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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Topological structures

L = {fi, Rj} - first-order language

X is a topological L-structure if

X - second-countable, compact, 0-dimensional

X - L-structure

fi - continuous

Rj - closed

φ : X // Y is an epimorphism if

φ - continuous

φ - surjective homomorphism

(y1, . . . , yn) ∈ RY
j

// ∃(x1, . . . , xn) ∈ RX
j φ(xi) = yi
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Topological structures

L = {fi, Rj} - first-order language

X is a topological L-structure if

X - second-countable, compact, 0-dimensional

X - L-structure

fi - continuous

Rj - closed

φ : X // Y is an epimorphism if

φ - continuous

φ - surjective homomorphism

(y1, . . . , yn) ∈ RY
j

// ∃(x1, . . . , xn) ∈ RX
j φ(xi) = yi
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Projective Fräıssé theory

F - countable class of finite topological L-structures

F - projective Fräıssé class if

JPP ∀A,B ∈ F ∃C ∈ F and epi C //A and C //B

AP ∀A,B,C ∈ F and epi f : B //A and C //A ∃ D ∈ F
and epi k : D //B and l : D // C such that f ◦ k = g ◦ l

F - projective Fräıssé limit of F if

PU ∀A ∈ F ∃ epi F //A

R ∀S finite discrete space and surjection f : F // S ∃A ∈ F ,
epi φ : F //A and function f ′ : A //S such that f = f ′ ◦φ

H ∀A ∈ F and epi φ1, φ2 : F //A ∃ iso ψ : F // F such that
φ2 = φ1 ◦ ψ

Theorem (Irwin, Solecki)

Every projective Fräıssé class has a projective Fräıssé limit
which is unique up to an isomorphism.
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Finite trees

a, b ∈ (T,<T ) - a finite tree

(a, b) ∈ RT ←→ (a = b or b <T a & @c ∈ T b <T c <T a)

Projective Fräıssé classes

Ft - finite trees with R

F - finite fans - coinitial in Ft

F< - finite fans with linearly ordered branches
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Lelek fan

L - limit of Ft = limit of F

RL
s - symmetrized RL - equivalence relation with 1 and 2-point

classes

Theorem

L/RL
s is the Lelek fan.

Lelek fan = unique non-trivial subcontinuum of the Cantor fan
with a dense set of endpoints (Bula-Oversteegen, Charatonik)

fan.jpg
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Aut // Homeo

Aut(L, RL
s ) and Homeo(L) + the compact-open topology

π : L // L/RL
s
∼= L

induces a continuous embedding Aut(L, RL
s ) ↪→ Homeo(L)

with a dense image

h 7→ h∗

π ◦ h = h∗ ◦ π.
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Homeo(L)

Polish group with the compact-open topology

is totally disconnected
i.e., for every f, g ∈ Homeo(L) there exists a clopen
U ⊂ Homeo(L) such that f ∈ U and g /∈ U.
is generated by every neighbourhood of the identity
i.e., for every g ∈ Homeo(L) and every ε > 0 there exist
f1, . . . , fn ∈ Homeo(L) such that g = fn ◦ . . . ◦ f1 and
dsup(id, fi) < ε.

does not contain any open subgroup, in particular it is not
non-archimedean.

is not locally compact.

is (algebraically) simple.

Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Homeo(L)

Polish group with the compact-open topology

is totally disconnected
i.e., for every f, g ∈ Homeo(L) there exists a clopen
U ⊂ Homeo(L) such that f ∈ U and g /∈ U.

is generated by every neighbourhood of the identity
i.e., for every g ∈ Homeo(L) and every ε > 0 there exist
f1, . . . , fn ∈ Homeo(L) such that g = fn ◦ . . . ◦ f1 and
dsup(id, fi) < ε.

does not contain any open subgroup, in particular it is not
non-archimedean.

is not locally compact.

is (algebraically) simple.
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Universal minimal flow

G-flow
G × X // X - a continuous action

↑ ↑
topological compact
group Hausdorff space

ex = x

g(hx) = (gh)x

X is a minimal G-flow if and only if the orbit
Gx = {gx : g ∈ G} of every point x ∈ X is dense in X
The universal minimal flow M(G) is a minimal flow which has
every other minimal flow as its factor.

Theorem

M(G) exists and it is unique up to an isomorphism.

Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Universal minimal flow

G-flow
G × X // X - a continuous action
↑ ↑
topological compact
group Hausdorff space

ex = x

g(hx) = (gh)x

X is a minimal G-flow if and only if the orbit
Gx = {gx : g ∈ G} of every point x ∈ X is dense in X
The universal minimal flow M(G) is a minimal flow which has
every other minimal flow as its factor.

Theorem

M(G) exists and it is unique up to an isomorphism.
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Universal minimal flow

G-flow
G × X // X - a continuous action
↑ ↑
topological compact
group Hausdorff space

ex = x

g(hx) = (gh)x

X is a minimal G-flow if and only if the orbit
Gx = {gx : g ∈ G} of every point x ∈ X is dense in X
The universal minimal flow M(G) is a minimal flow which has
every other minimal flow as its factor.

Theorem

M(G) exists and it is unique up to an isomorphism.
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Extreme amenability

G - topological group

G is extremely amenable if its universal minimal flow is a
singleton.

Equivalently, if every G-flow has a fixed point.

Theorem

Let K be a projective Fräıssé class with a limit K. If K satisfies
the Ramsey property, then Aut(K) is extremely amenable.

Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Extreme amenability

G - topological group

G is extremely amenable if its universal minimal flow is a
singleton.

Equivalently, if every G-flow has a fixed point.

Theorem
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Ramsey and Dual Ramsey Theorem

Theorem (Ramsey)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of k-element subsets of n with r-many colours there is
a subset X of n of size m such that all k-element subsets of X
have the same colour.

Theorem (Graham and Rothschild)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of the k-element partitions of n by r-many colours
there is an m-element partition X of n such that all k-element
coarsenings of X have the same colour.
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Structural dual Ramsey property

Theorem

F< satisfies the Ramsey property.

A,C ∈ F<  {C //A} = all epimorphisms from C to A

Definition

F< satisfies the Ramsey property if for every A,B ∈ F< there
exists C ∈ F< such that for every colouring

c : {C //A} // {1, 2, . . . , r}

there exists f : C //B such that {B //A} ◦ f is
monochromatic.

Theorem

Aut(L<) is extremely amenable.
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



Structural dual Ramsey property

Theorem

F< satisfies the Ramsey property.

A,C ∈ F<  {C //A} = all epimorphisms from C to A

Definition

F< satisfies the Ramsey property if for every A,B ∈ F< there
exists C ∈ F< such that for every colouring

c : {C //A} // {1, 2, . . . , r}

there exists f : C //B such that {B //A} ◦ f is
monochromatic.

Theorem

Aut(L<) is extremely amenable.
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FINk

p : N // {0, 1, 2 . . . , k}  supp(p) = {n : p(n) 6= 0}

FINk = {p : N // {0, 1, . . . , k} : |supp(p)| < ℵ0 & ∃n (p(n) = k)}

FIN1 ↔ FIN(N)

Theorem (Hindman)

Let c : FIN(N) // {1, 2, . . . , r} be a finite colouring. Then there
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Operations on FINk

FINk = {p : N // {0, 1, . . . , k} : |supp(p)| < ℵ0 & ∃n (p(n) = k)}

Tetris
T : FINk

// FINk−1
T(p)(n)=max{0,p(n)-1}.

Partial addition
supp(p) ∩ supp(q) = ∅ // p+ q(n) = max{p(n), q(n)}
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Gowers’ for FINk

Block sequence
B = (bi)

∞
i=1 ⊂ FINk(N) s.t. max supp(bi) < min supp(bi+1)

〈B〉 - partial subsemigroup generated by B, T,+, i.e. elements
of the form

l∑
s=1

T js(bs)

for some l ∈ N, bs ∈ B, js ∈ {0, 1, . . . , k}, and at least one
js = 0.

Theorem (Gowers)

Let c : FINk
// {1, 2, . . . , r} be a finite colouring. Then there is

an infinite block sequence B ⊂ FINk such that 〈B〉 is
monochromatic.
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More operations

Ti : FINk
// FINk−1

Ti(p)(n) =

{
p(n) if p(n) < i

p(n)− 1 if p(n) ≥ i.

T = T1

~i ∈
∏k

j=1{0, 1, . . . , j}

T~i(p) = T1 ◦ . . . ◦ Tk(p).
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



More operations

Ti : FINk
// FINk−1

Ti(p)(n) =

{
p(n) if p(n) < i

p(n)− 1 if p(n) ≥ i.

