Absoluteness via Resurrection

Giorgio Audrito (joint work with Matteo Viale)

University of Torino

August 18, 2014

The question whether it would be possible to have **empiric completeness** was left open, even if early results showed that ZFC does not have such a behavior.

Many of this results are obtained using forcing, thus in order to achieve empiric completeness we need to "rule it out". How?

Definition

The question whether it would be possible to have **empiric completeness** was left open, even if early results showed that ZFC does not have such a behavior.

Many of this results are obtained using forcing, thus in order to achieve empiric completeness we need to "rule it out". How?

Definition

The question whether it would be possible to have **empiric completeness** was left open, even if early results showed that ZFC does not have such a behavior.

Many of this results are obtained using forcing, thus in order to achieve empiric completeness we need to "rule it out". How?

Definition

The question whether it would be possible to have **empiric completeness** was left open, even if early results showed that ZFC does not have such a behavior.

Many of this results are obtained using forcing, thus in order to achieve empiric completeness we need to "rule it out". How?

Definition

We shall base on boolean valued models approach to forcing, and consider the following classes Γ of CBAs defined by properties interesting for forcing:

- \bullet Ω , the class of all CBAs,
- κ -distributive, κ -cc
- axiom-A, proper, semiproper (SP),
- stationary set preserving (SSP).

We shall equip a class Γ with two partial orders

- $\mathbb{B} \leq_{\Gamma} \mathbb{C}$ iff there exists a complete homomorphism $i: \mathbb{C} \to \mathbb{B}$ such that the quotient algebra $\mathbb{B}/_{i[\hat{G}_{\mathbb{C}}]}$ is in Γ with boolean value $\mathbb{1}_{\mathbb{C}}$,
- $\mathbb{B} \leq_{\Gamma}^* \mathbb{C}$ iff there exists a complete *injective* homomorphism as above.

We denote by $\mathbb{U}_{\kappa}^{\Gamma}$ (category forcing) the set $\Gamma \cap H_{\kappa}$ ordered by \leq_{Γ}

We say that Γ is iterable iff it is closed under two-step iterations, lottery sums and the order \leq_{Γ}^* is closed for set-sized descending sequences of elements of Γ . Most of the interesting classes are iterable, with the notable exception of SSP.

We shall base on boolean valued models approach to forcing, and consider the following classes Γ of CBAs defined by properties interesting for forcing:

- \bullet Ω , the class of all CBAs,
- κ -distributive, κ -cc
- axiom-A, proper, semiproper (SP),
- stationary set preserving (SSP).

We shall equip a class Γ with two partial orders:

- $\mathbb{B} \leq_{\Gamma} \mathbb{C}$ iff there exists a complete homomorphism $i : \mathbb{C} \to \mathbb{B}$ such that the quotient algebra $\mathbb{B}/_{i[\hat{G}_{\mathbb{C}}]}$ is in Γ with boolean value $\mathbb{1}_{\mathbb{C}}$,
- $\mathbb{B} \leq_{\Gamma}^* \mathbb{C}$ iff there exists a complete *injective* homomorphism as above.

We denote by $\mathbb{U}_{\kappa}^{\Gamma}$ (category forcing) the set $\Gamma \cap H_{\kappa}$ ordered by \leq_{Γ} .

We say that Γ is iterable iff it is closed under two-step iterations, lottery sums and the order \leq_{Γ}^* is closed for set-sized descending sequences of elements of Γ . Most of the interesting classes are iterable, with the notable exception of SSP.

We shall base on boolean valued models approach to forcing, and consider the following classes Γ of CBAs defined by properties interesting for forcing:

- \bullet Ω , the class of all CBAs,
- κ -distributive. κ -cc
- axiom-A, proper, semiproper (SP),
- stationary set preserving (SSP).

We shall equip a class Γ with two partial orders:

- $\mathbb{B} \leq_{\Gamma} \mathbb{C}$ iff there exists a complete homomorphism $i: \mathbb{C} \to \mathbb{B}$ such that the quotient algebra $\mathbb{B}/_{i[\dot{G}_{\mathbb{C}}]}$ is in Γ with boolean value $\mathbb{1}_{\mathbb{C}}$,
- $\mathbb{B} \leq_{\Gamma}^* \mathbb{C}$ iff there exists a complete *injective* homomorphism as above.

