FACTORIZATION OF OPERATORS WITH $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ AND $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ KERNELS
 Smiljana Jakšićm and Snježana Maksimović ${ }^{\text {BI }}$

Abstract

The aim of this paper is to prove that any linear operator with kernel in the spaces $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha \geq 1$ and $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$ is a composition of two operators in the same space. AMS Mathematics Subject Classification (2010): 47B34; 45P05 Key words and phrases: Laguerre functions; ultradistributions over $[0, \infty)^{d}$; kernel theorems; factorization algebra

1. Introduction

The test space $\mathcal{S}\left(\mathbb{R}_{+}\right)$for the space of tempered distributions supported by $[0, \infty)$ is studied in $[3],[9]$ and $[\llbracket 2]$; recently, the space $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is examined in [5]. In [G] G-type spaces, $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha \geq 1$ and their dual spaces, i.e. the spaces of ultradistributions of Roumier type over $[0, \infty)^{d}$, are characterized in terms of their Fourier-Laguerre coefficients; cf. Duran [4] for the one-dimensional case. Actually, the result of [4] is extended and the full topological characterization is given in all dimensions, as well as applications to pseudo-differential operators with radial symbols.

In this paper we introduce g-type spaces, $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$ and their dual spaces i.e. the spaces of ultradistributions of Beurling type over $[0, \infty)^{d}$. We give the kernel theorem for $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$.

For any topological vector space \mathcal{B}, the set of continuous linear functionals on \mathcal{B}, denoted by $\mathcal{M}=\mathfrak{L}(\mathcal{B})$, is a factorization algebra (also the term decomposition algebra can be used). This means that any operator T in \mathcal{M} is a composition of two operators T_{1}, T_{2} in \mathcal{M} since we can choose T_{1} as the identity operator and $T_{2}=T$. If \mathcal{B} is a Hilbert space, then it follows from spectral decomposition that the set of compact operators on \mathcal{B} is a factorization algebra, where the factorization properties are obtained by straightforward applications of the spectral theorem.

An interesting subclass of linear and continuous operators on an L^{2} space concerns the set of all linear operators whose kernels belong to the Schwartz space (see e.g. [[]], [T],[IT]). Similar facts hold true for the set of operators with kernels in Gelfand-Shilov spaces (cf. [[⿴囗]) and Pilipović spaces (cf. [2]).

[^0]In this paper we consider the case when \mathcal{M} is the set of all linear operators with kernels in $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha \geq 1$ and $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$ spaces. We prove that any such \mathcal{M} is a factorization algebra. Note that the identity operator does not belong to these operator classes.

2. Preliminaries

We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ and \mathbb{C} the sets of positive integers, integers, real and complex numbers, respectively; $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{R}_{+}=(0, \infty), \mathbb{R}_{+}^{d}=$ $(0, \infty)^{d}$ and $\overline{\mathbb{R}_{+}^{d}}=[0, \infty)^{d}$. We use the standard multi-index notation. Let $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{N}_{0}^{d}$. Then $|x|=\sqrt{x_{1}^{2}+\ldots+x_{d}^{2}}$, $|k|=k_{1}+\ldots+k_{d}, k!=k_{1}!\cdots k_{d}!, x^{k}=\prod_{i=1}^{d} x_{i}^{k_{i}}, D^{k}=\prod_{i=1}^{d} \partial^{k_{i}} / \partial x_{i}^{k_{i}}$. Furthermore, if $x, \gamma \in \overline{\mathbb{R}_{+}^{d}}$ we also use $x^{\gamma}=\prod_{j=1}^{d} x_{j}^{\gamma_{j}}$. In this case, if $x_{j}=0$ and $\gamma_{j}=0$, we use the convention $0^{0}=1$.

