A CLASS OF SOME THIRD-METACYCLIC 2-GROUPS

Marijana Grebličkil ${ }^{11}$

Abstract

Third-metacyclic finite 2-groups are groups with a nonmetacyclic second-maximal subgroup and all its third-maximal subgroups being metacyclic. Among these groups we are looking for all of those whose non-metacyclic subgroups, including group itself, are generated by involutions.

AMS Mathematics Subject Classification (2010): 20D25; 20N99
Key words and phrases: finite group; p-group; metacyclic group; secondmetacyclic group; third-metacyclic group; second-maximal subgroup; third-maximal subgroup

1. Introduction

The aim of this article is to determine all third-metacyclic 2-groups whose all non-metacyclic subgroups are generated by involutions. The property of a group G that all non-metacyclic subgroups of G are generated by involutions, we denote by \mathcal{S} for brevity. We begin with some basic definitions.

Definition 1.1. Let G be a finite group. A subgroup M_{1} is maximal in G, $M_{1}<_{\max } G$, if for subgroup H in G from $M_{1} \leq H<G$ follows $H=M_{1}$.
A subgroup M_{2} is second-maximal subgroup of G if M_{2} is a maximal subgroup of any maximal subgroup of G. Generally, subgroup M_{n} is n-maximal subgroup of G if M_{n} is a maximal subgroup of any $(n-1)$-maximal subgroup of G.

Definition 1.2. A group G is metacyclic, $G \in \mathcal{M C}$, if it possesses a cyclic normal subgroup $N \unlhd G$ such that the factor-group G / N is also cyclic.

Definition 1.3. A group G is n-metacyclic, $G \in \mathcal{M C}_{n}$, if it possesses a nonmetacyclic $(n-1)$-maximal subgroup and all its n-maximal subgroups are metacyclic. Specially, a group G is third-metacyclic, $G \in \mathcal{M C}_{3}$, if it possesses a non-metacyclic second-maximal subgroup and all its third-maximal subgroups are metacyclic. Obviously, if G is a p-group then $|G| \geq p^{n+2}$, because all groups of order p^{2} are metacyclic.

Definition 1.4. Let G be a p-group. The group $\Omega_{i}(G)$ is

$$
\Omega_{i}(G)=\left\langle x \in G \mid x^{p^{i}}=1\right\rangle, i \in \mathbb{N} .
$$

Obviously $\Omega_{i}(G)$ char G. Therefore, 2-group G is generated by involutions exactly when $\Omega_{1}(G)=G$.

[^0]Lemma 1.5. Let G be a 2-group and $G \in \mathcal{M} \mathcal{C}_{n}$. Then there exists maximal subgroup M in $G, M<_{\max } G$, and $M \in \mathcal{M C}_{n-1}$.

Proof. Because $G \in \mathcal{M C}_{n}$ there exists $H \leq G$ such that $|G: H|=2^{n-1}$ and $H \notin \mathcal{M C}$, while each subgroup $K<G$, for which is $|G: K| \geq 2^{n}$, is metacyclic. Then there exists a maximal subgroup $M<_{\max } G$ where $H \leq M$ and $|M: H|=2^{n-2}$. If $K<M$ and $|M: K|=2^{n-1}$ it follows $|G: K|=2^{n}$, i.e. $K \in \mathcal{M C}$, then by Definition 1.3 is $M \in \mathcal{M C}_{n-1}$.

Lemma 1.6. Let G be a 2-group generated by involutions, i.e. $\Omega_{1}(G)=G$. Then G is an extension by involution of any of its maximal subgroups. Specially, if $G \in \mathcal{M C}_{n}$, then G is an extension by involution of any of its maximal subgroups $M \in \mathcal{M C}_{n-1}$.

Proof. Let $M<_{\max } G$ be any maximal subgroup of group G. We state that there exists an involution $t \in G \backslash M$, such $G=\langle M, t\rangle=M \cdot\langle t\rangle$. That is, if such involution did not exist it would follow that all involutions from G are in M, i.e. $\Omega_{1}(G)=G \leq M$, and that is a contradiction with the assumption $M<_{\text {max }} G$.
Specially, if $G \in \mathcal{M C}_{n}$, by Lemma 1.6 follows that there exists subgroup $M \in$ $\mathcal{M \mathcal { C } _ { n - 1 }}$ of group G, so that G is an extension of M by involution.

