ON A LORENTZIAN PARA-SASAKIAN MANIFOLD WITH RESPECT TO THE QUARTER-SYMMETRIC METRIC CONNECTION

Rajendra Prasad ${ }^{[}$and Abdul Haseeb ${ }^{[23]}$

Abstract

In this paper, we study certain curvature conditions satisfying by the conharmonic curvature tensor in a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection.

AMS Mathematics Subject Classification (2010): 53B05; 53C25
Key words and phrases: Lorentzian para-Sasakian manifold; quartersymmetric metric connection; η-Einstein manifold; conharmonic curvature tensor

1. Introduction

In 1989, K. Matsumoto [I7] introduced the notion of Lorentzian paraSasakian manifolds. I. Mihai and R. Rosca [[19] introduced the same notion indepedently and obtained several results. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [[I8]; U. C. De, K. Matsumoto and A. A. shaikh [3] and many others such as ([201],[23]]-[25]]).

A linear connection $\bar{\nabla}$ in a Riemannian manifold M is said to be a quartersymmetric connection $[\bar{Z}]$ if the torsion tensor T of the connection $\bar{\nabla}$

$$
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y]
$$

satisfies

$$
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y
$$

where η is a 1 -form and ϕ is a $(1,1)$ tensor field. If moreover, a quartersymmetric connection $\bar{\nabla}$ satisfies the condition

$$
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0
$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields of the manifold M, then $\bar{\nabla}$ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection. If we put $\phi X=X$ and $\phi Y=Y$, then the quarter-symmetric metric connection reduces

[^0]to the semi-symmetric metric connection [7]. Thus the notion of the quartersymmetric connection generalizes the notion of the semi-symmetric connection. A quarter-symmetric metric connection have been studied by various authors ([I], [5], [Y]-[II], [I4]-[I6]).

A relation between the quarter-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ in an n-dimensional Lorentzian para-Sasakian manifold M is given by [2T]

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y-\eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

T. Takahashi [[26] introduced the notion of locally ϕ-symmetry on a Sasakian manifold and obtained few interesting properties. U. C. De, A.A. Shaikh and S. Biswas [6] generalized the notion of ϕ-symmetric manifolds to ϕ-recurrent manifolds in the context of Sasakian manifold. Venkatesha and C.S.Bagewadi [27] studied concircular ϕ-recurrent $L P$-Sasakian manifolds which generalizes the notion of locally concircular ϕ-symmetric $L P$-Sasakian manifolds and obtain some interesting results. Recently, U. C. De and Pradip Manjhi have studied ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric generalized Sasakian space forms and give some illustrative examples [4].

Motivated by the above studies, in this paper we study certain curvature conditions satisfying by the conharmonic curvature tensor in a Lorentzian paraSasakian manifold with respect to the quarter-symmetric metric connection.

The paper is organized as follows: In Section 2, we give a brief introduction of a Lorentzian para-Sasakian manifold. In Section 3, we deduce the relation between the curvature tensor of Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection and the Levi-Civita connection. Sections 4 and 5 are devoted to study conharmonically flat and ϕ-conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection, respectively. Section 6 deals with the study of ϕ-conharmonically semi-symmetric η-Einstein Lorentzian paraSasakian manifold with respect to the quarter-symmetric metric connection. In Section 7, we study Lorentzian para-Sasakian manifolds satisfying the condition $\bar{C}(\xi, X) \cdot \bar{S}=0$. Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quarter-symmetric metric connection and manifold if recurrent with a Levi-Civita connection is studied in Section 8.

2. Preliminaries

A differentiable manifold of dimension n is called a Lorentzian para-Sasakian manifold, if it admits a (1,1)-tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi, \quad \eta(\xi)=-1, \tag{2.1}\\
g(X, \xi)=\eta(X), \quad \phi \xi=0, \quad \eta(\phi X)=0 \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=\phi X \tag{2.5}
\end{equation*}
$$

where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g.
If we put

$$
\begin{equation*}
\Phi(X, Y)=g(\phi X, Y) \tag{2.6}
\end{equation*}
$$

for all vector fields X and Y, then the tensor field $\Phi(X, Y)$ is a symmetric $(0,2)$ tensor field [I7]. Also since the 1-form η is closed in an $L P$-Sasakian manifold, we have [3]