For $j \in \mathbb{N}_{0}$ and $\gamma>-1$, the j-th Laguerre polynomial of order γ is defined by

$$
L_{j}^{\gamma}(x)=\frac{x^{-\gamma} e^{x}}{j!} \frac{d^{j}}{d x^{j}}\left(e^{-x} x^{\gamma+j}\right), \quad x \geq 0
$$

For $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbb{R}^{d}$ such that $\gamma_{j}>-1, j=1, \ldots, d$ and $n \in \mathbb{N}_{0}^{d}$, the d-dimensional n-th Laguerre polynomial of order γ is defined by $L_{n}^{\gamma}(x)=$ $L_{n_{1}}^{\gamma_{1}}\left(x_{1}\right) \ldots L_{n_{d}}^{\gamma_{d}}\left(x_{d}\right)$. For $\gamma=0$, we write $L_{n}(x)$ instead of $L_{n}^{0}(x)$.

The j-th Laguerre function (of order 0) is defined by $l_{j}(x)=L_{j}(x) e^{-x / 2}$, $x \geq \underline{0, j} j \in \mathbb{N}_{0}$ and in a d-dimensional case we have $l_{n}(x)=l_{n_{1}}\left(x_{1}\right) \ldots l_{n_{d}}\left(x_{d}\right)$, $x \in \overline{\mathbb{R}_{+}^{d}}, n \in \mathbb{N}_{0}^{d}$. The Laguerre functions form an orthonormal basis for $L^{2}\left(\mathbb{R}_{+}^{d}\right)$. Also, they have a special role for the characterisation of the spaces $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$, $\alpha \geq 1$ and $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$ considered below.

2.1. Basic spaces

We denote by \mathbb{R}_{+}^{d} the set $(0, \infty)^{d}$ and by $\overline{\mathbb{R}_{+}^{d}}$ its closure, i.e. $[0, \infty)^{d}$. The space $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ consists of all $f \in \mathcal{C}^{\infty}\left(\mathbb{R}_{+}^{d}\right)$ such that all derivatives $D^{p} f, p \in \mathbb{N}_{0}^{d}$, extend to continuous functions on $\overline{\mathbb{R}_{+}^{d}}$ and

$$
\sup _{x \in \mathbb{R}_{+}^{d}} x^{k}\left|D^{p} f(x)\right|<\infty, \forall k, p \in \mathbb{N}_{0}^{d}
$$

Let $A>0$. We denote by $G_{\alpha, A}^{\alpha, A}\left(\mathbb{R}_{+}^{d}\right)$ the space of all $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ for which

$$
\sup _{p, k \in \mathbb{N}_{0}^{d}} \frac{\left\|t^{(p+k) / 2} D^{p} f(t)\right\|_{2}}{A^{|p+k|} k^{(\alpha / 2) k} p^{(\alpha / 2) p}}<\infty
$$

With the following seminorms

$$
\sigma_{A, j}(f)=\sup _{p, k \in \mathbb{N}_{o}^{d}} \frac{\left\|t^{(p+k) / 2} D^{p} f(t)\right\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}}{A^{|p+k|} k^{(\alpha / 2) k} p^{(\alpha / 2) p}}+\sup _{\substack{|p| \leq j \\|k| \leq j}} \sup _{t \in \mathbb{R}_{+}^{d}}\left|t^{k} D^{p} f(t)\right|, j \in \mathbb{N}_{0}
$$

one easily verifies that it becomes an (F)-space.
Define $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)=\lim _{A \rightarrow \infty} G_{\alpha, A}^{\alpha, A}\left(\mathbb{R}_{+}^{d}\right)$ and $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)=\lim _{A \rightarrow 0} G_{\alpha, A}^{\alpha, A}\left(\mathbb{R}_{+}^{d}\right)$. Clearly, $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha \geq 1$ and $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \alpha>1$ are continuously injected into $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ i.e.

$$
g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right) \hookrightarrow G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right) \hookrightarrow \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)
$$