We shall base on boolean valued models approach to forcing, and consider the following classes Γ of CBAs defined by properties interesting for forcing:

Notation and conventions

- \bullet Ω , the class of all CBAs,
- κ -distributive, κ -cc
- axiom-A, proper, semiproper (SP),
- stationary set preserving (SSP).

We shall equip a class Γ with two partial orders:

- $\mathbb{B} \leq_{\Gamma} \mathbb{C}$ iff there exists a complete homomorphism $i : \mathbb{C} \to \mathbb{B}$ such that the quotient algebra $\mathbb{B}/_{i[\hat{G}_{\mathbb{C}}]}$ is in Γ with boolean value $\mathbb{1}_{\mathbb{C}}$,
- $\mathbb{B} \leq_{\Gamma}^* \mathbb{C}$ iff there exists a complete *injective* homomorphism as above.

We denote by $\mathbb{U}_{\kappa}^{\Gamma}$ (category forcing) the set $\Gamma \cap H_{\kappa}$ ordered by \leq_{Γ} .

We say that Γ is iterable iff it is closed under two-step iterations, lottery sums and the order \leq_{Γ}^* is closed for set-sized descending sequences of elements of Γ . Most of the interesting classes are iterable, with the notable exception of SSP.

We shall base on boolean valued models approach to forcing, and consider the following classes Γ of CBAs defined by properties interesting for forcing:

Notation and conventions

- \bullet Ω , the class of all CBAs,
- κ -distributive, κ -cc
- axiom-A, proper, semiproper (SP),
- stationary set preserving (SSP).

We shall equip a class Γ with two partial orders:

- $\mathbb{B} \leq_{\Gamma} \mathbb{C}$ iff there exists a complete homomorphism $i : \mathbb{C} \to \mathbb{B}$ such that the quotient algebra $\mathbb{B}/_{i[\hat{G}_{\mathbb{C}}]}$ is in Γ with boolean value $\mathbb{1}_{\mathbb{C}}$,
- $\mathbb{B} \leq_{\Gamma}^* \mathbb{C}$ iff there exists a complete *injective* homomorphism as above.

We denote by $\mathbb{U}_{\kappa}^{\Gamma}$ (category forcing) the set $\Gamma \cap H_{\kappa}$ ordered by \leq_{Γ} .

We say that Γ is iterable iff it is closed under two-step iterations, lottery sums and the order \leq_{Γ}^* is closed for set-sized descending sequences of elements of Γ . Most of the interesting classes are iterable, with the notable exception of SSP.

A theory T has generic absoluteness for a family Θ of first-order formulas and a definable class Γ of CBAs iff in all models of T the truth values of formulas in Θ cannot be changed in forcing extensions obtained by CBAs in Γ which preserves T.

Fundamental generic absoluteness results are known in the literature for ZFC with large cardinals, e.g:

- ZFC: generic absoluteness for $\Gamma = \Omega$ and $\Theta = \Sigma^1_2(\mathbb{R})$ (Shönfield)
- ZFC + \exists class many Woodin cardinals limit of Woodin cardinals: generic absoluteness for $\Gamma = \Omega$ and Θ the formulas with real parameters relativized to $L(\mathbb{R})$ (Woodin)

A theory T has generic absoluteness for a family Θ of first-order formulas and a definable class Γ of CBAs iff in all models of T the truth values of formulas in Θ cannot be changed in forcing extensions obtained by CBAs in Γ which preserves T.