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Phi(X, Y), \quad \Phi(X, \xi)=0 \tag{2.7}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$.
Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian para-Sasakian manifold M with respect to the Levi-Civita connection satisfy the following equations [24]:

$$
\begin{gather*}
\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.8}\\
R(\xi, X) Y=-R(X, \xi) Y=g(X, Y) \xi-\eta(Y) X \tag{2.9}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.10}\\
R(\xi, X) \xi=-R(X, \xi) \xi=X+\eta(X) \xi \tag{2.11}\\
S(X, \xi)=(n-1) \eta(X), \quad Q \xi=(n-1) \xi \tag{2.12}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.13}
\end{gather*}
$$

for all vector fields $X, Y \in \chi(M)$.
Definition 2.1. A Lorentzian para-Sasakian manifold M is said to be an η Einstein manifold if its Ricci tensor S of type (0,2) satisfies

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.14}
\end{equation*}
$$

where a and b are smooth functions on M. In particular, if $b=0$, then an η-Einstein manifold is an Einstein manifold.

Contracting ([2.14), we have

$$
\begin{equation*}
r=n a-b \tag{2.15}
\end{equation*}
$$

On the other hand, putting $X=Y=\xi$ in (2.14) and using (2.1), (2.2) and (2.L2), we also have

$$
\begin{equation*}
-(n-1)=-a+b \tag{2.16}
\end{equation*}
$$

Hence it follows from (2.5.5) and (2.56) that

$$
a=\frac{r}{n-1}-1, \quad b=\frac{r}{n-1}-n .
$$

So the Ricci tensor S of an η-Einstein Lorentzian para-Sasakian manifold is given by

$$
\begin{equation*}
S(X, Y)=\left(\frac{r}{n-1}-1\right) g(X, Y)+\left(\frac{r}{n-1}-n\right) \eta(X) \eta(Y) \tag{2.17}
\end{equation*}
$$

3. Curvature tensor of a Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

If R and \bar{R}, respectively, are the curvature tensors of the Levi-Civita connection ∇ and the quarter-symmetric metric connections $\bar{\nabla}$ in a Lorentzian para-Sasakian manifold M. Then we have [$Z]$

$$
\begin{gather*}
\bar{R}(X, Y) Z=R(X, Y) Z+\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{3.1}\\
+g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
\bar{R}(\xi, Y) Z=-\bar{R}(Y, \xi) Z=-2 \eta(Z) Y-2 \eta(X) \eta(Y) \xi \tag{3.2}\\
\bar{R}(X, Y) \xi=2 \eta(Y) X-\eta(X) Y \tag{3.3}\\
\bar{S}(Y, Z)=S(Y, Z)-g(Y, Z)-n \eta(Y) \eta(Z) \tag{3.4}\\
\bar{Q} Y=Q Y-Y-n \eta(Y) \xi, \quad \bar{Q} \xi=2(n-1) \xi \tag{3.5}\\
\bar{S}(Y, \xi)=2(n-1) \eta(Y), \quad \bar{S}(\xi, \xi)=-2(n-1) \tag{3.6}\\
\bar{S}(\phi Y, \phi Z)=S(Y, Z)-g(Y, Z)-(n-2) \eta(Y) \eta(Z) \tag{3.7}
\end{gather*}
$$

for all vector fields $X, Y, Z \in \chi(M)$.

4. Conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

As a special subgroup of the conformal transformation group, Ishii [14] introduced the notion of conharmonic transformation under which a harmonic function transform into a harmonic function. The conharmonic curvature tensor C of type $(1,3)$ in a Lorentzian para-Sasakian manifold M of dimension n is defined by ([[I2],[[]3])

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{(n-2)}[S(Y, Z) X-S(X, Z) Y \tag{4.1}\\
& +g(Y, Z) Q X-g(X, Z) Q Y]
\end{align*}
$$

for all vector fields $X, Y, Z \in \chi(M)$, which is invariant under conharmonic transformation.