We immediately have

$$
\begin{equation*}
\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime}=\bigcup_{A \in \mathbb{N}}\left(G_{\alpha, A}^{\alpha, A}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime} \tag{2.1}
\end{equation*}
$$

in the set theoretical sense (see [$\underline{\theta},(1.2), \mathrm{p} .34]$). Since the sequence $G_{\alpha, A}^{\alpha, A}\left(\mathbb{R}_{+}^{d}\right)$, when $A \rightarrow \infty$, is reduced, we have

$$
\begin{equation*}
\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime}=\bigcap_{A \in \mathbb{N}}\left(G_{\alpha, 1 / A}^{\alpha, 1 / A}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime} \tag{2.2}
\end{equation*}
$$

in the set theoretical sense (see [$8,(1.1)$, p.33]).
Let $\alpha \geq 1$ and $a>1$. We define $s^{\alpha, a}$ as the space of all complex sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}$ for which $\left\|\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}\right\|_{s^{\alpha, a}}=\sup _{n \in \mathbb{N}_{0}^{d}}\left|a_{n}\right| a^{|n|^{1 / \alpha}}<\infty$. With this norm $s^{\alpha, a}$ becomes a (B)-space. We define $s^{\alpha}=\underset{a \rightarrow 1^{+}}{\lim } s^{\alpha, a}\left(\right.$ resp. $\sigma^{\alpha}=\lim _{a \rightarrow \infty}^{\leftrightarrows} \sigma^{\alpha, a}$). In particular, s^{α} is a $(D F N)$-space (resp. σ^{α} is a $(F N)$-space). The strong dual $\left(s^{\alpha}\right)^{\prime}$ of s^{α} is an $(F N)$-space of all complex valued sequences $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}$ such that, for each $a>1,\left\|\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}\right\|_{\left(s^{\alpha, a}\right)^{\prime}}=\sum_{n \in \mathbb{N}_{0}^{d}}\left|b_{n}\right| a^{-|n|^{1 / \alpha}}<\infty$ (resp. the strong dual $\left(\sigma^{\alpha}\right)^{\prime}$ of σ^{α} is a $(D F N)$-space of all complex valued sequences $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}$ such that there exists $a>1$ such that $\left.\left\|\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}\right\|_{\left(s^{\alpha, a}\right)^{\prime}}<\infty\right)$.

Theorem 2.1. ([直, Theorem 5.7.]) Let $\alpha \geq 1$. For $f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ let $a_{n}=$ $\int_{\mathbb{R}_{+}^{d}} f(t) l_{n}(t) d t, n \in \mathbb{N}_{0}^{d}$. Then $f \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ if and only if there exist $c>0$ and $a>1$ such that $\left|a_{n}\right| \leq c a^{-|n|^{1 / \alpha}}$.

With small modifications of the arguments (using the closed graph theorem for an F-space), we have the next theorem

Theorem 2.2. Let $\alpha>1$. For $f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ let $a_{n}=\int_{\mathbb{R}_{+}^{d}} f(t) l_{n}(t) d t, n \in \mathbb{N}_{0}^{d}$. Then $f \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ if and only if for every $a>1$ there exists $c>0$ such that $\left|a_{n}\right| \leq c a^{-|n|^{1 / \alpha}}$.
Theorem 2.3. ([自, Theorem 6.1]) Let $\alpha \geq 1$. The mapping $\iota: G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right) \rightarrow s^{\alpha}$, $\iota(f)=\left\{\left\langle f, l_{n}\right\rangle\right\}_{n \in \mathbb{N}_{0}^{d}}$, is a topological isomorphism between $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ and s^{α}.

For each $f \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \sum_{n \in \mathbb{N}_{0}^{d}}\left\langle f, l_{n}\right\rangle l_{n}$ is summable to f in $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$.
In a similar way, we prove the next theorem.
Theorem 2.4. Let $\alpha>1$. The mapping $\iota: g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right) \rightarrow \sigma^{\alpha}, \iota(f)=\left\{\left\langle f, l_{n}\right\rangle\right\}_{n \in \mathbb{N}_{0}^{d}}$, is a topological isomorphism between $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$ and σ^{α}.

For each $f \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right), \sum_{n \in \mathbb{N}_{0}^{d}}\left\langle f, l_{n}\right\rangle l_{n}$ is summable to f in $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$.

The last four results are crucial and we will often tacitly apply them throughout the rest of this article.