Fundamental generic absoluteness results are known in the literature for ZFC with large cardinals, e.g:

- ZFC: generic absoluteness for $\Gamma = \Omega$ and $\Theta = \Sigma^1_2(\mathbb{R})$ (Shönfield)
- ZFC + \exists class many Woodin cardinals limit of Woodin cardinals: generic absoluteness for $\Gamma = \Omega$ and Θ the formulas with real parameters relativized to $L(\mathbb{R})$ (Woodin)

A theory T has generic absoluteness for a family Θ of first-order formulas and a definable class Γ of CBAs iff in all models of T the truth values of formulas in Θ cannot be changed in forcing extensions obtained by CBAs in Γ which preserves T.

Fundamental generic absoluteness results are known in the literature for ZFC with large cardinals, e.g:

- ZFC: generic absoluteness for $\Gamma = \Omega$ and $\Theta = \Sigma_2^1(\mathbb{R})$ (Shönfield)
- ZFC+ \exists class many Woodin cardinals limit of Woodin cardinals: generic absoluteness for $\Gamma=\Omega$ and Θ the formulas with real parameters relativized to $L(\mathbb{R})$ (Woodin)

A theory T has generic absoluteness for a family Θ of first-order formulas and a definable class Γ of CBAs iff in all models of T the truth values of formulas in Θ cannot be changed in forcing extensions obtained by CBAs in Γ which preserves T.

Fundamental generic absoluteness results are known in the literature for ZFC with large cardinals, e.g:

- ZFC: generic absoluteness for $\Gamma = \Omega$ and $\Theta = \Sigma_2^1(\mathbb{R})$ (Shönfield)
- ZFC+ \exists class many Woodin cardinals limit of Woodin cardinals: generic absoluteness for $\Gamma = \Omega$ and Θ the formulas with real parameters relativized to $L(\mathbb{R})$ (Woodin)

Definition

 $FA(\Gamma)$ states that for all $\mathbb{B} \in \Gamma$ and collection \mathcal{D} of \aleph_1 -many dense subsets of \mathbb{B} , there exists a filter F meeting all of them.

Note that the same sentence for \aleph_0 -many dense subsets is Baire's Category Theorem.

Other variations we will consider are BFA(Γ) (weakening) and FA⁺⁺(Γ) (strengthening). Recall that MM, PFA are shorthands for FA(SSP), FA(proper).

Definition

 $\mathsf{FA}(\Gamma)$ states that for all $\mathbb{B} \in \Gamma$ and collection \mathcal{D} of \aleph_1 -many dense subsets of \mathbb{B} , there exists a filter F meeting all of them.

Note that the same sentence for \aleph_0 -many dense subsets is Baire's Category Theorem.

Other variations we will consider are BFA(Γ) (weakening) and FA⁺⁺(Γ) (strengthening). Recall that MM, PFA are shorthands for FA(SSP), FA(proper)

Definition

 $\mathsf{FA}(\Gamma)$ states that for all $\mathbb{B} \in \Gamma$ and collection \mathcal{D} of \aleph_1 -many dense subsets of \mathbb{B} , there exists a filter F meeting all of them.

Note that the same sentence for \aleph_0 -many dense subsets is Baire's Category Theorem.

Other variations we will consider are BFA(Γ) (weakening) and FA⁺⁺(Γ) (strengthening). Recall that MM, PFA are shorthands for FA(SSP), FA(proper).

Definition

 $\mathsf{FA}(\Gamma)$ states that for all $\mathbb{B} \in \Gamma$ and collection \mathcal{D} of \aleph_1 -many dense subsets of \mathbb{B} , there exists a filter F meeting all of them.

Note that the same sentence for \aleph_0 -many dense subsets is Baire's Category Theorem.

Other variations we will consider are BFA(Γ) (weakening) and FA⁺⁺(Γ) (strengthening). Recall that MM, PFA are shorthands for FA(SSP), FA(proper).

- BFA(Γ) holds iff the class $\left\{\mathbb{B}\in\Gamma:\ H_{\aleph_2}\prec_1 V^{\mathbb{B}}\right\}$ is dense in $(\Gamma,\leq_{\mathit{all}})$,
- FA(SSP) holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is presaturated}\}\$ is dense in (SSP, \leq_{all}) (class many Woodin cardinals),
- FA⁺⁺(SSP) holds iff the same class is dense in (SSP, \leq _{SSP}) (class many Woodin cardinals),
- MM⁺⁺⁺ holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is strongly presaturated}\}$ is dense in (SSP, \leq_{SSP}) .