Analogous to the equation (4.0), we define the conharmonic curvature tensor \bar{C} in a Lorentzian para-Sasakian manifold M with respect to the quarter symmetric metric connection $\bar{\nabla}$ by

$$
\begin{align*}
\bar{C}(X, Y) Z= & \bar{R}(X, Y) Z-\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y \tag{4.2}\\
& +g(Y, Z) \bar{Q} X-g(X, Z) \bar{Q} Y]
\end{align*}
$$

where \bar{R}, \bar{S} and \bar{Q} are the Riemannian curvature tensor, the Ricci tensor and the Ricci operator with respect to the connection $\bar{\nabla}$, respectively. A manifold whose conharmonic curvature tensor vanishes at every point of the manifold is called conharmonically flat manifold.

Let us assume that the manifold M with respect to the quarter-symmetric metric connection is conharmonically flat, that is, $\bar{C}=0$. Then from (4.2), we have

$$
\begin{equation*}
\bar{R}(X, Y) Z=\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y+g(Y, Z) \bar{Q} X-g(X, Z) \bar{Q} Y] \tag{4.3}
\end{equation*}
$$

By putting $Y=Z=\xi$ in (4.3) and then using (3.3), (3.6) and ([2.2), we find

$$
\begin{equation*}
\bar{Q} X=-2 X-2 n \eta(X) \xi \tag{4.4}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\bar{Q} Y=-2 X-2 n \eta(Y) \xi . \tag{4.5}
\end{equation*}
$$

Now from (4.3)-(4.5), we have

$$
\begin{equation*}
\bar{R}(X, Y) Z=\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y-2 g(Y, Z) X+2 g(X, Z) Y \tag{4.6}
\end{equation*}
$$

$$
-2 n g(Y, Z) \eta(X) \xi+2 n g(X, Z) \eta(Y) \xi] .
$$

$$
\bar{S}(Y, Z)=-2(n-1) g(Y, Z)-4(n-1) \eta(Y) \eta(Z)
$$

which by using (3.4) becomes

$$
\begin{equation*}
S(Y, Z)=-(2 n-3) g(Y, Z)-(3 n-4) \eta(Y) \eta(Z) \tag{4.7}
\end{equation*}
$$

Hence contracing (4.7), we obtain

$$
\begin{equation*}
r=-2(n-1)(n-2) \tag{4.8}
\end{equation*}
$$

Thus we have the following theorem:
Theorem 4.1. An n-dimensional conharmonically flat Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection is an η-Einstein manifold with the scalar curvature $r=-2(n-1)(n-2)$.

5. ϕ-conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

Definition 5.1 ([[22] $)$. An n-dimensional $(n>3)$ Lorentzian para-Sasakian manifold satisfying the condition

$$
\begin{equation*}
\phi^{2} C(\phi X, \phi Y) \phi Z=0 \tag{5.1}
\end{equation*}
$$

is called ϕ-conharmonically flat.
Analogous to the equation (5. 1), we define an n-dimensional Lorentzian para-Sasakian manifold is said to be ϕ-conharmonically flat with respect to the quarter-symmetric metric connection if it satisfies

$$
\begin{equation*}
\phi^{2} \bar{C}(\phi X, \phi Y) \phi Z=0 \tag{5.2}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$.
Assuming that the manifold is ϕ-conharmonically flat with respect to the quarter-symmetric metric connection. Then from (5.2), we have

$$
\begin{equation*}
g(\bar{C}(\phi X, \phi Y) \phi Z, \phi W)=0 \tag{5.3}
\end{equation*}
$$

for any $X, Y, Z, W \in \chi(M)$. Using (4.2) in (5.3), we have

$$
\begin{equation*}
g(\bar{R}(\phi X, \phi Y) \phi Z, \phi W)=\frac{1}{(n-2)}[g(\phi Y, \phi Z) \bar{S}(\phi X, \phi W) \tag{5.4}
\end{equation*}
$$

$$
-g(\phi X, \phi Z) \bar{S}(\phi Y, \phi W)+g(\phi X, \phi W) \bar{S}(\phi Y, \phi Z)-g(\phi Y, \phi W) \bar{S}(\phi X, \phi Z)]
$$