3. G - and g - kernels

Firstly, we state the kernel theorems:
Theorem 3.1. ([6, Theorem 6.4.]) Let $\alpha \geq 1$. We have the following canonical isomorphism:

$$
\begin{equation*}
\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}}\right)\right)^{\prime} \hat{\otimes}\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime} \cong\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}+d_{2}}\right)\right)^{\prime} \cong \mathcal{L}\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}}\right),\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime}\right) \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let $\alpha>1$. We have the following canonical isomorphism:

$$
\begin{equation*}
\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}}\right)\right)^{\prime} \hat{\otimes}\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime} \cong\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}+d_{2}}\right)\right)^{\prime} \cong \mathcal{L}\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}}\right),\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime}\right) \tag{3.2}
\end{equation*}
$$

Proof. The proof for $\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime}$ can be obtained it the same way as for $\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime}$ in Theorem 3.1 .

The isomorphisms (3.1) and ([.2.2) require some comment. In what follows we use the convention that if T is a linear and continuous operator from $G_{1}^{1}\left(\mathbb{R}_{+}^{d_{1}}\right)$ to $\left(G_{1}^{1}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime}$, and $g \in\left(G_{1}^{1}\left(\mathbb{R}_{+}^{d_{0}}\right)\right)^{\prime}$, then $T \otimes g$ is the linear and continuous operator from $G_{1}^{1}\left(\mathbb{R}_{+}^{d_{1}}\right)$ to $\left(G_{1}^{1}\left(\mathbb{R}_{+}^{d_{2}+d_{0}}\right)\right)^{\prime}$, given by

$$
(T \otimes g): f \mapsto(T f) \otimes g
$$

The following theorem is the main result of this paper.
Theorem 3.3. Let T be a linear and continuous operator from $G_{1}^{1}\left(\mathbb{R}_{+}^{d_{1}}\right)$ to $\left(G_{1}^{1}\left(\mathbb{R}_{+}^{d_{2}}\right)\right)^{\prime}$ with the kernel K, and let $d_{0} \geq \min \left(d_{1}, d_{2}\right)$. Then the following is true:
(R) If $\alpha \geq 1$ and $K \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right)$, then there are operators T_{1} and T_{2} with kernels $K_{1} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{0}+d_{1}}\right)$ and $K_{2} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{0}}\right)$, respectively, such that $T=T_{2} \circ T_{1}$.
(B) If $\alpha>1$ and $K \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right)$, then there are operators T_{1} and T_{2} with kernels $K_{1} \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{0}+d_{1}}\right)$ and $K_{2} \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{0}}\right)$, respectively, such that $T=T_{2} \circ T_{1}$.

Remark 3.4. Let $\alpha \geq 1$. An operator with kernel in $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{2 d}\right)$ is sometimes called a regularizing operator with respect to $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$, because it extends uniquely to a continuous mapping from $\left(G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)\right)^{\prime}$, into $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$.

Let $\alpha>1$. An operator with kernel in $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{2 d}\right)$ is sometimes called a regularizing operator with respect to $g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d}\right)$.

Proof. First we assume that $d_{0}=d_{1}$, and start to prove (R). Let $l_{d, n}(x)$ be the Laguerre function on \mathbb{R}_{+}^{d} of order $n \in \mathbb{N}^{d}$. Then K possesses the expansion

$$
\begin{equation*}
K(x, y)=\sum_{n \in \mathbb{N}^{d_{2}}} \sum_{k \in \mathbb{N}^{d_{1}}} a_{n, k} l_{d_{2}, n}(x) l_{d_{1}, k}(y) \tag{3.3}
\end{equation*}
$$

where the coefficients $a_{n, k}$ satisfy

$$
\begin{equation*}
\sup _{n, k}\left|a_{n, k} e^{A\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right|<\infty \tag{3.4}
\end{equation*}
$$

for some $A>0$. Let $z \in \mathbb{R}_{+}^{d_{1}}$ and

$$
\begin{array}{r}
K_{0,1}(z, y)=\sum_{n, k \in \mathbb{N}^{d_{1}}} c_{n, k} l_{d_{1}, n}(z) l_{d_{1}, k}(y) \\
K_{0,2}(x, z)=\sum_{n \in \mathbb{N}^{d_{2}}} \sum_{k \in \mathbb{N}^{d_{1}}} b_{n, k} l_{d_{2}, n}(x) l_{d_{1}, k}(z) \tag{3.5}
\end{array}
$$