Lemma 1.7. Let G be a non-metacyclic 2-group where every non-metacyclic subgroup $H \leq G$ is generated by involutions, i.e. $\Omega_{1}(H)=H$. Then, every non-metacyclic subgroup $H \leq G$ and every non-metacyclic factor-group H / N, where $N \unlhd H$, are also groups with that property.

Proof. The first part of our claim is obvious. For $H \leq G, H \notin \mathcal{M C}$, is by our assumption $H=\left\langle i_{1}, \ldots, i_{n}\right\rangle$, where $i_{j}^{2}=1$, for $j \in\{1, \ldots, n\}$.
For $N \unlhd H$ and $H / N \notin \mathcal{M C}$ is $\bar{H}=H / N=\left\langle\overline{i_{1}}, \ldots, \overline{i_{n}}\right\rangle$, while $\overline{i_{j}}=i_{j} N$ and ${\overline{i_{j}}}^{2}=N$, i.e. $\Omega_{1}(\bar{H})=\bar{H}$.

Lemma 1.8. Let G be a 2-group with property \mathcal{S}. If $d(Z(G)) \geq 3$ then G is an elementary abelian group. For $d(Z(G))=2$ is $Z(G) \cong E_{4}$, and for $d(Z(G))=1$ $Z(G)$ is a cyclic group.

Proof. At first let $d(Z(G)) \geq 3$, i.e. there exist $K \leq Z(G)$ and involutions $a, b, c \in G$ such as $K=\langle a, b, c\rangle \cong E_{8}$. We claim that G is an elementary abelian group. Let us assume opposite, i.e. that there exists some element $d \in G \backslash K,|\langle d\rangle|=4$ and note $H=\langle K, d\rangle=\langle a, b, c, d\rangle$. Then we have either $d^{2} \in\langle a, b, c\rangle$ or $d^{2} \notin\langle a, b, c\rangle$. If $d^{2} \in\langle a, b, c\rangle$, we can assume, without loss of generality, that $d^{2}=a$. But then we have $\langle b, c, d\rangle \cong E_{4} \times Z_{4}$ is a nonmetacyclic subgroup, but $\Omega_{1}(\langle b, c, d\rangle)=\left\langle b, c, d^{2}\right\rangle \cong E_{8}$, i.e. non-metacyclic subgroup $\langle b, c, d\rangle$ of group the G is not generated by involutions, which is against our assumption.
In the case $d^{2} \notin\langle a, b, c\rangle$ we have $H \cong E_{8} \times Z_{4}$, which is a non-metacyclic group, but also $\Omega_{1}(H)=\left\langle a, b, c, d^{2}\right\rangle \cong E_{16}$, again a contradiction. Therefore, $d^{2}=1$, i.e. G is elementary abelian group.

Now, $d(Z(G))=2$. Because of $\Omega_{1}(G)=G$ is $G=\left\langle a_{1}, \ldots, a_{k}\right| a_{i}^{2}=1, \forall i=$ $1, \ldots, k\rangle$. If $a_{i} \in Z(G), \forall i=1, \ldots, k$, then G would again be an elementary abelian group. Thus, there exists $a_{j} \equiv a$ such as $a \in G \backslash Z(G)$. Let us assume $Z(G)=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$, where $z_{i}^{2} \neq 1$, at least for one $i \in\{1,2\}$. We have now $\langle a, Z(G)\rangle=\left\langle a, z_{1}, z_{2}\right\rangle=\langle a\rangle \times\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle \geq\langle a\rangle \times\left\langle z_{1}^{\prime}\right\rangle \times\left\langle z_{2}^{\prime}\right\rangle$, where $\left\langle z_{1}^{\prime}\right\rangle \leq\left\langle z_{1}\right\rangle$ and $\left\langle z_{2}^{\prime}\right\rangle \leq\left\langle z_{2}\right\rangle$. We can assume, without loss of generality, that $\left|z_{1}^{\prime}\right|=2$ and $\left|z_{2}^{\prime}\right|=4$. Now, it follows $\langle a, Z(G)\rangle \geq\langle a\rangle \times\left\langle z_{1}^{\prime}\right\rangle \times\left\langle z_{2}^{\prime}\right\rangle \equiv H \cong E_{4} \times Z_{4} \notin \mathcal{M C}$, but $\Omega_{1}(H)=\left\langle a, z_{1}^{\prime}, z_{2}^{\prime 2}\right\rangle<H$, a contradiction. Therefore, in $\left\langle z_{1}\right\rangle$ and $\left\langle z_{2}\right\rangle$ there are no elements of order 4 . Thus $Z(G) \cong E_{4}$.
For $d(Z(G))=1, Z(G)$ is a cyclic group.