Now in view of (3.1) and (3.4), (5.4) becomes

$$
\begin{gathered}
-g(\phi X, \phi Z) S(\phi Y, \phi W)+g(\phi X, \phi W) S(\phi Y, \phi Z)-g(\phi Y, \phi W) S(\phi X, \phi Z)] \\
+\frac{1}{(n-2)}[-g(\phi Y, \phi Z) g(\phi X, \phi W)+g(\phi X, \phi Z) g(\phi Y, \phi W) \\
\quad-g(\phi X, \phi W) g(\phi Y, \phi Z)+g(\phi Y, \phi W) g(\phi X, \phi Z)]
\end{gathered}
$$

Let $\left\{e_{1}, e_{2}, \ldots . ., e_{n-1}\right\}$ be a local orthonormal basis of vector fields in M. Using that $\left\{\phi e_{1}, \phi e_{2}, \ldots ., \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis, if we put $X=$ $W=e_{i}$ in (5.5) and sum up with respect to i, then

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)=\frac{1}{(n-2)} \sum_{i=1}^{n-1}\left[g(\phi Y, \phi Z) S\left(\phi e_{i}, \phi e_{i}\right)\right. \tag{5.6}\\
\left.-g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)+g\left(\phi e_{i}, \phi e_{i}\right) S(\phi Y, \phi Z)-g\left(\phi Y, \phi e_{i}\right) S\left(\phi e_{i}, \phi Z\right)\right] . \\
+\frac{1}{(n-2)} \sum_{i=1}^{n-1}\left[-g(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)+g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right. \\
\left.-g\left(\phi e_{i}, \phi e_{i}\right) g(\phi Y, \phi Z)+g\left(\phi Y, \phi e_{i}\right) g\left(\phi e_{i}, \phi Z\right)\right]
\end{gather*}
$$

It can be easily verify that [22$]$

$$
\begin{align*}
\sum_{i=1}^{n-1} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right) & =S(\phi Y, \phi Z)+g(\phi Y, \phi Z) \tag{5.7}\\
\sum_{i=1}^{n-1} S\left(\phi e_{i}, \phi e_{i}\right) & =r+n-1 \tag{5.8}
\end{align*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)=S(\phi Y, \phi Z) \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=n-1 \tag{5.10}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=g(\phi Y, \phi Z) \tag{5.11}
\end{equation*}
$$

By virtue of (5.7)-(5.ل工), the equation (5.6) can be written as

$$
\begin{gather*}
S(\phi Y, \phi Z)+g(\phi Y, \phi Z)=\frac{1}{(n-2)}[(r+n-1) g(\phi Y, \phi Z) \tag{5.12}\\
+(n-3) S(\phi Y, \phi Z)]-2 g(\phi Y, \phi Z)
\end{gather*}
$$

from which it follows that

$$
\begin{equation*}
S(\phi Y, \phi Z)=(r-2 n+5) g(\phi Y, \phi Z) \tag{5.13}
\end{equation*}
$$

By using (2.3) and ([2.53) in (5.53), we get

$$
\begin{equation*}
S(Y, Z)=(r-2 n+5) g(Y, Z)+(r-3 n+6) \eta(Y) \eta(Z) \tag{5.14}
\end{equation*}
$$

Hence contracting (5.4), we obtain

$$
\begin{equation*}
r=\frac{2(n-1)(n-3)}{n-2} \tag{5.15}
\end{equation*}
$$

Thus we have the following theorem:
Theorem 5.2. Let M be an n-dimensional ($n>3$), ϕ-conharmonically flat Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Then M is an η-Einstein manifold with the scalar curvature $r=$ $\frac{2(n-1)(n-3)}{n-2}$.