T = T1

~i ∈
∏k

j=1{0, 1, . . . , j}

T~i(p) = T1 ◦ . . . ◦ Tk(p).
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Gowers with multiple operations

B - block sequence in FINk

〈B〉 partial subsemigroup generated by B,+, Ti : i = 1, 2, . . . , k

l∑
s=1

T~is(bs)

for bs ∈ B, ~is ∈
∏k

j=1{0, 1, . . . , j}, and at least one of
~is = (0, 0, . . . , 0).

Theorem

For every m, k, r, there exists n such that for every colouring
c : FINk(n) // {1, 2, . . . , r} there is a block sequence B of lenght
m in FINk(n) such that 〈B〉 is monochromatic.
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Pyramids
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Higher dimensional Hindman

FIN
[d]
k (n) = block sequences in FINk(n) of length d

Theorem (Milliken-Taylor)

For every m, r, d, there exists a natural number n such that for

every colouring c : FIN
[d]
1 (n) // {1, 2, . . . , r}, there is a block

sequence B of length m such that 〈B〉[d] is monochromatic.
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Pyramids

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such
that for every colouring c : FINk(n) // {1, 2, . . . , r}, there is a
block sequence A of length m in FIN1(n) such that any two
elements in FINk(A) of the same type have the same colour.

FINk(a) = 〈{k · χ(a) : a ∈ A}〉
C - sequence of “pyramids” over A

ci =

k−1∑
j=−(k−1)

(k − |j|) · χ(aqi+j),

where qi = (i− 1)(2k − 1) + k.

T~i(b)(min supp(T~i(b))) = 1 = T~i(b)(max supp(T~i(b)))
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Proof sketch

Induction

k = 1 ≡ finite Hindman’s Theorem

k − 1 // k

C - “pyramids” of height k s.t. c � 〈C〉 depends only on
type

T1(C) = {T1(b) : b ∈ C} ⊂ FINk−1(n)

induction hypothesis  B′ block sequence ⊂ 〈T1(C)〉 such
that 〈B′〉 is monochromatic

lift B′ to B ⊂ 〈C〉
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What do pyramids do for us?

C - sequence of pyramids in FINk

p, q ∈ 〈C〉

T1(p) = T1(q) −→ p, q are of the same type

T1(C) = {T1(c) : c ∈ C} is a sequence of pyramids and
T1 〈C〉 = 〈T1(C)〉
types of T1(p) and T2(p) are the same

“We can find a monochromatic subsequence in 〈C〉 .”
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Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



What do pyramids do for us?

C - sequence of pyramids in FINk

p, q ∈ 〈C〉

T1(p) = T1(q) −→ p, q are of the same type

T1(C) = {T1(c) : c ∈ C} is a sequence of pyramids and
T1 〈C〉 = 〈T1(C)〉

types of T1(p) and T2(p) are the same

“We can find a monochromatic subsequence in 〈C〉 .”
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More Gowers

A = {0, 1, . . . , k} and C ∈ F< with n branches of height N

B ∈ F< with m branches of height l
WANT
g : C //B such that {B //A} ◦ g is monochromatic

FINk,l

Let k,m, r and l ≥ k be natural numbers. Then there exists a
natural number n such that whenever we have a colouring
c : FINk(n) // {1, 2, . . . , r}, there is a block sequence B in
FINl(n) of length m such that the partial semigroup〈 ⋃

~i∈P l
k+1

T~i(B)

〉

is monochromatic.

Dana Bartošová, Aleksandra Kwiatkowska Lelek fan and Gowers’ FINk Theorem



More Gowers

A = {0, 1, . . . , k} and C ∈ F< with n branches of height N
B ∈ F< with m branches of height l

WANT
g : C //B such that {B //A} ◦ g is monochromatic

FINk,l

Let k,m, r and l ≥ k be natural numbers. Then there exists a
natural number n such that whenever we have a colouring
c : FINk(n) // {1, 2, . . . , r}, there is a block sequence B in
FINl(n) of length m such that the partial semigroup〈 ⋃

~i∈P l
k+1

T~i(B)

〉

is monochromatic.
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Higher dimensions

FIN
[d]
k (n) = block sequences in FINk(n) of length d

Theorem

Let (d, k,m, r) be a tuple of natural numbers. There exists n

such that for every colouring c : FIN
[d]
k (n) // {0, 1, . . . , r}, there

exists a block sequence B of length m such that 〈B〉[d] is
monochromatic.
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The end

THANK YOU FOR YOUR ATTENTION!
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