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Abstract. To obtain existence and uniqueness when solving some
nonlinear characteristic Cauchy problems, we define a special algebra
GOM

(
Ω
)

of generalized functions on the closure Ω of an open set Ω in

Rn constructed from the topological algebra OM

(
Ω
)

of slowly increasing

functions in Ω. Moreover other concepts are needed as slow scale ele-
ments and point values characterization of elements in GOM

(
Ω
)
.
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1. Introduction

In many problems (as differential Cauchy ones with f ∈ C1 [0,+∞[ as initial
data), we have to define some spaces or algebras on the closure of an open set
Ω of Rn.

In other cases the asymptotic analysis of a family of functions (as e−
x
ε )

depending on a parameter (as ε) need the study in an algebra defined on the
closure of an open set (as [0,+∞[). However, the usual generalized functions
(distributions, Colombeau-type algebras..) are a priori constructed on open
set Ω in Rn for reasons principally linked to their sheaf structure (restriction
operator, support, all ordered derivatives...). The starting point of our con-
structions is the algebra of smooth functions and we come back to the technics
of continuous extension of such functions and their derivatives on the boundary
of a closed subset of Rn, following the definitions given in [3] and [4].

The space OM (Rn) of slowly increasing functions, endowed by the family
of semi-norms (pϕ,α)(ϕ,α)∈S(Rn)×Nn , becomes a topological algebra used in [5]
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2 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

to define the generalized algebra GOM
(Rn) (which differs from Gτ (Rn)). It

is very useful to prove the uniqueness of some linear characteristic Cauchy
problem studied in [2].

But in nonlinear cases, we cannot obtain the result without replacing Rn by
a smaller closed set. When Ω is a convex open set in Rn, we prove that OM

(
Ω
)
,

with the topology deducted from that ofOM (Rn) by replacing S (Rn) by S
(
Ω
)
,

becomes also a locally convex algebra. Now, we define the generalized algebra
GOM

(
Ω
)

as the quotient algebraMOM

(
Ω
)
/NOM

(
Ω
)
. When Ω is unbounded,

it is given an alternative representation of NOM

(
Ω
)

leading to a point-value

characterization ([8], [6]) of elements in GOM

(
Ω
)
. There is the toolbox to obtain

the uniqueness for nonlinear characteristic Cauchy problem involved above.

2. First extension of classical spaces

Definition 2.1. Following the C∞-extension defined for example by H. Bia-
gioni [4] for the closure Ω of an open set Ω in Rn, with K = R or C

C∞(Ω) =
{
f : Ω→ K : f|Ω∈ C∞(Ω); (∀x ∈ ∂Ω) (∀α ∈ Nn)

(Dαf (x) = lim
Ω�y→x

Dαf (y) < +∞)} with Dα =
∂α1+...+αn

∂yα1
1 ...∂yαn

n
for

y = (y1, . . . , yn) ∈ Ω, α = (α1, ..., αn) ∈ Nn.

Topology on C∞(Ω)
In a natural way the topology on C∞(Ω) is the locally convex one defined

by the family of seminorms (pK,l)KbΩ,l∈N where

C∞(Ω) 3 f → pK,l (f) = sup
x∈K,|α|≤l

|Dαf (x)| .

Definition 2.2. For the slowly increasing or rapidly decreasing functions on
Ω, we define, in the same way
OM

(
Ω
)

= {f ∈ C∞(Ω), (∀α ∈ Nn) (∃p ∈ N) (∃C > 0)(
∀x ∈ Ω

)
(|Dαf (x)| ≤ C (1 + |x|)p)},

S
(
Ω
)

= {ϕ ∈ C∞(Ω), (∀α ∈ Nn) (∀q ∈ N) (∃D > 0)(
∀x ∈ Ω

)
(|Dαϕ (x)| ≤ D

(1 + |x|)q
)}.

Remark 2.3. All these spaces are in fact algebras, and S
(
Ω
)

is an ideal of

OM
(
Ω
)
.

3. Topology on the algebra of slowly increasing functions

Let F be the closure of any open set in Rd (even Rd itself) and consider the
function OM (F )→ R+

f 7→ pϕ,α (f) = sup
x∈F
|ϕ (x)Dαf (x)|
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Generalized functions on the closure of an open set. Application 3

where ϕ ∈ S (F ) and α ∈ Nn. We can see that pϕ,α is a semi-norm on OM (F ).
Then, the family P = (pϕ,α)ϕ,α∈S(Ω)×Nn endows the algebra OM (F ) with a

locally convex topology (a priori of vector space). We can refer to [5] about the
continuity of the product in OM (Rd), but when F = Ω, for any open set Ω,
the proof needs the following lemma.

Lemma 3.1. Let U ⊆ Rd and f be a map U → C which is rapidly decreasing
in the sense that for each m ∈ N, and 〈x〉m = (1 + |x|)m

sup
x∈U
〈x〉m |f(x)| < +∞.

Then there exists ψ ∈ S(Rd) such that |f(x)| ≤ ψ(x) for each x ∈ U .