- BFA(Γ) holds iff the class $\{\mathbb{B} \in \Gamma: H_{\aleph_2} \prec_1 V^{\mathbb{B}}\}$ is dense in $(\Gamma, \leq_{\mathit{all}})$,
- FA(SSP) holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is presaturated}\}\$ is dense in $(SSP, \leq_{\mathit{all}})$ (class many Woodin cardinals),
- FA⁺⁺(SSP) holds iff the same class is dense in (SSP, \leq _{SSP}) (class many Woodin cardinals),
- MM⁺⁺⁺ holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is strongly presaturated}\}$ is dense in (SSP, \leq_{SSP}) .

- BFA(Γ) holds iff the class $\{\mathbb{B} \in \Gamma: H_{\aleph_2} \prec_1 V^{\mathbb{B}}\}$ is dense in $(\Gamma, \leq_{\mathit{all}})$,
- FA(SSP) holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is presaturated}\}\$ is dense in (SSP, \leq_{all}) (class many Woodin cardinals),
- FA⁺⁺(SSP) holds iff the same class is dense in (SSP, \leq _{SSP}) (class many Woodin cardinals),
- MM⁺⁺⁺ holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is strongly presaturated}\}$ is dense in (SSP, \leq_{SSP}) .

- BFA(Γ) holds iff the class $\{\mathbb{B} \in \Gamma: H_{\aleph_2} \prec_1 V^{\mathbb{B}}\}$ is dense in $(\Gamma, \leq_{\mathit{all}})$,
- FA(SSP) holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is presaturated}\}\$ is dense in (SSP, \leq_{all}) (class many Woodin cardinals),
- FA⁺⁺(SSP) holds iff the same class is dense in (SSP, \leq _{SSP}) (class many Woodin cardinals),
- MM⁺⁺⁺ holds iff $\{\mathbb{B} \in SSP : \mathbb{B} \text{ is strongly presaturated}\}$ is dense in (SSP, \leq_{SSP}) .

Examples of generic absoluteness results known in literature for extensions of ZFC with forcing axioms are:

- BFA(Γ) is equivalent to ZFC having generic absoluteness for Θ the Σ_1 formulas with parameters relativized to H_{\aleph_2} and CBAs in Γ (Bagaria),
- ZFC + MM⁺⁺⁺ + \exists class many superhuge cardinals has generic absoluteness for $\Gamma = \mathsf{SSP}$ and Θ the formulas relativized to $L([\mathsf{ON}]^{\aleph_1})$ (Viale).

We show that strong generic absoluteness results can be obtained from resurrection axioms (of lower consistency strength).

Examples of generic absoluteness results known in literature for extensions of ZFC with forcing axioms are:

Absoluteness results

- BFA(Γ) is equivalent to ZFC having generic absoluteness for Θ the Σ_1 formulas with parameters relativized to H_{\aleph_2} and CBAs in Γ (Bagaria),
- ZFC + MM⁺⁺⁺ + \exists class many superhuge cardinals has generic absoluteness for $\Gamma = \mathsf{SSP}$ and Θ the formulas relativized to $L([\mathsf{ON}]^{\aleph_1})$ (Viale).

We show that strong generic absoluteness results can be obtained from resurrection axioms (of lower consistency strength).

Examples of generic absoluteness results known in literature for extensions of ZFC with forcing axioms are:

Absoluteness results

- BFA(Γ) is equivalent to ZFC having generic absoluteness for Θ the Σ_1 formulas with parameters relativized to H_{\aleph_2} and CBAs in Γ (Bagaria),
- ZFC + MM⁺⁺⁺ + \exists class many superhuge cardinals has generic absoluteness for $\Gamma = \mathsf{SSP}$ and Θ the formulas relativized to $L([\mathsf{ON}]^{\aleph_1})$ (Viale).

We show that strong generic absoluteness results can be obtained from resurrection axioms (of lower consistency strength).