where

$$
c_{n, k}=\chi_{n, k} e^{-\frac{A}{2}|n|^{1 / \alpha}} \text { and } b_{n, k}=a_{n, k} e^{\frac{A}{2}|k|^{1 / \alpha}}
$$

and $\chi_{n, k}$ is the Kronecker delta. Then we have

$$
\int K_{0,2}(x, z) K_{0,1}(z, y) d z=\sum_{n \in \mathbb{N}^{d_{2}}} \sum_{k \in \mathbb{N}^{d_{1}}} a_{n, k} l_{d_{2}, n}(x) l_{d_{1}, k}(y)=K(x, y)
$$

Hence, if T_{j} is the operator with kernel $K_{0, j}, j=1,2$, then $T=T_{2} \circ T_{1}$. Furthermore,

$$
\sup _{n, k}\left|b_{n, k} e^{\frac{A}{2}\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right| \leq \sup _{n, k}\left|a_{n, k} e^{A\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right|<\infty
$$

and

$$
\sup _{n, k}\left|c_{n, k} e^{\frac{A}{4}\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right|=\sup _{n}\left|e^{-\frac{A}{2}|n|^{1 / \alpha}} e^{\frac{A}{2}|n|^{1 / \alpha}}\right|<\infty .
$$

This implies that $K_{0,1} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}+d_{1}}\right)$ and $K_{0,2} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right.$) (see Theorem [2.1). If we put $K_{1}=K_{0,1}$ and $K_{2}=K_{0,2}$, we proved (R) in the case when $d_{0}=d_{1}$.

In order to prove (B) assume that $K \in g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right)$ and let $a_{n, k}$ be the same as the above. Then (ㄹ.4) holds for any $A>0$, which implies that if $N \geq 0$ is an integer, then

$$
\begin{equation*}
\Sigma_{N}=\sup \left\{|k|:\left|a_{n, k}\right| \geq e^{-2(N+1)\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)} \text { for some } n \in \mathbb{N}^{d_{2}}\right\} \tag{3.6}
\end{equation*}
$$

is finite. Let $I_{1}=\left\{k \in \mathbb{N}^{d_{1}}:|k| \leq \Sigma_{1}+1\right\}$ and define inductively

$$
I_{j}=\left\{k \in \mathbb{N}^{d_{1}} \backslash I_{j-1}:|k| \leq \Sigma_{j}+j\right\}, j \geq 2
$$

Then

$$
I_{j} \cap I_{k}=\emptyset \text { when } j \neq k, \quad \text { and } \quad \mathbb{N}^{d_{1}}=\bigcup_{j \geq 1} I_{j} .
$$

Let $K_{0,1}$ and $K_{0,2}$ be as in (3.5) where

$$
c_{n_{1}, k}=\chi_{n_{1}, k} e^{-j|k|^{1 / \alpha}} \quad \text { and } \quad b_{n_{2}, k}=a_{n_{2}, k} e^{j|k|^{1 / \alpha}}
$$

$n_{1} \in \mathbb{N}^{d_{1}}, n_{2} \in \mathbb{N}^{d_{2}}$ and $k \in I_{j}$. If T_{j} is the operator with kernel $K_{0, j}, j=1,2$, then it follows that $T=T_{2} \circ T_{1}$. Moreover, if $A>0$ we have

$$
\sup _{n, k}\left|b_{n, k} e^{A\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right| \leq J_{1}+J_{2}
$$

where

$$
\begin{equation*}
J_{1}=\sup _{j \leq A+1} \sup _{n} \sup _{k \in I_{j}}\left|b_{n, k} e^{A\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right| \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{2}=\sup _{j>A+1} \sup _{n} \sup _{k \in I_{j}}\left|b_{n, k} e^{A\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)}\right| \tag{3.8}
\end{equation*}
$$

We will prove that J_{1} and J_{2} are finite. Since in (5.7) we have the finite numbers of k, from (3.4) and the definition of $b_{n, k}$ we obtain that J_{1} is finite.