2. A class of some third-metacyclic 2-groups

Now we turn to solving the main problem of this article. According to Lemma 1.6 and Lemma 1.7 we reduce theorems from [2] and 1] where all $\mathcal{M C}_{1}$ and $\mathcal{M C}_{2}$ groups are classified, in the way that we extract only $\mathcal{M C}_{1^{-}}$ groups with property \mathcal{S} from [2], and then from [1] only extensions of those $\mathcal{M C}_{1}$-groups by involutions. We get the following results:

Theorem 2.1. Let $G \in \mathcal{M C}_{1}$ be a group with property \mathcal{S}. Then $G \cong Q_{8}$ or $G \cong Q_{8} * Z_{4} \cong D_{8} * Z_{4}$.

Theorem 2.2. Let $G \in \mathcal{M C}_{2}$ be a group with property \mathcal{S}. Then G is isomorphic to one of the following groups:
a) E_{16}
b) $D_{8} \times Z_{2}$
c) $D_{16} * Z_{4}=\left\langle a, b, c \mid a^{8}=b^{2}=c^{4}=1, a^{4}=c^{2}, a^{b}=a^{-1}, a^{c}=a, b^{c}=b\right\rangle$.

According to Lemma 1.6, having extended by involutions $\mathcal{M C}_{2}$-groups from Theorem 2.2, we get all $\mathcal{M C}_{3}$-groups with property \mathcal{S}. Before stating the main result, we introduce additional necessary definitions and known results.

Definition 2.3. A finite 2-group G is called quasi-dihedral if it possesses an abelian maximal subgroup A of exponent strictly larger than 2, i.e. $\exp (A)>2$, and an involution that is not in A, i.e. $t \in G \backslash A$, such that t inverts each element in A.

Definition 2.4. Let G be a p-group. Then the set of all elements of order k in G is

$$
O_{k}(G)=\{g \in G| | g \mid=k\}, \text { where } k||G| .
$$

The group $\left\langle O_{k}(G)\right\rangle$ generated by the set $O_{k}(G)$ is characteristic in G, $\left\langle O_{k}(G)\right\rangle$ char G.

Definition 2.5. Let G be a p-group. If $G=M \cdot N$, where $M, N \leq G$ such that $M \cap N=[M, N] \cong Z_{p}$, then we say that G is second-direct product of M and N. We denote $G=M \times{ }_{2} N$.

Proposition 2.6. Let H be a normal elementary abelian subgroup of 2-group G and let $g \in G$ and $g^{2} \in H$. Then

$$
\left|C_{H}(g)\right|^{2} \geq|H|
$$

Proof. Because $g^{2} \in H$ and H is abelian we have $x^{g^{2}}=x$, for any $x \in H$. Thus $\left(x x^{g}\right)^{g}=x^{g} x^{g^{2}}=x^{g} x=x x^{g}, \forall x \in H$, i.e. $x x^{g} \in C_{H}(g)$. Now, for $x, y \in H$, we have $x x^{g}=y y^{g} \Leftrightarrow x y=x^{g} y^{g}=(x y)^{g} \Leftrightarrow x y \in C_{H}(g) \Leftrightarrow x y^{-1} \in$ $C_{H}(g) \Leftrightarrow C_{H}(g) x=C_{H}(g) y$. Therefore, $x x^{g} \neq y y^{g} \Leftrightarrow C_{H}(g) x \neq C_{H}(g) y$, and so $\left|C_{H}(g)\right| \geq\left|H: C_{H}(g)\right| \Rightarrow\left|C_{H}(g)\right|^{2} \geq|H|$.