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N ($M \prec_1 N$),
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form H_c^M where $c = \aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N ($M \prec_1 N$),
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form H_c^M where $c = \aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N ($M \prec_1 N$),
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form H_c^M where $c = \aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N ($M \prec_1 N$),
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form $H_{\mathfrak{c}}^M$ where $\mathfrak{c}=\aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N $(M \prec_1 N)$,
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form $H_{\mathfrak{c}}^M$ where $\mathfrak{c}=\aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

Theorem

Let $M \subset N$ be models of a language \mathcal{L} . Then TFAE:

- M is existentially closed in N $(M \prec_1 N)$,
- M has resurrection, i.e. it exists a larger $M' \supseteq N$ such that $M \prec M'$

If we restrict the above properties to models of set theory of the form $H_{\mathfrak{c}}^M$ where $\mathfrak{c}=\aleph_2$ and consider only model extensions obtained by forcing in a fixed class Γ , we obtain respectively:

- M satisfies BFA(Γ),
- M satisfies RA(Γ), the resurrection axiom

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- $FA(\Gamma)$ is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- $FA(\Gamma)$ is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- FA(Γ) is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- $FA(\Gamma)$ is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- $FA(\Gamma)$ is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

Resurrection axioms have been introduced recently by Hamkins and Johnstone, and are interesting since they can prove some consequences of FA, while having much lower consistency strength (for $\Gamma \neq SSP$).

In particular, we have that:

- RA(Γ) for all mentioned Γ implies that $\mathfrak{c} \leq \aleph_2$,
- $RA(\Gamma) + \neg CH$ implies $BFA(\Gamma)$,
- FA(Γ) is consistent relative to a supercompact cardinal (Foreman, Magidor, Shelah),
- RA(Γ) for iterable Γ is consistent relative to a Mahlo cardinal (Hamkins, Johnstone),
- RA(SSP) is consistent relative to a inaccessible limit of Woodin cardinals above a supercompact cardinal (Asperó).

The resurrection axiom is conveniently stated as a density property:

Definition

 $\mathsf{RA}(\Gamma) \text{ holds iff the class } \left\{ \mathbb{B} \in \Gamma: \ H_{\mathfrak{c}} \prec H_{\mathfrak{c}}^{V^{\mathbb{B}}} \right\} \text{ is dense in } (\Gamma, \leq_{\Gamma}).$

From $RA(\Gamma)$ we can already prove a weak form of generic absoluteness

Theorem (Viale)

ZFC + RA(Γ) has generic absoluteness for Θ the Σ_2 formulas with parameters relativized to H_c and forcing in Γ .

To achieve a stronger generic absoluteness result we need a stronger definition.

The resurrection axiom is conveniently stated as a density property:

Definition

$$\mathsf{RA}(\Gamma)$$
 holds iff the class $\left\{\mathbb{B}\in\Gamma:\ H_{\mathfrak{c}}\prec H_{\mathfrak{c}}^{V^{\mathbb{B}}}\right\}$ is dense in (Γ,\leq_{Γ}) .

From $RA(\Gamma)$ we can already prove a weak form of generic absoluteness:

Theorem (Viale)

ZFC + RA(Γ) has generic absoluteness for Θ the Σ_2 formulas with parameters relativized to H_c and forcing in Γ .

To achieve a stronger generic absoluteness result we need a stronger definition.

The resurrection axiom is conveniently stated as a density property:

Definition

 $\mathsf{RA}(\Gamma) \text{ holds iff the class } \left\{ \mathbb{B} \in \Gamma: \ H_{\mathfrak{c}} \prec H_{\mathfrak{c}}^{V^{\mathbb{B}}} \right\} \text{ is dense in } (\Gamma, \leq_{\Gamma}).$

From $RA(\Gamma)$ we can already prove a weak form of generic absoluteness:

Theorem (Viale)

ZFC + RA(Γ) has generic absoluteness for Θ the Σ_2 formulas with parameters relativized to H_c and forcing in Γ .

