega_1}$;

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n\}$
- D_A 's and P_{α} 's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;
- Let $X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$
- Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;
- Omitting P_{α} 's $\rightarrow \bigcup X_n = \mathfrak{A}$.

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n \}$
- D_A's and P_α's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;
- Let $X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$
- Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;
- Omitting P_{α} 's $\rightarrow \bigcup X_n = \mathfrak{A}$.

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n \}$
- D_A's and P_α's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;
- Let $X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$
- Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;
- Omitting P_{α} 's $\rightarrow \bigcup X_n = \mathfrak{A}$.

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n \}$
- D_A's and P_α's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;

Let
$$X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$$

• Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;

Omitting
$$P_{\alpha}$$
's $\rightarrow \bigcup X_n = \mathfrak{A}$.

Theorem [Kamburelis 1989

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n \}$
- D_A's and P_α's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;

Let
$$X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$$

• Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;

```
• Omitting P_{\alpha}'s \rightarrow \bigcup X_n = \mathfrak{A}.
```

Theorem [Kamburelis 1989]

Assume $\operatorname{cov}(\mathcal{N}_{\omega_1}) > \omega_1$. Let \mathfrak{A} be a Boolean algebra supporting a measure and let $|\mathfrak{A}| = \omega_1$. Then \mathfrak{A} is σ -centered.

Proof (continued):

- For $A \in \mathcal{F} \cap \mathcal{N}_{\omega_1}$ let $D_A = \{r \in 2^{\omega \times \omega_1} : r_n \in A \text{ for some } n\};$
- For $\alpha < \omega_1$ let $P_{\alpha} = \{ r \in 2^{\omega \times \omega_1} \colon r_n \notin E_{\alpha} \text{ for all } n \}$
- D_A's and P_α's are null;
- There is $r \in 2^{\omega \times \omega_1}$ omitting all D_A 's and P_{α} 's;

Let
$$X_n = \{ [E_\alpha] : r_n \in E_\alpha \} (\subseteq \mathfrak{A});$$

• Omitting D_A 's $\rightarrow X_n$'s are ultrafilters on \mathfrak{A} ;

• Omitting
$$P_{\alpha}$$
's $\rightarrow \bigcup X_n = \mathfrak{A}$.

Piotr Borodulin-Nadzieja

Conjecture

Problem

Is it consistent that there is no small Suslinean space supporting a measure?

Conjecture

 $MA_{ma}(\omega_1)$ is equivalent to the statement "there is no small Suslinean space supporting a measure".

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Conjecture

Problem

Is it consistent that there is no small Suslinean space supporting a measure?

Conjecture

 $MA_{ma}(\omega_1)$ is equivalent to the statement "there is no small Suslinean space supporting a measure".

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

A sample construction of small Suslinean space

Theorem [essentially Bell 1996]

In a model obtained by adding a single Cohen real there is a small Suslinean space.

Total ideal spaces in algebraic language

For $A, B \subseteq \omega$ such that $A \cap B = \emptyset$ let

 $\rho(A,B) = \{x \in 2^{\omega} : n \in A \implies x(n) = 0, n \in B \implies x(n) = 1\}.$

Having $(A_{\alpha})_{\alpha<\kappa}$, $(B_{\alpha})_{\alpha<\kappa}$ we can define

 $\mathfrak{A} = \mathrm{alg}\{
ho(\mathsf{A}_lpha,\mathsf{B}_lpha)\colon lpha<\kappa\}$

and then consider the Stone space...

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

A sample construction of small Suslinean space

Theorem [essentially Bell 1996]

In a model obtained by adding a single Cohen real there is a small Suslinean space.