Proposition 2.7. For the elementary abelian group G of order $p^{n}, G \cong E_{p^{n}}$, the number of subgroups of order p is

$$
\frac{p^{n}-1}{p-1}=p^{n-1}+p^{n-2}+\ldots+p+1
$$

Proof. If G is the elementary abelian group of order $p^{n}, G \cong E_{p^{n}}$, every nonidentity element generates a subgroup of order p containing $p-1$ non-identity elements. Since any two of these subgroups are either equal or disjoint, the number of such subgroups is $\frac{p^{n}-1}{p-1}=p^{n-1}+p^{n-2}+\ldots+p+1$.
Theorem 2.8. If G is a non-abelian p-group, possessing an abelian maximal subgroup, then

$$
|G|=p \cdot\left|G^{\prime}\right| \cdot|Z(G)|
$$

Proof. Let A be a maximal subgroup of G which is abelian, and $g \in G \backslash A$. The mapping $\varphi: A \rightarrow A, \varphi(a)=[a, g]$, is homomorphism with $\operatorname{Im} \varphi=G^{\prime}, \operatorname{Ker} \varphi=$ $Z(G)$, and thus $A \backslash Z(G) \cong G^{\prime}$. Therefore $|A|=|G|: p=|Z(G)| \cdot\left|G^{\prime}\right|$ which yields the above formula.

Now we state the main theorem of this article. From Theorem 2.2 we can see that all $\mathcal{M} \mathcal{C}_{2}$ groups with property \mathcal{S} are of order 16 or 32 , so if we extend those groups by involution we will get all $\mathcal{M C} \mathcal{C}_{3}$ groups with property \mathcal{S} of order 32 and 64 , respectively.
In representing groups by generator order and commutators, we will omit, for brevity, those commutators of generators which equal 1 (that is for the pairs of commuting generators).

Theorem 2.9. Let $G \in \mathcal{M C}_{3}$ be a group with property \mathcal{S}. Then G is one of the following 7 groups:
a) of order 32, (extensions of E_{16} and $D_{8} \times Z_{2}$)

$$
\begin{aligned}
G_{1} & =\left\langle a, b, c, d, e \mid a^{2}=b^{2}=c^{2}=d^{2}=e^{2}=1\right\rangle \cong E_{32} ; \\
G_{2} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=b c\right\rangle= \\
& =(\langle a\rangle \times\langle b d\rangle) \cdot\langle d\rangle \cong\left(Z_{4} \times Z_{4}\right) \cdot Z_{2}, \text { quasi-dihedral group } ; \\
G_{3} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=a b\right\rangle= \\
& =\left\langle b d, d \mid(b d)^{8}=d^{2}=1,(b d)^{d}=(b d)^{-1}\right\rangle \times\left\langle c \mid c^{2}=1\right\rangle \cong D_{16} \times Z_{2} \cong \\
& \cong\left(Z_{8} \times Z_{2}\right) \cdot Z_{2}, \text { quasi-dihedral group } ;
\end{aligned}
$$

$$
\begin{aligned}
G_{4} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, c^{d}=a^{2} c\right\rangle= \\
& =\left\langle a, b \mid a^{4}=b^{2}=1, a^{b}=a^{-1}\right\rangle *\left\langle c d, d \mid(c d)^{4}=d^{2}=1,(c d)^{d}=(c d)^{-1}\right\rangle \cong \\
& \cong D_{8} * D_{8}, \text { where }(c d)^{2}=a^{2} ; \\
G_{5} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, b^{d}=a b c, c^{d}=a^{2} c\right\rangle= \\
& =\left\langle b d, c \mid(b d)^{8}=c^{2}=1,(b d)^{c}=(b d)^{5}\right\rangle \cdot\left\langle d \mid d^{2}=1\right\rangle \cong M_{16} \cdot Z_{2} \cong D_{16} \times_{2} E_{4} ;
\end{aligned}
$$