To achieve a stronger generic absoluteness result we need a stronger definition.

 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

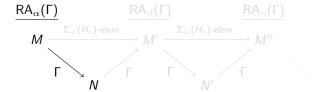
Precisely, $\mathsf{RA}_lpha(\mathsf{\Gamma})$ is the assertion:

orall eta < lpha and $orall N \supseteq M$ obtained by forcing in Γ , $\exists M' \supseteq N$ a further extension by a forcing in Γ , such that $H_{\mathfrak{c}}^M \prec H_{\mathfrak{c}}^{M'}$ and M' satisfies $\mathsf{RA}_{eta}(\Gamma)$

 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

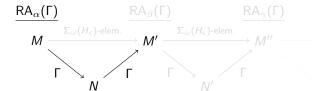
 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_{\mathfrak{c}}^M \prec H_{\mathfrak{c}}^{M'}$ and M' satisfies $\mathsf{RA}_{\beta}(\Gamma)$.



 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

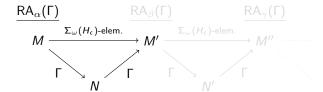
 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_c^M \prec H_c^{M'}$ and M' satisfies $RA_{\beta}(\Gamma)$.



 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

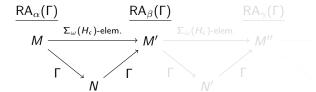
 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_{\mathfrak{c}}^M \prec H_{\mathfrak{c}}^{M'}$ and M' satisfies $\mathsf{RA}_{\beta}(\Gamma)$.



 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

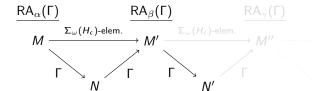
 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_c^M \prec H_c^{M'}$ and M' satisfies $RA_{\beta}(\Gamma)$.



 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_{\mathfrak{c}}^M \prec H_{\mathfrak{c}}^{M'}$ and M' satisfies $\mathsf{RA}_{\beta}(\Gamma)$.



 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

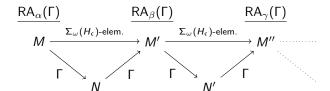
 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_c^M \prec H_c^{M'}$ and M' satisfies $\mathsf{RA}_\beta(\Gamma)$.

$$\frac{\operatorname{RA}_{\alpha}(\Gamma)}{M} \xrightarrow{\Sigma_{\omega}(H_{\mathfrak{c}})-\operatorname{elem.}} \frac{\operatorname{RA}_{\beta}(\Gamma)}{M'} \xrightarrow{\Sigma_{\omega}(H_{\mathfrak{c}})-\operatorname{elem.}} \frac{\operatorname{RA}_{\gamma}(\Gamma)}{M''}$$

 $RA_{\omega}(\Gamma)$ postulates that is possible to resurrect the theory of H_c any fixed finite number of times.

Precisely, $RA_{\alpha}(\Gamma)$ is the assertion:

 $\forall \beta < \alpha \text{ and } \forall N \supseteq M \text{ obtained by forcing in } \Gamma,$ $\exists M' \supseteq N \text{ a further extension by a forcing in } \Gamma,$ such that $H_c^M \prec H_c^{M'}$ and M' satisfies $\mathsf{RA}_\beta(\Gamma)$.



$$\alpha > \beta > \gamma > \dots$$

Also the iterated resurrection axiom is conveniently stated as a density property:

Definition

 $\mathsf{RA}_{\alpha}(\Gamma)$ holds iff for all $\beta < \alpha$ the class

$$\left\{\mathbb{B}\in\Gamma:\ H_{\mathfrak{c}}\prec H_{\mathfrak{c}}^{V^{\mathbb{B}}}\wedge V^{\mathbb{B}}\models\mathsf{RA}_{\beta}(\Gamma)\right\}$$

is dense in (Γ, \leq_{Γ}) .

Theorem (A., Viale)

ZFC + RA_ω(Γ) has generic absoluteness for Θ the formulas relativized to H_c and forcing in Γ.