Total ideal spaces in algebraic language

For $A, B \subseteq \omega$ such that $A \cap B = \emptyset$ let

$$\rho(A,B) = \{x \in 2^{\omega} \colon n \in A \implies x(n) = 0, n \in B \implies x(n) = 1\}.$$

Having $(A_{lpha})_{lpha<\kappa}$, $(B_{lpha})_{lpha<\kappa}$ we can define

$$\mathfrak{A} = \mathrm{alg}\{
ho(\mathsf{A}_lpha,\mathsf{B}_lpha)\colon lpha<\kappa\}$$

and then consider the Stone space...

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

A sample construction of small Suslinean space

Theorem [essentially Bell 1996]

In a model obtained by adding a single Cohen real there is a small Suslinean space.

Total ideal spaces in algebraic language

For $A, B \subseteq \omega$ such that $A \cap B = \emptyset$ let

$$\rho(A,B) = \{x \in 2^{\omega} \colon n \in A \implies x(n) = 0, n \in B \implies x(n) = 1\}.$$

Having $(A_{\alpha})_{\alpha<\kappa}$, $(B_{\alpha})_{\alpha<\kappa}$ we can define

$$\mathfrak{A} = \mathrm{alg}\{
ho(A_lpha, B_lpha) \colon lpha < \kappa\}$$

and then consider the Stone space...

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Definition

A sequence $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if for each $\alpha < \beta < \omega_1$

- L_{α} , $R_{\alpha} \subseteq \omega$;
- $L_{\alpha} \subseteq^* L_{\beta}$ and $R_{\alpha} \subseteq^* R_{\beta}$;
- $L_{\alpha} \cap R_{\alpha} = \emptyset$
- there is no *L* such that $L_{\alpha} \subseteq^* L$ and $L \cap R_{\alpha} =^* \emptyset$.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Definition

A sequence $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if for each $\alpha < \beta < \omega_1$

• L_{α} , $R_{\alpha} \subseteq \omega$;

•
$$L_{\alpha} \subseteq^* L_{\beta}$$
 and $R_{\alpha} \subseteq^* R_{\beta}$;

$$L_{\alpha} \cap R_{\alpha} = \emptyset$$

• there is no *L* such that $L_{\alpha} \subseteq^* L$ and $L \cap R_{\alpha} =^* \emptyset$.

Piotr Borodulin-Nadzieja

Novi Sad 2014

Measures on Suslinean spaces

Definition

A sequence $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if for each $\alpha < \beta < \omega_1$

- L_{α} , $R_{\alpha} \subseteq \omega$;
- $L_{\alpha} \subseteq^* L_{\beta}$ and $R_{\alpha} \subseteq^* R_{\beta}$;

$$L_{\alpha} \cap R_{\alpha} = \emptyset;$$

• there is no *L* such that $L_{\alpha} \subseteq^* L$ and $L \cap R_{\alpha} =^* \emptyset$.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Definition

A sequence $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ is a gap if for each $\alpha < \beta < \omega_1$

• L_{α} , $R_{\alpha} \subseteq \omega$;

•
$$L_{\alpha} \subseteq^* L_{\beta}$$
 and $R_{\alpha} \subseteq^* R_{\beta}$;

$$L_{\alpha} \cap R_{\alpha} = \emptyset;$$

• there is no *L* such that $L_{\alpha} \subseteq^* L$ and $L \cap R_{\alpha} =^* \emptyset$.

Novi Sad 2014

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Destructible gap from a Cohen real

Notation

A gap $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ has property (\mathfrak{s}) if for each uncountable $X \subseteq \omega_1$ there are $\alpha < \beta \in X$ such that

 $L_{\alpha} \subseteq L_{\beta}$ and $R_{\alpha} \subseteq R_{\beta}$.

Theorem [Todorčević]

In a model obtained by adding a single Cohen real there is a gap with property $(\mathfrak{s}).$

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Destructible gap from a Cohen real

Notation

A gap $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ has property (\mathfrak{s}) if for each uncountable $X \subseteq \omega_1$ there are $\alpha < \beta \in X$ such that

 $L_{\alpha} \subseteq L_{\beta}$ and $R_{\alpha} \subseteq R_{\beta}$.