b) of order 64 (extensions of $D_{16} * Z_{4}$)
$G_{6}=\left\langle x, y, z, e \mid x^{8}=1, z^{2}=x^{4}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y\right\rangle=$
$=\left\langle y e, e \mid(y e)^{16}=e^{2}=1,(y e)^{e}=(y e)^{-1}\right\rangle *\left\langle z \mid z^{4}=1\right\rangle \cong D_{32} * Z_{4} ;$
$G_{7}=\langle x, y, z, e| x^{8}=1, z^{2}=x^{4}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y, z^{e}=x^{4} z=$
$\left.=z^{-1}\right\rangle=\left\langle y e, x^{2} z \mid(y e)^{16}=\left(x^{2} z\right)^{2}=1,(y e)^{x^{2} z}=(y e)^{9}\right\rangle \cdot\left\langle e \mid e^{2}=1\right\rangle \cong$
$\cong M_{32} \cdot Z_{2}$ or written differently (with $e \equiv u$):
$G_{7}=\left\langle x^{8}, u, x, y \mid x^{16}=u^{2}=y^{2}=1, x^{y}=x^{-1}, u^{x}=x^{8} u, u^{y}=u\right\rangle=$
$=\left\langle x, y \mid x^{16}=y^{2}=1, x^{y}=x^{-1}\right\rangle \times_{2}\left\langle x^{8}, u \mid\left(x^{8}\right)^{2}=u^{2}=1,\left(x^{8}\right)^{u}=x^{8}\right\rangle \cong$
$\cong D_{32} \times{ }_{2} E_{4}$.
Proof. According to Lemma 1.6, all $\mathcal{M C}_{3}$-groups generated by involutions are obtained by extending three $\mathcal{M C}_{2}$-groups from Theorem 2.2 with involution.

A. Extension of E_{16} :

Let $G=\langle a, b, c, d, e\rangle$ and $H=\langle a, b, c, d\rangle \cong E_{16}$ be a maximal subgroup in G, $e \in G \backslash H, e^{2}=1$. If $G^{\prime}=1 \Rightarrow G \cong E_{32}$. For $G^{\prime} \neq 1$ follows $Z(G) \leq H$ (otherwise, $G=H \cdot Z(G)$ is an abelian group), so is $Z(G)=C_{H}(e)$. According to Proposition 2.6, it follows $\left|C_{H}(e)\right|^{2} \geq|H|=16$, i.e. $\left|C_{H}(e)\right| \in\{4,8,16\}$. We know $C_{H}(e) \leq Z(G)$, thus for $\left|C_{H}(e)\right| \in\{8,16\}$ is $d(Z(G)) \geq 3$, and according to Lemma 1.8, it follows that $G \cong E_{32}$. Therefore remains the case $\left|C_{H}(e)\right|=4$, so we can take, without loss of generality, $Z(G)=C_{H}(e)=\langle a, b\rangle \cong E_{4}$. Group H is an abelian maximal subgroup of group G, so $|G|=2 \cdot\left|G^{\prime}\right| \cdot|Z(G)| \Rightarrow\left|G^{\prime}\right|=$ 4. We have $\bar{G}=G / Z(G)=\langle\bar{c}, \bar{d}, \bar{e}\rangle,\langle\bar{c}, \bar{d}\rangle=\bar{H}$, thus according to Proposition 2.6. it follows $\left|C_{\bar{H}}(\bar{e})\right|^{2} \geq|\bar{H}|=4 \Rightarrow\left|C_{\bar{H}}(\bar{e})\right| \in\{2,4\}$.

Case 1: $\left|C_{\bar{H}}(\bar{e})\right|=2$
We can assume, without loss of generality, $C_{\bar{H}}(\bar{e})=\langle\bar{c}\rangle$, so we have $\bar{c} \bar{e}=\bar{c}$ i $\bar{d}^{\bar{e}}=\bar{c} \bar{d}$, i.e. for originals, without loss of generality, we have $c^{e}=a c$ and $d^{e}=$ $a^{\gamma} b^{\delta} c d,(\gamma, \delta) \neq(0,0)$. From $d^{e^{2}}=d^{1}=d$ and $d^{e^{2}}=\left(d^{e}\right)^{e}=\left(a^{\gamma} b^{\delta} c d\right)^{e}=a d$ we get a contradiction, so this case does not apply.