- Θ is smaller since $H_c \subset L([ON]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}(\Gamma)$ has generic absoluteness for Θ the formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}$ (Γ) has generic absoluteness for Θ the formulas relativized to H $_{c}$ and forcing in Γ.

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}$ (Γ) has generic absoluteness for Θ the formulas relativized to H $_{c}$ and forcing in Γ.

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}$ (Γ) has generic absoluteness for Θ the formulas relativized to H $_{c}$ and forcing in Γ.

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}$ (Γ) has generic absoluteness for Θ the formulas relativized to H $_{c}$ and forcing in Γ.

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

Theorem (A., Viale)

ZFC + RA $_{\omega}$ (Γ) has generic absoluteness for Θ the formulas relativized to H $_{c}$ and forcing in Γ.

- Θ is smaller since $H_{\mathfrak{c}} \subset L([\mathsf{ON}]^{\aleph_1})$,
- it is more general since it holds for any Γ (not only SSP),
- it has lower consistency strength

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

Proof.

- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

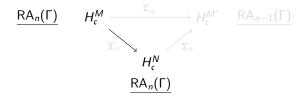
 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

Proof.

- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

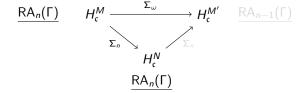
 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

Proof.

- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

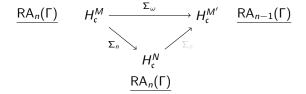
Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

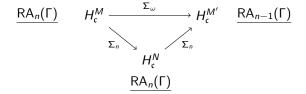
Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$.
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$

ZFC + RA_n(Γ) has generic absoluteness for Θ the Σ_{n+1} formulas relativized to H_c and forcing in Γ .

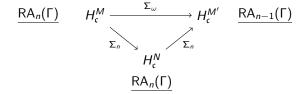
Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$,
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$ (elementarity).

ZFC + RA_n(Γ) has generic absoluteness for Θ the Σ_{n+1} formulas relativized to H_c and forcing in Γ.

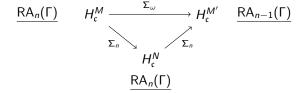
Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$,
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$ (elementarity).

 $\mathsf{ZFC} + \mathsf{RA}_n(\Gamma)$ has generic absoluteness for Θ the Σ_{n+1} formulas relativized to $H_{\mathfrak{c}}$ and forcing in Γ .

Proof.



- $M \models \psi^{H_c}(a) \Rightarrow N \models \psi^{H_c}(a)$ so $M \models \exists x \psi^{H_c}(x) \Rightarrow N \models \exists x \psi^{H_c}(x)$,
- $N \models \exists x \psi^{H_c}(x) \Rightarrow M' \models \exists x \psi^{H_c}(x)$ (same argument) $\Rightarrow M \models \exists x \psi^{H_c}(x)$ (elementarity).

The following holds:

- $\mathsf{RA}_\mathsf{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$\mathbb{B}_0 = 2$$
 $\mathbb{B}_{\alpha+1} = \mathbb{B}_{\alpha} * \dot{\mathbb{C}}_{\alpha}$ where $\dot{\mathbb{C}}_{\alpha} = \prod (\Gamma \cap H_{f(\alpha)}) a$
 \mathbb{B}_{α} for α limit is a lower bound in Γ for the chain $\langle \mathbb{B}_{\beta} : \beta < \alpha \rangle$

For $\Gamma = \mathsf{SSP}$ we use the category forcing $\mathbb{U}_\kappa^{\mathsf{SSP}}$ for a large enough cardinal κ .

The following holds:

- $RA_{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$\mathbb{B}_0 = 2$$
 $\mathbb{B}_{\alpha+1} = \mathbb{B}_{\alpha} * \dot{\mathbb{C}}_{\alpha}$ where $\dot{\mathbb{C}}_{\alpha} = \prod (\Gamma \cap H_{f(\alpha)}) a$
 \mathbb{B}_{α} for α limit is a lower bound in Γ for the chain $\langle \mathbb{B}_{\beta} : \beta < \alpha \rangle$

For $\Gamma=\mathsf{SSP}$ we use the category forcing $\mathbb{U}^{\mathsf{SSP}}_\kappa$ for a large enough cardinal κ .