Theorem [Todorčević]

In a model obtained by adding a single Cohen real there is a gap with property $(\mathfrak{s}).$

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Destructible gap

Theorem [Todorčević]

In a model obtained by adding a single Cohen real there is a gap with property $(\mathfrak{s}).$

- Let $(L'_{\alpha}, R'_{\alpha})_{\alpha < \omega_1}$ be a gap from the ground-model.
- if $c \subseteq \omega$ is a Cohen real, $(L'_{\alpha} \cap c, R'_{\alpha} \cap c)$ will have the desired property.

Destructible gap

Theorem [Todorčević]

In a model obtained by adding a single Cohen real there is a gap with property $(\mathfrak{s}).$

Proof

- Let $(L'_{\alpha}, R'_{\alpha})_{\alpha < \omega_1}$ be a gap from the ground-model.
- if $c \subseteq \omega$ is a Cohen real, $(L'_{\alpha} \cap c, R'_{\alpha} \cap c)$ will have the desired property.

Piotr Borodulin-Nadzieja

Destructible gap

Theorem [Todorčević]

In a model obtained by adding a single Cohen real there is a gap with property $(\mathfrak{s}).$

- Let $(L'_{\alpha}, R'_{\alpha})_{\alpha < \omega_1}$ be a gap from the ground-model.
- if $c \subseteq \omega$ is a Cohen real, $(L'_{\alpha} \cap c, R'_{\alpha} \cap c)$ will have the desired property.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (\mathfrak{s}). Let \mathfrak{A} be the Boolean algebra generated by $\mathcal{G} = \{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

Proof of ccc (sketch):

- \mathcal{G} forms a π -base for \mathfrak{A} .
- Consider $\mathcal{B} = \{\rho(L_{\alpha}, R_{\alpha}) : \alpha \in X\}$ for an uncountable X.
- Because of property (\mathfrak{s}) there are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$. So \mathcal{B} is not an antichain.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (\mathfrak{s}). Let \mathfrak{A} be the Boolean algebra generated by $\mathcal{G} = \{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

Proof of ccc (sketch):

- \mathcal{G} forms a π -base for \mathfrak{A} .
- Consider $\mathcal{B} = \{\rho(L_{\alpha}, R_{\alpha}) \colon \alpha \in X\}$ for an uncountable X.
- Because of property (\mathfrak{s}) there are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$. So \mathcal{B} is not an antichain.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (\mathfrak{s}). Let \mathfrak{A} be the Boolean algebra generated by $\mathcal{G} = \{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

Proof of ccc (sketch):

- \mathcal{G} forms a π -base for \mathfrak{A} .
- Consider $\mathcal{B} = \{\rho(L_{\alpha}, R_{\alpha}) : \alpha \in X\}$ for an uncountable X.
- Because of property (\mathfrak{s}) there are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$. So \mathcal{B} is not an antichain.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (\mathfrak{s}). Let \mathfrak{A} be the Boolean algebra generated by $\mathcal{G} = \{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

Proof of ccc (sketch):

- \mathcal{G} forms a π -base for \mathfrak{A} .
- Consider $\mathcal{B} = \{\rho(L_{\alpha}, R_{\alpha}) : \alpha \in X\}$ for an uncountable X.
- Because of property (\mathfrak{s}) there are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$. So \mathcal{B} is not an antichain.