6. ϕ-conharmonically semi-symmetric η-Einstein Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

Definition 6.1. An η-Einstein Lorentzian para-Sasakian manifold (M^{n}, g), $n>1$ is said to be ϕ-conharmonically semisymmetric with respect to the quarter-symmetric metric connection if

$$
\bar{C}(X, Y) \cdot \phi=0
$$

on M for all $X, Y \in \chi(M)$.
Let M be an n-dimensional ϕ-conharmonically semi-symmetric η-Einstein Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Therefore $\bar{C}(X, Y) \cdot \phi=0$ turns into

$$
\begin{equation*}
(\bar{C}(X, Y) \cdot \phi) Z=\bar{C}(X, Y) \phi Z-\phi \bar{C}(X, Y) Z=0 \tag{6.1}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$. From (4.2), we have

$$
\begin{align*}
\bar{C}(X, Y) \phi Z= & \bar{R}(X, Y) \phi Z-\frac{1}{(n-2)}[\bar{S}(Y, \phi Z) X-\bar{S}(X, \phi Z) Y \tag{6.2}\\
& +g(Y, \phi Z) \bar{Q} X-g(X, \phi Z) \bar{Q} Y]
\end{align*}
$$

By using (3.1), (3.4) and (3.5), the last equation takes the form

$$
\begin{array}{r}
\bar{C}(X, Y) \phi Z=R(X, Y) \phi Z+\eta(X) g(Y, \phi Z) \xi-\eta(Y) g(X, \phi Z) \xi \tag{6.3}\\
-\frac{1}{(n-2)}[S(Y, \phi Z) X-g(Y, \phi Z) X-S(X, \phi Z) Y+g(X, \phi Z) Y \\
+g(Y, \phi Z)(Q X-2 X-n \eta(X) \xi)-g(X, \phi Z)(Q Y-2 Y-n \eta(Y) \xi)] .
\end{array}
$$

Also we have

$$
\begin{gather*}
\phi \bar{C}(X, Y) Z=\phi R(X, Y) Z+\eta(X) \eta(Z) \phi Y-\eta(Y) \eta(Z) \phi X \tag{6.4}\\
-\frac{1}{(n-2)}[S(Y, Z) \phi X-S(X, Z) \phi Y-g(Y, Z) \phi X+g(X, Z) \phi Y
\end{gather*}
$$

$$
-n \eta(Y) \eta(Z) \phi X+n \eta(X) \eta(Z) \phi Y+g(Y, Z)(\phi Q X-\phi X)-g(X, Z)(\phi Q Y-\phi Y)]
$$

By using (5.3) and (5.4), (5.]) takes the form
(6.5) $g(Y, \phi Z) X-g(X, \phi Z) Y+\eta(X) g(Y, \phi Z) \xi-\eta(Y) g(X, \phi Z) \xi-g(Y, Z) \phi X$ $+g(X, Z) \phi Y-\eta(X) \eta(Z) \phi Y+\eta(Y) \eta(Z) \phi X$
$-\frac{1}{(n-2)}[S(Y, \phi Z) X-g(Y, \phi Z) X-S(X, \phi Z) Y+g(X, \phi Z) Y$
$+g(Y, \phi Z)(Q X-2 X-n \eta(X) \xi)-g(X, \phi Z)(Q Y-2 Y-n \eta(Y) \xi)]$
$+\frac{1}{(n-2)}[S(Y, Z) \phi X-S(X, Z) \phi Y-g(Y, Z) \phi X+g(X, Z) \phi Y$
$-n \eta(Y) \eta(Z) \phi X+n \eta(X) \eta(Z) \phi Y+g(Y, Z)(\phi Q X-\phi X)-g(X, Z)(\phi Q Y-\phi Y)]=0$.

$$
S(X, \phi Z) \xi+(2 n-4) g(X, \phi Z) \xi+n \eta(Z) \phi X=0
$$

which in view of ($2, \ldots]$) becomes

$$
\left(\frac{r}{n-1}+2 n-5\right) g(X, \phi Z) \xi+n \eta(Z) \phi X=0
$$

Now considering Z to be orthogonal to ξ, then $\eta(Z)=0$ and $g(X, \phi Z) \neq 0$, which implies that

$$
r=-(n-1)(2 n-5)
$$

Thus we can state the following theorem:
Theorem 6.2. For an n-dimensional ϕ-conharmonically semi-symmetric η Einstein Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, the scalar curvature $r=-(n-1)(2 n-5)$.