Proof. Let g(t) = sup
x∈U,|x|≥t

|f(x)|. Then, g : [0,+∞[ −→ R is a decreasing

function (in particular g ∈ L1
Loc (R)) and is rapidly decreasing since for each

m ∈ N

g(t) ≤ sup
x∈U,|x|≥t

|x|m

tm
|f(x)| ≤ C

tm
.

Let Φ ∈ D( [0, 1] ), Φ ≥ 0,
∫

Φ = 1. Extend g as a constant function on (−∞, 0].
Then g ∗ Φ ∈ C∞ (R) and

(g ∗ Φ) (t) =

∫ t

t−1

g(s)Φ(t− s)ds ≥ g(t)

∫
Φ = g(t).

Further g ∗Φ ∈ S(R). Possibly increasing the values of g ∗Φ, we find h ∈ S(R)
with h ≥ g and h constant on a neighbourhood of 0. Hence

(x 7→ ψ(x) = h(|x|)) ∈ S(Rd)

with ψ(x) ≥ g (|x|) ≥ |f(x)| for each x ∈ U .

Theorem 3.2. OM
(
Ω
)

is a locally convex algebra.

Proof. Let ϕ ∈ S
(
Ω
)
. By Lemma 1 there exists ψ ∈ S(Rd) such that

√
ϕ ≤ ψ

on Ω. Let u, v ∈ OM
(
Ω
)
. Then

pϕ,0 (uv) = sup
Ω

|ϕuv| ≤ sup
Ω

|ψu| sup
Ω

|ψv| = pψ,0 (u) pψ,0 (v)

and similarly, by the Leibnitz rule, writing νϕ,m = max
|α|≤m

pϕ,α,

νϕ,m(uv) ≤ Cmνψ,m(u)νψ,m(v).
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4 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

4. A tempered algebra on the closure of an open set

Definition 4.1. Let GOM
(Ω) be the algebra MOM

(
Ω
)
/NOM

(
Ω
)

where

MOM
(Ω) = {(uε)ε ∈ OM (Ω)(0,1] : (∀ϕ ∈ S(Ω)) (∀α ∈ Nn)

(∃M ∈ N) (∃ε0) (∀ε < ε0) (pϕ,α (uε) ≤ ε−M )};
NOM

(Ω) = {(uε)ε ∈ OM (Ω)(0,1] : (∀ϕ ∈ S(Ω)) (∀α ∈ Nn)

(∀m ∈ N) (∃ε0) (∀ε < ε0) (pϕ,α (uε) ≤ εm)}.

This definition is consistent. We can involve, for example, the framework
of (C, E ,P)-algebra with E = OM (Ω), P = (pϕ,α) and C generated by (ε)ε .

Example 4.2. We deal with the characteristic Cauchy problem (Pg) for the
transport equation formally written in characteristic coordinates

∂u

∂t
= u; u |{x=0}= v.

However, we cannot prove the existence of a solution to (Pg) in GOM

(
R2
)
;

indeed the regularized problem becomes

(P∞)
∂uε
∂t

(t, x) = uε (t, x) ;uε (t, εt) = v (t)

whose solution is uε(t, x) = v(xε )e−
x
ε et which clearly is not in MOM

(
R2
)
.

Example 4.3. Without changing asymptotic scale, we can estimate

sup
t,x
|ϕ(t, x)| v(

x

ε
)e−

x
ε et

for ϕ ∈ S([0, T ] × [0,∞[), x ≥ 0 and t ≤ T in GOm([0, T ] × [0,∞[) with its
polynomial 1

ε -scale. Indeed, with x ≥ 0 one has(
1

e
1
ε

)x
≤ εx ≤ 1

and the computation is easy. Then (uε)ε ∈MOM
([0, T ]× [0,∞[) and [uε] solve

(Pg) in

GOM
([0, T ]× [0,∞[).

5. Point values characterization

In the following, we suppose that Ω is a convex open set.
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Generalized functions on the closure of an open set. Application 5

5.1. A new definition of GOM
(Ω)

Theorem 5.1.

MOM
(Ω) = {(uε)ε ∈ OM (Ω)(0,1] | (∀α ∈ Nd) (∃m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ ε−m)}.
NOM

(Ω) = {(uε)ε ∈ OM (Ω)(0,1] | (∀α ∈ Nd) (∀m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ εm)}.

Proof. (Sketch) We follow the lines of proposition 5 in [5], which proves that
MOM

(Rn) = Mτ (Rn), extended to the case when Ω is unbounded. But the
ideal NOM

(Ω) differs from the tempered one Nτ (Ω) and its characterization
needs some other arguments.

5.2. Zero derivative and slow scale elements

Definition 5.2. A subset U ⊆ Rd has the cone property if there exist r > 0
and c > 0 such that for each x ∈ U , there exists a rotation A such that
x+AΓc,r ⊆ U , where Γc,r = {(x, y) ∈ R× Rd−1 : 0 ≤ x ≤ r, |y| ≤ cx}.