For J_{2} we have

$$
\begin{aligned}
J_{2} & =\sup _{j>A+1} \sup _{n} \sup _{k \in I_{j}}\left|a_{n, k} e^{A|n|^{1 / \alpha}+(A+j)|k|^{1 / \alpha}}\right| \\
& \leq \sup _{j>A+1} \sup _{n} \sup _{k \in I_{j}}\left|e^{-2 j\left(|n|^{1 / \alpha}+|k|^{1 / \alpha}\right)} e^{A|n|^{1 / \alpha}+(A+j)|k|^{1 / \alpha}}\right|<\infty
\end{aligned}
$$

where the first inequality follows from (3.6). Hence,

$$
K_{2} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{0}}\right)\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{0}}\right)\right) \Longleftrightarrow K_{0,1} \in G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right)\left(g_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}+d_{1}}\right)\right)
$$

It remains to prove the result in the case $d_{0} \geq d_{2}$. The rules of d_{1} and d_{2} are interchanged when taking the adjoint opeartors. Hence, the result follows from the first part of the proof in combination with the facts that G_{α}^{α} and g_{α}^{α} are invariant under pullbacks of bijective linear transformations i.e. $(x, y) \mapsto$ $F(x, y)$ belongs to $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{1}} \times \mathbb{R}_{+}^{d_{2}}\right)$ if and only if $(y, x) \mapsto \overline{F(x, y)}$ belongs to $G_{\alpha}^{\alpha}\left(\mathbb{R}_{+}^{d_{2}} \times \mathbb{R}_{+}^{d_{1}}\right)$. The proof is complete.

Acknowledgement

This work is supported by the Project 19/6-020/961-38/15 of the Republic of Srpska Ministry of Science and Technology.

References

[1] Beals, R., Characterization of pseudodifferential operators and applications. Duke Math. J. 44 (1977), 45-57.
[2] Chen, Y., Signahl, M., Toft, J., Factorizations and singular value estimates of operators with Gelfand-Shilov and Pilipović kernels. arXiv:1511.06257
[3] Duran, A.J., Laguerre expansions of Tempered Distributions and Generalized Functions. Journal of Mathematical Analysis and Applications 150 (1990), 166180.
[4] Duran, A.J., Laguerre expansions of Gel'fand-Shilov spaces, J. Approx. Theory 74 (1993), 280-300.
[5] Jakšić, S., Prangoski, B., Extension theorem of Whitney type for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ by the use of the Kernel Theorem. Publ. Inst. Math. Beograd, 99 (113) (2016), 59-65.
[6] Jakšić, S., Pilipović, S., Prangoski, B., G-type spaces of ultradistributions over \mathbb{R}_{+}^{d} and the Weyl pseudo-differential operators with radial symbols. arXiv:1602.04017.
[7] Klis, C., A simple proof of the identity $\mathcal{S} \circ \mathcal{S}=\mathcal{S}$: In: Proc. of the Conference on Convergence and Generalized Functions, Katowice 1983, Preprint of the Institute of Math., Polish Academy of Sci., pp. 71-74.
[8] Komatsu, H., Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105.
[9] Pilipović, S., On the Laguerre expansions of generalized functions. C. R. Math. Rep. Acad. Sci. Canada 11(1) (1989), 23-27.
[10] Toft, J., Khrennikov, A., Nilsson, B., Nordebo, S., Decompositiond of GelfandShilov kernels into kernels of similar class. Journal of Mathematical Analysis and Applications 396 (1) (2012), 315-322.
[11] Voigt, J., Factorization in some Fréchet algebras of differentiable functions. Studia Math. 77 (1984), 333-348.
[12] Zayed, A. I., Laguerre series as boundary values. SIAM J. Math. Anal. 13 (2) (1982), 263-279.

Received by the editors April 26, 2016
First published online October 12, 2016

[^0]: ${ }^{1}$ Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000, Belgrade, Serbia, e-mail: smiljana.jaksic@stb.bg.ac.rs
 ${ }^{2}$ Corresponding author
 ${ }^{3}$ Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina, e-mail: snjezana.maksimovic@ettbl.net