7. Lorentzian para-Sasakian manifold satisfying

$$
\bar{C}(\xi, X) \cdot \bar{S}=0
$$

Let us consider a Lorentzian para-Sasakian manifold satisfying $\bar{C}(\xi, X) \cdot \bar{S}=$ 0 . Then we have

$$
\begin{equation*}
\bar{S}(\bar{C}(\xi, X) Y, Z)+\bar{S}(Y, \bar{C}(\xi, X) Z)=0 \tag{7.1}
\end{equation*}
$$

In view of (4.2), we have

$$
\begin{align*}
\bar{C}(\xi, X) Y= & -\frac{1}{(n-2)}[-\eta(Y) X+(2 n-4) \eta(X) \eta(Y) \xi+S(X, Y) \xi \tag{7.2}\\
& -\eta(Y) Q X+(2 n-3) g(X, Y) \xi] .
\end{align*}
$$

Making use of (\mathbb{L})), ($\mathbb{L D}$) takes the form

$$
\begin{gather*}
\bar{S}(\bar{C}(\xi, X) Y, Z)=-\frac{1}{(n-2)}[\eta(Y) g(X, Z)+2(n-1)(2 n-3) g(X, Y) \eta(Z) \tag{7.3}\\
+(4(n-1)(n-2)+n(n-1)+n) \eta(X) \eta(Y) \eta(Z) \\
+2(n-1) \eta(Z) S(X, Y)-\eta(Y) S(Q X, Z)] .
\end{gather*}
$$

Similarly we have

$$
\begin{gather*}
\bar{S}(Y, \bar{C}(\xi, X) Z)=-\frac{1}{(n-2)}[\eta(Z) g(X, Y)+2(n-1)(2 n-3) g(X, Z) \eta(Y) \tag{7.4}\\
+(4(n-1)(n-2)+n(n-1)+n) \eta(X) \eta(Y) \eta(Z) \\
+2(n-1) \eta(Y) S(X, Z)-\eta(Z) S(Q X, Y)] .
\end{gather*}
$$

Using ($\mathbb{K} \cdot 3)$ and ($\mathbb{K} \mathbb{C})$ in (\mathbb{K}), we have

$$
\begin{gather*}
\quad 2(4(n-1)(n-2)+n(n-1)+n) \eta(X) \eta(Y) \eta(Z)+\eta(Y) g(X, Z) \tag{7.5}\\
+\eta(Z) g(X, Y)+2(n-1) \eta(Z) S(X, Y)+2(n-1) \eta(Y) S(X, Z) \\
+2(n-1)(2 n-3) g(X, Y) \eta(Z)+2(n-1)(2 n-3) g(X, Z) \eta(Y) \\
\quad-\eta(Y) S(Q X, Z)-\eta(Z) S(Q X, Y)=0 .
\end{gather*}
$$

Let λ be the eigenvalue of the endomorphism Q corresponding to an eigenvector

$$
\begin{equation*}
Q X=\lambda X . \tag{7.6}
\end{equation*}
$$

By using ($\mathbb{7 . 6}$), ($\mathbb{[. 5}$) takes the form

$$
\begin{align*}
& 2(4(n-1)(n-2)+n(n-1)+n) \eta(X) \eta(Y) \eta(Z)+\eta(Y) g(X, Z) \tag{7.7}\\
+ & \eta(Z) g(X, Y)+2(n-1) \lambda \eta(Z) g(X, Y)+2(n-1) \lambda \eta(Y) g(X, Z) \\
+ & 2(n-1)(2 n-3) g(X, Y) \eta(Z)+2(n-1)(2 n-3) g(X, Z) \eta(Y)
\end{align*}
$$

$$
-\lambda^{2} \eta(Y) g(X, Z)-\lambda^{2} \eta(Z) g(X, Y)=0
$$

which on putting $Z=\xi$ reduces to

$$
\begin{equation*}
\left[\lambda^{2}-2(n-1) \lambda-2(n-1)(2 n-3)-1\right] g(X, Y) \tag{7.8}
\end{equation*}
$$

$$
-\left[\lambda^{2}-2(n-1) \lambda-2(n-1)(2 n-3)-1+2(4(n-1)(n-2)+n(n-1)+n)\right] \eta(X) \eta(Y)=0
$$

$\left[\lambda^{2}-2(n-1) \lambda-2(n-1)(2 n-3)-1+4(n-1)(n-2)+n(n-1)+n\right] \eta(X)=0$.
This gives

$$
\lambda^{2}-2(n-1) \lambda+(n-1)^{2}=0, \quad \eta(X) \neq 0
$$

Hence we can state the following:
Theorem 7.1. If an n-dimensional Lorentzian para-Sasakian manifold satisfies $\bar{C}(\xi, X) \cdot \bar{S}=0$, then the non-zero eigenvalues of the symmetric endomorphism Q of the tangent space corresponding to S are congruent, such as $(n-1)$.