Case 2: $\left|C_{\bar{H}}(\bar{e})\right|=4$
It follows that $C_{\bar{H}}(\bar{e})=\bar{H}$, so $\bar{c}^{\bar{c}}=\bar{c}$ and $\bar{d}^{\bar{e}}=\bar{d}$. For originals we have $c^{e}=a^{\alpha} b^{\beta} c, d^{e}=a^{\gamma} b^{\delta} d$, where $(\alpha, \beta),(\gamma, \delta) \neq(0,0)$, because $Z(G)=\langle a, b\rangle$. Because a, b and $a b$ are interchangeable without loss of generality we have: $c^{e}=a c, d^{e}=a d$ or $d^{e}=b d$. From $c^{e}=a c, d^{e}=a d$ follows $G^{\prime}=\langle a\rangle$, which is a contradiction with $\left|G^{\prime}\right|=4$. Therefore, $c^{e}=a c$, $d^{e}=b d$. Now $(d e)^{2}=$ $d e^{2} d^{e}=d b d=b$, thus $M=\left\langle a, c, d e \mid a^{2}=c^{2}=(d e)^{4}=1, a^{d e}=a, c^{d e}=a c\right\rangle$, where we denote $a \equiv x, c \equiv y, \quad d e \equiv z, M=\langle x, y, z| x^{2}=y^{2}=z^{4}=$ $\left.1, x^{z}=x, y^{z}=x y\right\rangle=\langle x, y\rangle \cdot\langle z\rangle \cong E_{4} \cdot Z_{4}$. Group M is a non-metacyclic subgroup of G, but $\Omega_{1}(M)=\left\langle x, y, z^{2}\right\rangle \neq M$, a contradiction with our theorem
assumption. Therefore, only extension of group $H \cong E_{16}$ with property \mathcal{S} is group $G \equiv G_{1} \cong E_{32}$.
B. Extension of $D_{8} \times Z_{2}$:

We denote $H \equiv D_{8} \times Z_{2}=\left\langle a, b, c \mid a^{4}=b^{2}=c^{2}=1, a^{b}=a^{-1}\right\rangle$. Then $\mho_{1}(H)=$ $\Phi(H)=\left\langle a^{2}\right\rangle \cong Z_{2}, Z(H)=\left\langle a^{2}, c\right\rangle \cong E_{4}$. For the set $O_{4}(H)=\{x \in H| | x \mid=$ $4\}=\left\{a, a^{3}, a c, a^{3} c\right\}$ is $\left\langle O_{4}(H)\right\rangle=\langle a, c\rangle \cong Z_{4} \times Z_{2}$. Let $G=\langle H, d\rangle,|d|=2$, be an extension of the group H by involution d. Since $\mho_{1}(H)=\Phi(H)=\left\langle a^{2}\right\rangle$ and $Z(H)=\left\langle a^{2}, c\right\rangle$ are characteristic in G, it is possible to interchange: element a with any element of order 4 in $O_{4}(H)=\left\{a, a^{3}, a c, a^{3} c\right\}$; element b with any involution which is not in $Z(H)$, thus with elements from $O_{2}(H) \backslash Z(H)=$ $\left\{b, a b, a^{2} b, a^{3} b, b c, a b c, a^{2} b c, a^{3} b c\right\}$; element c with any central involution which is not in $\mho_{1}(H)$, thus with elements from $Z(H) \backslash \mho_{1}(H)=\left\{c, a^{2} c\right\}$. Now we have $a^{d} \in\left\{a, a^{3}, a c, a^{3} c\right\}-4$ cases, $c^{d} \in\left\{c, a^{2} c\right\}-2$ cases, and $b^{d}=a^{\alpha} b c^{\gamma}, \alpha \in$ $\{0,1,2,3\}-4$ cases, $\gamma \in\{0,1\}-2$ cases, so for a group G constructed as $G=\langle H, d\rangle$ we have $4 \cdot 2 \cdot 4 \cdot 2=64$ cases altogether. Now, we observe each particular case. If $a^{d}=a, c^{d}=c$ we would have non-metacyclic subgroup $\langle a, c, d\rangle \cong Z_{4} \times E_{4}$ which is not generated by involutions, a contradiction. If we take $a^{d}=a^{3}, c^{d}=a^{2} c$ it follows, by replacing element a with element $a c$, $(a c)^{d}=a^{3} a^{2} c=a c, c^{d}=(a c)^{2} c$, so this case leads to case $a^{d}=a, c^{d}=a^{2} c$. If we take $a^{d}=a c, c^{d}=a^{2} c$, by replacing element a with element $a c$, we have $(a c)^{d}=a c a^{2} c=a^{3}$, but from $a^{d^{2}}=a$ and $a^{d^{2}}=(a c)^{d}=a^{3}$ we get a contradiction. For $a^{d}=a^{3} c, c^{d}=c$, by replacing element c with element $a^{2} c$ we get $a^{d}=a^{3} c=a\left(a^{2} c\right),\left(a^{2} c\right)^{d}=a^{2} c^{2} c=a^{2} c$, so this case leads to case $a^{d}=a c, c^{d}=c$ which leads to a contradiction. For $a^{d}=a c, c^{d}=c$ the group G contains the subgroup $\left\langle a, c, d \mid a^{4}=c^{2}=d^{2}=1, c^{a}=c, c^{d}=c, d^{a}=c d\right\rangle=$ $\langle c, d\rangle \cdot\langle a\rangle \cong E_{4} \cdot Z_{4}$, a contradiction.
Therefore, we have two cases: 1.) $a^{d}=a, c^{d}=a^{2} c$,