This condition is used in Sobolev space theory [1, Ch. IV]. If Ω is bounded
and convex, then Ω has the cone property: take any open ball B(x0, r) ⊆ Ω.
Then for each x ∈ Ω, the cone at x with base B(x0, r) is contained in Ω. As
Ω is bounded, this cone contains a cone x + AΓc,r with c independent of x.
However, if Ω is unbounded and convex, this property may fail:

Example 5.3. Let Ω ⊆ R3 be the convex closure of the half lines L1 =
{(0, t, 0) : t ≥ 0}, L2 = {(0, t, 1) : t ≥ 0} and L3 = {(1 + t, t, 0) : t ≥ 0}. Then
points on L3 intersect Ω in cones with smaller and smaller angles as t→ +∞.
Hence Ω is the closure of an open convex set, but it does not have the cone
property.

Theorem 5.4. If Ω has the cone property, then

NOM
(Ω) = {(uε)ε ∈ OM (Ω)(0,1] | (∀m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0)
(
supx∈Ω(1 + |x|)−p|uε(x)| ≤ εm

)
}.

Proof. We will in fact only assume a weaker property on Ω than the cone
property: we will only require that there exist r > 0 and M ∈ N such that for
each x ∈ U , there exists a rotation A such that x + AΓ ⊆ Ω, where Γ is the
cusp {(x, y) ∈ R× Rd−1 : 0 ≤ x ≤ r, |y| ≤ xM}.

Let (uε)ε satisfy the estimates in the statement of the theorem. Let x ∈ Ω.
Let A be such that x+AΓ ⊆ Ω. Let {e1, . . . , en} be the standard basis of Rd.
Let e′k = Aek (then e′1 is along the symmetry axis of AΓ). As x + AΓ ⊆ Ω,
the line segments [x, x + εqe′1] and [x + εqe′1, x + εqe′1 + εMqe′k] (k = 2, . . . , d)
are contained in Ω, as soon as ε ≤ r, q ≥ 1. Let m ∈ N. Applying the Taylor
argument from [7, Thm. 1.2.25] to these line segments, we find p ∈ N such that
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6 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

|∇uε(x)| ≤ e′m1 〈x〉p and |∇uε(x+ εqe′1)| ≤ e′mk 〈x〉p, as soon as ε ≤ ε0 and q
sufficiently large. Then also

|∇uε(x) · e′k| ≤ |(∇uε(x+ εqe′1)−∇uε(x)) · e′k|︸ ︷︷ ︸
≤Cεq−N 〈x〉p

+Cεm〈x〉p ≤ C ′m〈x〉p

as soon as ε ≤ ε0 and q is sufficiently large. Hence ‖∇uε(x)‖ ≤ C ′′m〈x〉p,
with C ′′ independent of ε and x. Inductively, we obtain the bounds for the
derivatives of any order.

Remark 5.5. If one assumes a weaker kind of cone property where r > 0 depends
on x, this characterization may fail (see the counterexample [7, 1.2.26]).

5.3. Point values characterization of elements of GOM
(Ω)

Definition 5.6. An element x̃ = [(xε)ε] ∈ R̃d is of slow scale if

(∀n ∈ N) (∃ε0) (∀ε < ε0)
(
|xε| ≤ ε−1/n

)
.

We can consider Ω̃ ⊆ R̃d (containing those x̃ having a representative (xε)ε ∈
Ω

(0,1]
).

Theorem 5.7. Let u = [(uε)ε] ∈ GOM
(Rd) and let x̃ = [(xε)ε] ∈ Ω̃ be of slow

scale. Then the point value u(x̃) = [(uε(xε))ε] ∈ C̃ is well-defined.

Proof. Let (uε)ε ∈ MOM
(Ω) be a representative of u. As in [7, Prop. 1.2.45],

(uε)ε ∈ MOM
(Ω) implies that (uε(xε))ε ∈ MR, and (uε(xε) − uε(x′ε))ε ∈ NR

if (x′ε)ε ∈ Ω̃ is another representative of x̃. The latter argument requires that
[xε, x

′
ε] ⊆ Ω, which is satisfied because Ω is convex. It remains to be shown that

the definition of the point value does not depend on the choice of representative
of u. So let (uε)ε ∈ NOM

(Ω). Let m ∈ N. Choose p ∈ N as in the statement of
theorem 5.4. Then for sufficiently small ε,

|uε(xε)| ≤ εm(1 + |xε|)p ≤ εm(2|xε|)p ≤ εm(2ε−1/p)p = 2pεm−1.

Since m ∈ N is arbitrary, (uε(xε))ε ∈ NC.

Theorem 5.8. Let Ω have the cone property. Let u ∈ GOM
(Ω). Then u = 0

iff u(x̃) = 0 for each slow scale point x̃ ∈ Ω̃.

Proof. If u = 0, then clearly u(x̃) = 0 for each slow scale point in Ω̃ (since
the definition of point values does not depend on the representative of u).