8. A Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quarter-symmetric metric connection and M is recurrent with respect to the Levi-Civita connection

Definition 8.1 ([z]). A Lorentzian para-Sasakian manifold with respect to the Levi-Civita connection is called the recurrent, if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=A(W) R(X, Y) Z \tag{8.1}
\end{equation*}
$$

where A is the 1 -form
Analogous to the equation (ㅈ․ $)$, a Lorentzian para-Sasakian manifold with respect to the quarter symmetric metric connection $\bar{\nabla}$ is called the recurrent, if its curvature tensor \bar{R} satisfies the condition

$$
\begin{equation*}
\left(\bar{\nabla}_{W} \bar{R}\right)(X, Y) Z=A(W) \bar{R}(X, Y) Z \tag{8.2}
\end{equation*}
$$

where \bar{R} is the curvature tensor with respect to the connection $\bar{\nabla}$.
Theorem 8.2. If an n-dimensional Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quartersymmetric metric connection and the manifold is recurrrent with respect to the Levi-Civita connection and the associated 1-form A is equal to the associated 1 -form η, then the scalar curvatre r vanishes by providing the trace of ϕ is zero.

Proof. From ([.]), (2.6) and (2.8), we have

$$
\begin{gather*}
\left(\bar{\nabla}_{W} R\right)(X, Y) Z=\bar{\nabla}_{W} R(X, Y) Z-R\left(\bar{\nabla}_{W} X, Y\right) Z-R\left(X, \bar{\nabla}_{W} Y\right) Z \tag{8.3}\\
-R(X, Y) \bar{\nabla}_{W} Z=\left(\nabla_{W} R\right)(X, Y) Z+2 \eta(W)[g(Y, \phi Z) X-g(X, \phi Z) Y]
\end{gather*}
$$

Suppose that $\left(\bar{\nabla}_{W} R\right)(X, Y) Z=0$, then from (区. 2) it follows that

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z+2 \eta(W)[g(Y, \phi Z) X-g(X, \phi Z) Y]=0 \tag{8.4}
\end{equation*}
$$

which on using (ㅈ.ل()) becomes

$$
\begin{equation*}
A(W) R(X, Y) Z+2 \eta(W)[g(Y, \phi Z) X-g(X, \phi Z) Y]=0 \tag{8.5}
\end{equation*}
$$

Now contracting X in ($\mathbb{\boxed { C D }} \mathbf{5}$), we get

$$
\begin{equation*}
A(W) S(Y, Z)+2(n-1) g(Y, \phi Z) \eta(W)=0 \tag{8.6}
\end{equation*}
$$

Suppose the associated 1-form A is equal to the associated 1-form η, then from the last equation, we get

$$
\begin{equation*}
S(Y, Z)=-2(n-1) g(Y, \phi Z), \quad \eta(W) \neq 0 \tag{8.7}
\end{equation*}
$$

Hence contracting (区.7), we get

$$
\begin{equation*}
r=-2(n-1) \psi, \quad \text { where } \psi=\text { trace } \phi \tag{8.8}
\end{equation*}
$$

which completes the proof of the theorem.