Piotr Borodulin-Nadzieja
Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (s). Let \mathfrak{A} be the Boolean algebra generated by $\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

- Assume \mathfrak{A} carries a non-separable measure.
- WLOG there is $\varepsilon > 0$ and an uncountable X such that $\mu(\rho(L_{\alpha}, R_{\alpha}) \bigtriangleup \rho(L_{\beta}, R_{\beta})) > \varepsilon$ for each $\alpha \neq \beta \in X$.
- WLOG there is *r* such that for all $\alpha \in X$ we have $|\mu(\rho(L_{\alpha}, R_{\alpha})) r| < \varepsilon/2.$
- There are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$, a contradiction.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (s). Let \mathfrak{A} be the Boolean algebra generated by $\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

- Assume \mathfrak{A} carries a non-separable measure.
- WLOG there is $\varepsilon > 0$ and an uncountable X such that $\mu(\rho(L_{\alpha}, R_{\alpha}) \bigtriangleup \rho(L_{\beta}, R_{\beta})) > \varepsilon$ for each $\alpha \neq \beta \in X$.
- WLOG there is *r* such that for all $\alpha \in X$ we have $|\mu(\rho(L_{\alpha}, R_{\alpha})) r| < \varepsilon/2.$
- There are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$, a contradiction.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (s). Let \mathfrak{A} be the Boolean algebra generated by $\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

- Assume \mathfrak{A} carries a non-separable measure.
- WLOG there is $\varepsilon > 0$ and an uncountable X such that $\mu(\rho(L_{\alpha}, R_{\alpha}) \bigtriangleup \rho(L_{\beta}, R_{\beta})) > \varepsilon$ for each $\alpha \neq \beta \in X$.
- WLOG there is *r* such that for all $\alpha \in X$ we have $|\mu(\rho(L_{\alpha}, R_{\alpha})) r| < \varepsilon/2$.
- There are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$, a contradiction.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (s). Let \mathfrak{A} be the Boolean algebra generated by $\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

- Assume \mathfrak{A} carries a non-separable measure.
- WLOG there is $\varepsilon > 0$ and an uncountable X such that $\mu(\rho(L_{\alpha}, R_{\alpha}) \bigtriangleup \rho(L_{\beta}, R_{\beta})) > \varepsilon$ for each $\alpha \neq \beta \in X$.
- WLOG there is *r* such that for all $\alpha \in X$ we have $|\mu(\rho(L_{\alpha}, R_{\alpha})) r| < \varepsilon/2$.
- There are $\alpha < \beta \in X$ such that $\rho(L_{\beta}, R_{\beta}) \subseteq \rho(L_{\alpha}, R_{\alpha})$, a contradiction.

Theorem [ess. Bell 1996]

Let $(L_{\alpha}, R_{\alpha})_{\alpha < \omega_1}$ be a gap with property (s). Let \mathfrak{A} be the Boolean algebra generated by $\{\rho(L, R) \colon L =^* L_{\alpha}, R =^* R_{\alpha}, \alpha < \omega_1\}$. Then \mathfrak{A} is ccc, not σ -centered and all measures on \mathfrak{A} are separable.

- Assume a carries a non-separable measure.
- WLOG there is $\varepsilon > 0$ and an uncountable X such that $\mu(\rho(L_{\alpha}, R_{\alpha}) \bigtriangleup \rho(L_{\beta}, R_{\beta})) > \varepsilon$ for each $\alpha \neq \beta \in X$.
- WLOG there is *r* such that for all $\alpha \in X$ we have $|\mu(\rho(L_{\alpha}, R_{\alpha})) r| < \varepsilon/2$.
- There are α < β ∈ X such that ρ(L_β, R_β) ⊆ ρ(L_α, R_α), a contradiction.

Reformulation of the main problem

Problem

Is it consistent that the following dichotomy holds: each subalgebra of $Borel(2^{\omega})/\mathcal{N}$ is either σ -centered or big?

Remark

There is a small subalgebra of $Borel(2^{\omega})/\mathcal{N}$ without a countable π -base.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Novi Sad 2014

Reformulation of the main problem

Problem

Is it consistent that the following dichotomy holds: each subalgebra of $Borel(2^{\omega})/\mathcal{N}$ is either σ -centered or big?

Remark

There is a small subalgebra of $Borel(2^{\omega})/\mathcal{N}$ without a countable π -base.

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces

Thank you for your attention

Piotr Borodulin-Nadzieja

Measures on Suslinean spaces