Conversely, let u(x̃) = 0 for each slow scale point x̃ ∈ Ω̃. We first show by
contradiction that

(1) (∀m ∈ N) (∃n ∈ N) (∃ε0) (∀ε < ε0)
(

supx∈Ω, |x|≤ε−1/n |uε(x)| ≤ εm
)
.
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Generalized functions on the closure of an open set. Application 7

Assuming the contrary, we find M ∈ N, a decreasing sequence (εn)n tending

to 0 and xεn ∈ Ω with |xεn | ≤ ε
−1/n
n and |uεn(xεn)| > εMn , for each n. Let xε

be a fixed element x0 ∈ Ω if ε /∈ {εn : n ∈ N}. Then x̃ = [(xε)ε] ∈ Ω̃ is of slow
scale and (uε(xε))ε /∈ NR, contradicting u(x̃) = 0.

Now let m ∈ N arbitrary. Choose n as in equation (1). Since (uε)ε ∈
MOM

(Ω), there exists by theorem 5.1 some N ∈ N such that for small ε,

supx∈Ω(1 + |x|)−N |uε(x)| ≤ ε−N .

Let p = nm+ nN +N . Then, for small ε,

sup
x∈Ω

(1 + |x|)−p|uε(x)| =

max
(

sup
|x|≤ε−1/n

x∈Ω

(1 + |x|)−p|uε(x)|, sup
|x|≥ε−1/n

x∈Ω

(1 + |x|)−p|uε(x)|
)

≤ max
(

sup
x∈Ω, |x|≤ε−1/n

|uε(x)|, sup
x∈Ω

(1+ |x|)−N |uε(x)| sup
x∈Ω, |x|≥ε−1/n

(1+ |x|)N−p
)

≤ max
(
εm, ε−N (2ε−1/n)N−p

)
= 2εm.

Hence (uε)ε ∈ NOM
(Ω) by theorem 5.4.

6. Application: uniqueness for a nonlinear Cauchy prob-
lem

The Characteristic Cauchy problems for Partial Differential Equations with
the data given on a locally or globally characteristic manifold are generally ill-
posed in the classical context. In [2], are pointed out some important works on
the question and described another method to solve it. To simplify, it is chosen
the two-variables characteristic Cauchy problem for the transport equation (in
basic form)

(Pc)
∂u

∂t
= F (., ., u); u|γ = v

where γ of equation x = 0 is globally characteristic. For focusing only on the
characteristic singularity, v and F are supposed to be regular enough. Clearly
(Pc) is ill-posed but can be associated to a generalized problem

(Pg)
∂u

∂t
= F(u); R (u) = v.

• (Pg) is well formulated in some convenient algebras of (C,E ,P)-type (where
C define the asymptotics and (E ,P)a basic presheaf of topological al-
gebra), with u ∈ AC (E ,P)

(
R2
)

supposed to be ”stable under F” and
v ∈ AC (E ,P) (R).
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8 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

To obtain (Pg) from (Pc), two generalized mappings have to be defined:
F is a generalized mapping F : AC (E ,P)

(
R2
)
−→ AC (E ,P)

(
R2
)
, associ-

ated to F and
R : AC (E ,P)

(
R2
)
−→ AC (E ,P) (R) is obtained by replacing {x = 0} by a

family
(γε : x = lε (t))ε

of non characteristic lines.

• If T is the usual topology of E = C∞, and C = [Breg] overgenerated by a fi-
nite family of elements in relationship with the regularization of the prob-
lem, we know from previous works the existence inA[Breg] (C∞,T )

(
R2
)

=

A
(
R2
)

(non uniqueness) of a solution to (Pg) depending a priori of the
choice of the ”decharacterizing” process ([2], Theorem 5).

• A better result is obtained when choosing the decharacterizing process
in a tempered class Gτ . Then, the above solution (always non unique)
depends only on this tempered class ([2], Theorem 6).

• It is possible to recover the uniqueness in the homogeneous case ([2],
Theorem 13) when working in the new algebra

A[(ε)ε]
(OM ,Q)

(
R2
)

= GOM

(
R2
)

based on the space of slowly increasing smooth functions OM
(
R2
)

en-
dowed with its usual locally convex topology Q. In that algebra it is
impossible to obtain uniqueness for nonlinear case.

Now, we are focusing on the nonlinear case. We can prove that F can be
defined as a mapping of GOM

([0, T ]× [0,∞[) into itself and R as a mapping
GOM

([0, T ]× [0,∞[) −→ GOM
([0,∞[). Finally the uniqueness can be expected

thanks to the tools and results detailed in the above Section 6.
Assume that

∃M > 0,∀n ∈ N,∃µn > 0, sup
(t,x,z)∈R+×R+×R,|α|≤n

|DαF (t, x, z)| = Mn ≤ µnM.

Lemma 6.1. Let LOM
(R+) be the subset in MOM

(R+) of families (gε)ε such
that g′ε > 0,and

[
g−1
ε

]
∈ MOM

(R+) preserves slow scale points, lim
ε→0,D′(R)

gε =

0. Assume that V ∈ OM (R+), (Lε)ε ∈ LOM
(R+). Take U = [Uε] ∈ G

(
R2

+

)
such that, for any (t, x) ∈ R2

+,

Uε(t, x) = V (L−1
ε (x)) +

∫ t

L−1
ε (x)

F (τ, x, Uε(τ, x)) dτ.