$$
\text { 2.) } a^{d}=a^{3}, c^{d}=c,
$$

where $b^{d}=a^{\alpha} b c^{\gamma}, \alpha \in\{0,1,2,3\}, \gamma \in\{0,1\}$. In case 1.) we have $b^{d^{2}}=b$ and $b^{d^{2}}=\left(b^{d}\right)^{d}=\left(a^{\alpha} b c^{\gamma}\right)^{d}=a^{\alpha} a^{\alpha} b c^{\gamma} a^{2 \gamma} c^{\gamma}=a^{2 \alpha+2 \gamma} b$. Thus, $2(\alpha+\gamma) \equiv$ $0(\bmod 4) \Rightarrow(\alpha+\gamma) \equiv 0(\bmod 2) \Rightarrow(\alpha, \gamma) \in\{(0,0),(1,1),(3,1),(2,0)\}$. Now we replace in case 1.) element b with involution $b c$, and in case 2.) element b with involution $a^{\beta} b$, for $\beta \in\{0,1,2,3\}$:
1.) From $(b c)^{d}=a^{\alpha} b c^{\gamma} a^{2} c=a^{\alpha+2}(b c) c^{\gamma}$ follows: $(\alpha, \gamma) \in\{(0,0),(1,1)\}$, because α can be replaced with $\alpha+2$.
2.) From $\left(a^{\beta} b\right)^{d}=a^{3 \beta} a^{\alpha} b c^{\gamma}=a^{2 \beta} a^{\alpha}\left(a^{\beta} b\right) c^{\gamma}$ for $\beta \in\{1,3\}$ follows $\left(a^{\beta} b\right)^{d}=$ $=a^{\alpha+2}\left(a^{\beta} b\right) c^{\gamma}$, so we have $(\alpha, \gamma) \in\{(0,0),(0,1),(1,0),(1,1)\}$. In case 2.) for $(\alpha, \gamma)=(0,0)$ we get $b^{d}=b$, so $\left\langle a^{2}, b, c, d\right\rangle \cong E_{16}$, and we have already solved this case.
Also in case 2.) for $(\alpha, \gamma)=(1,1)$ we have $b^{d}=a b c$, so by replacing element a with element $a c$ we get $(a c)^{d}=a^{3} c=a^{3} c^{3}=(a c)^{3}, b^{d}=a c \cdot b$, so this case leads to case $(\alpha, \gamma)=(1,0)$. Therefore we have 4 groups:

$$
\begin{aligned}
G_{2} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=b c\right\rangle= \\
& =(\langle a\rangle \times\langle b d\rangle) \cdot\langle d\rangle \cong\left(Z_{4} \times Z_{4}\right) \cdot Z_{2}
\end{aligned}
$$