Acknowledgement

The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

[1] Ahmad, M., Jun, J. B., Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric metric connection. Bull. Korean Math. Soc. 46 (2009), 477-487.
[2] Barman, A., Weakly symmetric and weakly Ricci-symmetric $L P$-Sasakian manifolds admitting a quarter-symmetric metric connection. Novi Sad J. Math. 45 (2) (2015), 143-153.
[3] De, U. C., Matsumoto, K., Shaikh, A. A., On Lorentzian para-Sasakian manifolds. Rendiconti del Seminario Matematico di Messina, Serie II 3 (1999), 149158.
[4] De, U. C., Manjhi, P., ϕ-semisymmetric generalized Sasakian space forms. Arab J. Math. Sci. 21 (2015), 170-178.
[5] De, U. C., Özgür, C., Sular, S., Quarter-symmetric metric connection in a Kenmotsu manifold. SUT Journal of Mathematics 44 (2008), 297-306.
[6] De, U. C., Shaikh, A. A., Biswas, S., ϕ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2) (2003), 43-48.
[7] Friedmann, A., Schouten, J. A., Über die Geometric der halbsymmetrischen Übertragung. Math., Zeitschr. 21 (1924), 211-233.
[8] Golab, S., On semi-symmetric and quarter-symmetric linear connections. Tensor (N. S.) 29 (1975), 249-254.
[9] Haseeb, A., Some new results on para-Sasakian manifolds with a quartersymmetric metric connection. Facta Universitatis (NIS̆), Ser. Math. Inform. 30 (2015), 765-776.
[10] Hirica, I. E., Nicolescu, L., On quarter-symmetric metric connections on pseudo Riemannian manifolds. Balkan J. Geom. Appl. 16 (2011), 56-65.
[11] Hui, S.K., On ϕ-pseudo symmetric Kenmotsu manifolds with respect to quartersymmetric metric connection. Applied Sciences 15 (2013), 71-84.
[12] Hui, S.K., Lemence, R. S., Ricci pseudosymmetric quasi-Einstein manifolds. Sut. J. Math. 51 (2015), 67-85.
[13] Ishii, Y., On conharmonic transformations. Tensor (N. S.) 7 (1957), 73-80.
[14] Kalpana, Srivastava, P., Some curvature properties of a quarter-symmetric metric connection in an $S P$-Sasakian manifold. Int. Math. Forum 50 (2010), 24772484.
[15] Kumar, K. T. P., Bagewadi, C. S., Venkatesha, Projective ϕ-symmetric K contact manifolds admitting quarter-symmetric metric connections. Diff. Geom. Dyn. Sys. 13 (2011), 128-137.
[16] Kumar, K. T. P., Venkatesha, Bagewadi, C. S., On ϕ-recurrent para-Sasakian manifolds admitting quarter-symmetric metric connection. ISRN Geometry, Vol. 2012, Article ID 317253.
[17] Matsumoto, K., On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151-156.
[18] Matsumoto, K., Mihai, I., On a certain transformation in a Lorentzian paraSasakian manifold. Tensor (N. S.) 47 (1988), 189-197.
[19] Mihai, I., Rosca, R., On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publ., Singapore (1992), 155-169.
[20] Mihai, I., Shaikh, A. A., De, U. C., On Lorentzian para-Sasakian manifolds. Korean J. Math. Sci. 6 (1999), 1-13.
[21] Mondal, A. K., De, U. C., Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
[22] Özgür, C., ϕ-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematički 12 (2003), 99-106.
[23] Özgür, C., Ahmad, M., Haseeb, A., $C R$-submanifolds of a lorentzian paraSasakian manifold with a semi-symmetric metric connection. Hacettepe J. Mathematics and Statistics 39 (2010), 489-496.
[24] Shaikh, A. A., Baishya, K. K., Some results on LP-Sasakian manifolds. Bull. Math. Soc. Sci. Math. Rommanie Tome 97 (2006), 197-205.
[25] Singh, R. N., Pandey, S. K., On a quarter-symmetric metric connection in an $L P$-Sasakian manifold. Thai J. Math. 12 (2014), 357-371.
[26] Takahashi, T., ϕ-symmetric spaces. Tohoku Math. J. 29 (1977), 91-113.
[27] Venkatesha, Bagewadi, C. S., On concircular ϕ-recurrent $L P$-Sasakian manifolds. Diff. Geom. Dyn. Sys. 10 (2008), 312-319.

Received by the editors April 13, 2016
First published online September 8, 2016

[^0]: ${ }^{1}$ Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India, e-mail: rp.manpur@rediftmail.com
 ${ }^{2}$ Corresponding Author
 ${ }^{3}$ Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia, e-mail: malikhaseeb80@gmail.com