Then U is solution to(
P ∗g
)

:
∂U

∂t
= F(U); R (U) = V.



F
ir

st
on

li
n

e
-

A
u

g
u

st
13

,
20

16
.

D
ra

ft
ve

rs
io

n
-

N
ov

em
b

er
2,

20
16

Generalized functions on the closure of an open set. Application 9

and, for any (t, x) ∈ R2
+,

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

L−1
ε (x)

rε(t, x)dτ

∣∣∣∣∣+ rε(t, x).

where

mε(t, x) =

∫ t

L−1
ε (x)

|F (τ, x, 0)|dτ, rε(t, x) =
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

Proof. For (t, x) ∈ R2
+, we have

F (t, x, Uε(t, x))− F (t, x, 0) =
∂F

∂z
(t, x, θε(t, x))Uε(t, x)

where θε(τ, x) = θ(τ, x)Uε(τ, x) and 0 < θ(τ, x) < 1. Then

(E1) Uε(t, x) = V (L−1
ε (x))+

∫ t

L−1
ε (x)

(
∂F

∂z
(τ, x, θε(τ, x))Uε(τ, x)+F (τ, x, 0))dτ.

Assume that L−1
ε (x) ≤ t. According to (E1) we have

(E2)

|Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣+M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ +

∫ t

L−1
ε (x)

|F (τ, x, 0)|dτ.

Define

Hε(t, x) =

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ

and observe that

(E3)
∂Hε

∂t
(t, x) = |Uε(t, x)| .

That means you can write

∂Hε

∂t
(t, x) ≤M1Hε(t, x) +

∣∣V (L−1
ε (x))

∣∣+mε(t, x).

and multiplying that by an integrating factor

e−M1(t−L−1
ε (x)) ∂Hε

∂t
(t, x)− e−M1(t−L−1

ε (x))M1Hε(t, x)

≤ e−M1(t−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+mε(t, x)
)

which means
(E4)

d

dt

(
e−M1(t−L−1

ε (x))Hε(t, x)
)
≤ e−M1(t−L−1

ε (x))
(∣∣V (L−1

ε (x))
∣∣+mε(t, x)

)
.
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10 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E4) from L−1

ε (x) to
t, we get

e−M1(t−L−1
ε (x))Hε(t, x) ≤

∫ t

L−1
ε (x)

e−M1(τ−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+mε(τ, x)
)

dτ

≤
∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ.

So

(E5) Hε(t, x) ≤ eM1(t−L−1
ε (x))

(∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ

)
.

Substituting (E5) into (E2), you obtain

|Uε(t, x)| ≤M1e
M1(t−L−1

ε (x))

(∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+mε (τ, x)
)

dτ

)
+
(∣∣V (L−1

ε (x))
∣∣+mε (t, x)

)
.

Assume that t < L−1
ε (x). According to (E1) we have

|Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣+M1

∫ L−1
ε (x)

t

|Uε(τ, x)| dτ +

∫ L−1
ε (x)

t

|F (τ, x, 0)|dτ,

that is

|Uε(t, x)| ≤
∣∣V (L−1

ε (x))
∣∣−M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ −
∫ t

L−1
ε (x)

|F (τ, x, 0)|dτ

≤
∣∣V (L−1

ε (x))
∣∣−M1

∫ t

L−1
ε (x)

|Uε(τ, x)| dτ +

∣∣∣∣∣
∫ t

L−1
ε (x)

|F (τ, x, 0)|dτ

∣∣∣∣∣(E6)

According to E3, that means you can write

∂Hε

∂t
(t, x) ≤ −M1Hε(t, x) +

∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)| .

and multiplying that by an integrating factor

eM1(t−L−1
ε (x)) ∂Hε

∂t
(t, x) + eM1(t−L−1

ε (x))M1Hε(t, x)

≤ eM1(t−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)|
)

which means

(E7)
∂

∂t

(
eM1(t−L−1

ε (x))Hε(t, x)
)
≤ eM1(t−L−1

ε (x))
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.
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Generalized functions on the closure of an open set. Application 11

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E7) from t to L−1

ε (x),
we get

−eM1(t−L−1
ε (x))Hε(t, x) ≤

∫ L−1
ε (x)

t

eM1(τ−L−1
ε (x))

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

≤
∫ L−1

ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ.

So

(E8) −Hε(t, x) ≤ e−M1(t−L−1
ε (x))

(∫ L−1
ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

)
.

Substituting (E8) into (E6), we obtain

|Uε(t, x)|

≤M1e
−M1(t−L−1

ε (x))

∫ L−1
ε (x)

t

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
≤M1e

−M1(t−L−1
ε (x))

∣∣∣∣∣
∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

∣∣∣∣∣
+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
So, in the both cases we have

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

L−1
ε (x)

(∣∣V (L−1
ε (x))

∣∣+ |mε(τ, x)|
)

dτ

∣∣∣∣∣
(E9)

+
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

Put
rε(t, x) =

(∣∣V (L−1
ε (x))

∣∣+ |mε(t, x)|
)
,

then, we have in the both case

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣∣+ rε(t, x).