The following holds:

- $RA_{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$\mathbb{B}_0 = 2$$
 $\mathbb{B}_{\alpha+1} = \mathbb{B}_{\alpha} * \dot{\mathbb{C}}_{\alpha}$ where $\dot{\mathbb{C}}_{\alpha} = \prod (\Gamma \cap H_{f(\alpha)}) a$
 \mathbb{B}_{α} for α limit is a lower bound in Γ for the chain $\langle \mathbb{B}_{\beta} : \beta < \alpha \rangle$

For $\Gamma=\mathsf{SSP}$ we use the category forcing $\mathbb{U}^{\mathsf{SSP}}_\kappa$ for a large enough cardinal κ .

The following holds:

- $RA_{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof.

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$egin{array}{lll} \mathbb{B}_0 &=& 2 \ \mathbb{B}_{lpha+1} &=& \mathbb{B}_lpha * \dot{\mathbb{C}}_lpha & \text{where } \dot{\mathbb{C}}_lpha = \prod \left(\Gamma \cap H_{f(lpha)} \right) a \ \mathbb{B}_lpha & \text{for } lpha & \text{limit is a lower bound in } \Gamma & \text{for the chain } \langle \mathbb{B}_eta : \ eta < lpha
angle \end{array}$$

For $\Gamma=\mathsf{SSP}$ we use the category forcing $\mathbb{U}^{\mathsf{SSP}}_{\kappa}$ for a large enough cardinal $\kappa.$

The following holds:

- $RA_{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof.

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$\mathbb{B}_0 = 2$$
 $\mathbb{B}_{\alpha+1} = \mathbb{B}_{\alpha} * \dot{\mathbb{C}}_{\alpha}$ where $\dot{\mathbb{C}}_{\alpha} = \prod (\Gamma \cap H_{f(\alpha)}) a$
 \mathbb{B}_{α} for α limit is a lower bound in Γ for the chain $\langle \mathbb{B}_{\beta} : \beta < \alpha \rangle$

For $\Gamma = \mathsf{SSP}$ we use the category forcing $\mathbb{U}_\kappa^{\mathsf{SSP}}$ for a large enough cardinal κ .

The following holds:

- $RA_{ON}(\Gamma)$ for iterable Γ is consistent relative to a Mahlo cardinal,
- RA_{ON}(SSP) is consistent relative to a stationary limit of supercompact cardinals,
- $MM^{+++} \Rightarrow RA_{ON}(SSP)$.

Sketchy proof.

To prove consistency of $RA_{\alpha}(\Gamma)$ with Γ iterable (as for $FA(\Gamma)$ and variations), we use lottery iteration forcing with respect to suitable fast-growing (Menas) function $f: \kappa \to \kappa$ for a large enough cardinal κ .

$$\mathbb{B}_0 = 2$$
 $\mathbb{B}_{\alpha+1} = \mathbb{B}_{\alpha} * \dot{\mathbb{C}}_{\alpha}$ where $\dot{\mathbb{C}}_{\alpha} = \prod (\Gamma \cap H_{f(\alpha)}) a$
 \mathbb{B}_{α} for α limit is a lower bound in Γ for the chain $\langle \mathbb{B}_{\beta} : \beta < \alpha \rangle$

For $\Gamma=\mathsf{SSP}$ we use the category forcing $\mathbb{U}^{\mathsf{SSP}}_\kappa$ for a large enough cardinal $\kappa.$

Thanks for your attention!

Bibliography I

G. Audrito and M. Viale.

Absoluteness via resurrection.

arXiv:1404.2111, 2014.

J. D. Hamkins and T. A. Johnstone.

Resurrection axioms and uplifting cardinals.

arXiv:1307.3602, 2013.

K. Tsaprounis.

On resurrection axioms.

in preparation, 2013.

M. Viale.

Category forcings, MM^{+++} , and generic absoluteness for the theory of strong forcing axioms.

arXiv:1305.2058, 2013.