Lemma 6.2. Assume that V ∈ OM (R+), (Lε)ε ∈ LOM
(R+). Let [Uε] ∈

G
(
R2

+

)
be the solution to

(
P ∗g
)

define in Lemma 6.1. Let S = [Sε] ∈ G
(
R2

+

)
be another solution to

(
P ∗g
)
. For (t, x) ∈ R2

+ we have{
∂

∂t
(Sε(t, x)) = F (t, x, Sε(t, x) + Iε (t, x)

Sε (t, lε(t)) = V (t) + Jε (t) .
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12 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

with (Jε)ε ∈ NOM
(R+) , (Iε)ε ∈ NOM

(
R2

+

)
. Take Wε = (Sε − Uε). Then, for

any (t, x) ∈ R2
+, we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∫ L−1

ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
where, for all ε,

σε (t, x) =

∫ t

L−1
ε (x)

Iε(τ, x)dτ.

Proof. For any (t, x) ∈ R2
+, we have

Sε(t, x) = V (L−1
ε (x)) + Jε(L

−1
ε (x))

+

∫ t

L−1
ε (x)

F (τ, x, Sε(τ, x)) dτ +

∫ t

L−1
ε (x)

Iε (τ, x) dτ.

Take (t, x) ∈ [0, T ]× [0,∞[. When putting Wε = (Sε − Uε) we get

Wε(t, x) = Jε(L
−1
ε (x)) + σε (t, x)

+

∫ t

L−1
ε (x)

(F (τ, x, Sε(τ, x))− F (τ, x, Uε(τ, x))) dτ.

Moreover we have

F (t, x, Sε(t, x))− F (t, x, Uε(t, x))

= Wε(t, x)

∫ 1

0

dFη
dz

(t, x, Uε(t, x) + θWε((t, x)) dθ.

Assume that L−1
ε (x) ≤ t. We have∣∣∣∣∣

∫ t

L−1
ε (x)

Wε(τ, x)

(∫ 1

0

∂F

∂z
(τ, x, Uε(τ, x) + θWε((τ, x)) dθ

)
dτ.

∣∣∣∣∣
≤
∫ t

L−1
ε (x)

|Wε(τ, x)|M1 dτ.

We deduce

(E10) |Wε(t, x)| ≤M1

∫ t

L−1
ε (x)

|Wε(τ, x)| dτ +
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

According to E3, that means you can write

dHε

dt
(t, x) ≤M1Hε(t, x) +

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)
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Generalized functions on the closure of an open set. Application 13

and multiplying that by an integrating factor

e−M1(t−L−1
ε (x)) dHε

dt
(t, x)− e−M1(t−L−1

ε (x))M1Hε(t, x)

≤ e−M1(t−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)

which means
(E11)
d

dt

(
e−M1(t−L−1

ε (x))Hε(t, x)
)
≤ e−M1(t−L−1

ε (x))
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E11) from L−1

ε (x) to
t, we get

e−M1(t−L−1
ε (x))Hε(t, x) ≤

∫ t

L−1
ε (x)

e−M1(τ−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

≤
∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

So

(E12) Hε(t, x) ≤ eM1(t−L−1
ε (x))

∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

Substituting (E12) into (E10), you obtain

|Wε(t, x)| ≤M1e
M1(t−L−1

ε (x))

∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Assume that t < L−1
ε (x), we have∣∣∣∣∣

∫ t

L−1
ε (x)

Wε(τ, x)

(∫ 1

0

∂F

∂z
(τ, x, Uε(τ, x) + θWε((τ, x)) dθ

)
dτ.

∣∣∣∣∣
≤
∫ L−1

ε (x)

t

|Wε(τ, x)|M1 dτ.

We deduce

(E13) |Wε(t, x)| ≤ −M1

∫ t

L−1
ε (x)

|Wε(τ, x)| dτ +
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

According to E3, that means you can write

dHε

dt
(t, x) ≤

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)
−M1Hε(t, x)
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14 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

and multiplying that by an integrating factor

eM1(t−L−1
ε (x)) dHε

dt
(t, x) + eM1(t−L−1

ε (x))M1Hε(t, x)

≤ eM1(t−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)

which means
(E14)

d

dt

(
eM1(t−L−1

ε (x))Hε(t, x)
)
≤ eM1(t−L−1

ε (x))
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Since Hε(L
−1
ε (x), x) = 0, we can integrate both sides of (E14) from t to L−1

ε (x),
we get

−eM1(t−L−1
ε (x))Hε(t, x) ≤

∫ L−1
ε (x)

t

eM1(τ−L−1
ε (x))

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

≤
∫ L−1

ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

So

(E15) −Hε(t, x) ≤ e−M1(t−L−1
ε (x))

∫ L−1
ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ.

Substituting (E15) into (E13), you obtain

|Wε(t, x)| ≤M1e
−M1(t−L−1

ε (x))

∫ L−1
ε (x)

t

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

So, in the both cases we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

l−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣∣
+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

Definition 6.3. The generalized function [uε] is solution to Problem
(
P ∗∗g

)
if

there are U = [Uε] ∈ G
(
R2

+

)
, V ∈ OM (R+), (Lε)ε ∈ LOM

(R+) such that

(1) U is solution to
(
P ∗g
)

(2)

{
uε = Uε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ]×[0,∞[ ;

uε (t, lε(t)) = V |[0,T ] (t) = v(t);

(3) {[uε] ∈ GOM
([0, T ]× [0,∞[).

Moreover, for (t, x) ∈ R2
+, we have

Uε(t, x) = V (L−1
ε (x)) +

∫ t

L−1
ε (x)

F (τ, x, Uε(τ, x)) dτ.
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Generalized functions on the closure of an open set. Application 15

Take mε(t, x) =
∫ t
l−1
ε (x)

|F (τ, x, 0)| dτ , assume that (mε)ε ∈MOM

(
(R+)

2
)

.

Theorem 6.4. Suppose that (lε)ε is taken in LOM
([0, T ]). Then, if v ∈

OM ([0, T ]), the generalized function u = [uε]GOM
([0,T ]×[0,∞[), where uε is de-

fined in Definition 6.3, depends only on l = [lε]GOM
([0,T ]).

Moreover u is the unique solution to
(
P ∗∗g

)
in GOM

([0, T ]× [0,∞[).

Proof. The first step is to prove the existence, and it is not possible to do that
in GOM

(R2) if F 6= 0 ([2], Remark 3).
Let LOM

(R+) be the subset in MOM
(R+) of families (gε)ε such that g′ε >

0,and
[
g−1
ε

]
∈MOM

(R+) preserves slow scale points, limε→0,D′(R) gε = 0.
From Lemma (6.1), we have for any (t, x) ∈ R2

+,

|Uε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣∣+ rε(t, x).

where

mε(t, x) =

∫ t

L−1
ε (x)

|F (τ, x, 0)|dτ , rε(t, x) =
(∣∣V (L−1

ε (x))
∣∣+ |mε(t, x)|

)
.

As (Lε)ε ∈ LOM
([0, T ]), we know that

(
L−1
ε

)
ε
∈MOM

(R+) moreover V ∈
OM (R) so

(∣∣V ◦ L−1
ε

∣∣)
ε
∈ MOM

(R+). We have also (mε)ε ∈ MOM

(
(R+)

2
)

.

Thus
(rε)ε =

(∣∣V ◦ L−1
ε

∣∣+ |mε|
)
ε
∈MOM

(
R2

+

)
.

Put

aε (t, x) =

∣∣∣∣∣
∫ t

L−1
ε (x)

rε(τ, x)dτ

∣∣∣∣∣
then (aε)ε ∈MOM

(
(R+)

2
)

. Thus ∃m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(t,x)∈[0,T ]×[0,∞[

(1+ |t|+ |x|)−prε(t, x) ≤ sup
(t,x)∈(R+)2

(1+ |t|+ |x|)−prε(t, x) ≤ ε−m

and : ∃m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(t,x)∈[0,T ]×[0,∞[

(1+|t|+|x|)−paε (t, x) ≤ sup
(t,x)∈(R+)2

(1+|t|+|x|)−paε (t, x) ≤ ε−m.

Take uε = Uε|[0,T ]×[0,∞[. So, we have

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |uε(t, x)|

≤M1( sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|)ε−m + ε−m.
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16 Victor Dévoué, Jean-André Marti, Hans Vernaeve, Jasson Vindas

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have

sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)| = sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−l−1
ε (x)| ≤ eM1T .

So: ∃k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |uε(t, x)| ≤ ε−k.

According to Theorem 5.4,

(uε)ε ∈MOM
([0, T ]× [0,∞[)

and the class of (uε,)ε in GOM
([0, T ][× [0,∞[) is a solution to problem

(
P ∗∗g

)
.

Uniqueness.
Let s = [sε] ∈ GOM

([0, T ]× [0,∞[) be another solution to
(
P ∗∗g

)
. That

is to say there are [Sε] ∈ G
(
R2

+

)
, V ∈ OM (R+), (Lε)ε ∈ LOM

(R+), (Jε)ε ∈
NOM

(R+) , (Iε)ε ∈ NOM

(
R2

+

)
. such that

(1)

{
∂Sε
∂t

(t, x) = F (t, x, Uε(t, x)) + Iε (t, x) ;

Sε (t, Lε(t)) = V (t) + Jε (t) ;

(2)

{
sε = Sε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ] ; v = V |[0,T ] ;

sε (t, lε(t)) = V |[0,T ] (t) + Jε|[0,T ] (t) = v(t) + Jε|[0,T ] (t) ;

(3) {[sε] ∈ GOM
([0, T ]× [0,∞[).

Take Wε = (Sε − Uε).
From Lemma (6.2), for any (t, x) ∈ R2

+, we have

|Wε(t, x)| ≤M1e
M1|t−L−1

ε (x)|
∣∣∣∣∣
∫ t

L−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣∣
+
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
.

where, for all ε,

σε (t, x) =

∫ t

L−1
ε (x)

Iε(τ, x)dτ.

As (Lε)ε ∈ LOM
(R+), we know that

(
L−1
ε

)
ε
∈ MOM

(R+) moreover V ∈
OM (R+) so V ◦ L−1

ε ∈MOM
(R+).

Furthermore, as (Jε)ε ∈ NOM
(R+),

(
L−1
ε

)
ε
∈ MOM

(R+) and they preserve

slow scale points, we have that
(
Jε ◦ L−1

ε

)
ε
∈ NOM

(R+).
We set, for all ε,

σε (t, x) =

∫ t

l−1
ε (x)

Iε(τ, x)dτ.

We have to check that
(|σε|)ε ∈ NOM

(
R2

+

)
.
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Let [(tε, xε)ε] ∈ R̃2
+ be a slow scale point. Then [(xε)ε] ∈ R̃+ is a slow scale

point and [(yε)ε] =
[(
L−1
ε (xε)

)
ε

]
is also a slow scale point. We have

∀ε,∃cε ∈ [yε, tε], |σε(tε, xε)| =
∣∣∣∣∫ tε

yε

Iε(τ, xε)dτ

∣∣∣∣ = |tε − yε| Iε(cε, xε)

but as |cε| ≤ max(|yε| , |tε|), [(cε)ε] is also a slow scale point. But then

[(cε, xε)ε] is a slow scale point of R̃2
+ so that (Iε(cε, xε))ε ∈ NR+

and finally
(|σε(tε, xε)|)ε ∈ NR+

, thus (|σε|)ε lies in NOM

(
R2

+

)
.

We have (|σε|)ε ∈ NOM

(
R2

+

)
and

(
V ◦ L−1

ε

)
ε
∈ NOM

(R+), thus(
(t, x) 7→

∣∣Jε(L−1
ε (x))

∣∣+ |σε (t, x)|
)
ε
∈ NOM

(
R2

+

)
.

Put

bε(t, x) =

∣∣∣∣∣
∫ t

l−1
ε (x)

(∣∣Jε(L−1
ε (x))

∣∣+ |σε (τ, x)|
)

dτ

∣∣∣∣∣ ,
then (bε)ε ∈ NOM

(
R2

+

)
.

So, for each ∀m ∈ N, ∃p ∈ N,∃ε0, ∀ε < ε0,

sup
(t,x)∈R2

+

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
≤ εm

and
sup

(t,x)∈R2
+

(1 + |t|+ |x|)−p |(bε(t, x))| ≤ εm.

Thus

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
≤ εm

and
sup

(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |(bε(t, x))| ≤ εm.

Consequently (∀m ∈ N) (∃ε0) (∀ε < ε0)

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |wε(t, x)|

≤ sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p
(∣∣Jε(L−1

ε (x))
∣∣+ |σε (t, x)|

)
+M1( sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|) sup

(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |(bε(t, x))|

≤ εm +M1( sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)|)εm.

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have

sup
(t,x)∈[0,T ]×[0,∞[

eM1|t−L−1
ε (x)| = sup

(t,x)∈[0,T ]×[0,∞[

eM1|t−l−1
ε (x)| ≤ eM1T .
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So ∀k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |wε(t, x)| ≤ εk.

According to Theorem 5.4, we deduce that

(wε)ε ∈ NOM
([0, T ]× [0,∞[) .

Thus the solution is unique in GOM
([0, T ]× [0,∞[).
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[2] Allaud, E., Dévoué, V., Delcroix, A., Marti, J.-A., Vernaeve, H., On the Well-
posedeness in Some Generalized Characteristic Cauchy Problems. Mathematical
Modelling of Natural Phenomena 11 (2) (2016), 89-99.

[3] Aragona,J., Colombeau generalized functions on quasi-regular sets. Publ. Math.
Debrecen 68 (3-4) (2006), 371-399.

[4] Biagioni, H., A Nonlinear Theory of Generalized Functions. Lecture Notes in
Math. 1421, Springer-Verlag, 1990.

[5] Delcroix, A., A new approach to temperate generalized Colombeau functions.
Publ. Inst. Math. Beograd Novi Sad, 84(98) (2008), 109-121.

[6] Hasler, M., Marti, J.-A., Towards point-value characterizations in multi-
parameter algebras. Novi Sad J. Math. 41 (1) (2011), 21-31.

[7] Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R., Geometric
Theory of Generalized Functions with Applications to General Relativity. Dor-
drecht: Kluwer Academic Publ., 2001.

[8] Vernaeve, H., Pointwise characterizations in generalized function algebras.
Monatsh. Math. 158 (2009), 195-213.

Received by the editors July 5, 2016
First published online August 13, 2016


	Introduction
	First extension of classical spaces
	Topology on the algebra of slowly increasing functions
	A tempered algebra on the closure of an open set
	Point values characterization
	A new definition of GOM()
	Zero derivative and slow scale elements
	Point values characterization of elements of GOM()

	Application: uniqueness for a nonlinear Cauchy problem