$$
\begin{aligned}
G_{3} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=a b\right\rangle= \\
& =\left\langle b d, d \mid(b d)^{8}=d^{2}=1,(b d)^{d}=(b d)^{-1}\right\rangle \times\left\langle c \mid c^{2}=1\right\rangle \cong D_{16} \times Z_{2} \cong \\
& \cong\left(Z_{8} \times Z_{2}\right) \cdot Z_{2}, \text { quasi-dihedral group; } \\
G_{4}= & \left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, c^{d}=a^{2} c\right\rangle= \\
& =\left\langle a, b \mid a^{4}=b^{2}=1, a^{b}=a^{-1}\right\rangle *\langle c d, d|(c d)^{4}=d^{2}=1,(c d)^{d}= \\
& \left.(c d)^{-1}\right\rangle \cong D_{8} * D_{8}, \text { where }(c d)^{2}=a^{2} ; \\
G_{5}= & \left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, b^{d}=a b c, c^{d}=a^{2} c\right\rangle= \\
& =\left\langle b d, c \mid(b d)^{8}=c^{2}=1,(b d)^{c}=(b d)^{5}\right\rangle \cdot\left\langle d \mid d^{2}=1\right\rangle \cong M_{16} \cdot Z_{2} \cong \\
\cong & D_{16} \times_{2} E_{4} .
\end{aligned}
$$

C. Extension of $D_{16} * Z_{4}$:

We denote $H \equiv D_{16} * Z_{4}=\left\langle x, y, z \mid x^{8}=y^{2}=1, z^{2}=x^{4}, x^{y}=x^{-1}\right\rangle$. A $\mathcal{M C}_{2}$-group H is extension of $\mathcal{M C}_{1}$-group $D_{8} * Z_{4}$ by an involution. Now we extend group H by involution to $\mathcal{M C}_{3}$-group G, i.e. for $e \in G \backslash H,|e|=2$ we have:

$$
G=\left\langle H, e \mid(H), e^{2}=1, x^{e}=x^{\gamma}, y^{e}=x^{\delta} y, z^{e}=x^{4 \varepsilon} z\right\rangle
$$

where (H) denotes relations in $H, \gamma \in\{1,3,5,7\}, \delta \in\{0, \ldots, 7\}, \varepsilon \in\{0,1\}$. We have $Z(H)=\langle z\rangle \cong Z_{4}$ char $H \triangleleft G$. From $y^{e^{2}}=y$ and $y^{e^{2}}=\left(x^{\delta} y\right)^{e}=x^{\gamma \delta} x^{\delta} y$ follows $\delta(\gamma+1) \equiv 0(\bmod 8)$. For $\gamma=1$ is $2 \delta \equiv 0(\bmod 8)$, i.e. $\delta \in\{0,4\}$. For $\gamma=3$ is $4 \delta \equiv 0(\bmod 8)$, i.e. $\delta \in\{0,2,4,6\}$. For $\gamma=5$ is $6 \delta \equiv 0(\bmod 8)$, i.e. $\delta \in\{0,4\}$. For $\gamma=7$ is $8 \delta \equiv 0(\bmod 8)$, i.e. $\delta \in\{0, \ldots, 7\}$. We have 32 possibilities. Involution y can be replaced with any involution $x^{\alpha} y, \alpha \in\{0, \ldots, 7\}$. We have $\left(x^{\alpha} y\right)^{e}=x^{\alpha \gamma} x^{\delta} y=x^{\alpha \gamma+\delta-\alpha} x^{\alpha} y=x^{\delta^{\prime}} x^{\alpha} y$, so it follows that δ must be transferred into new $\delta^{\prime}=\alpha(\gamma-1)+\delta, \alpha \in\{0, \ldots, 7\}$, i.e. for $\gamma=1$ is $\delta^{\prime} \in\{0,4\}$; for $\gamma=3$ is $\delta^{\prime}=0$; for $\gamma=5$ is $\delta^{\prime}=0$; for $\gamma=7$ is $\delta^{\prime} \in\{0,1\}$. For $\varepsilon \in\{0,1\}$ we have 12 possible cases. For the sake of brevity we again denote $\delta^{\prime} \equiv \delta$. Now, for $\delta=0$ is $y^{e}=y$, but for $\varepsilon=0$ we have $\langle z, y, e\rangle \cong Z_{4} \times E_{4}$, a contradiction. Thus, for $\delta=0$ must be $\varepsilon=1$. In the case $\gamma=1, \delta=4, \varepsilon=0$ we get the group $\left\langle x^{2}, z, e\right\rangle=\left\langle x^{2}\right\rangle \times\left\langle x^{2} z, e\right\rangle \cong Z_{4} \times E_{4}$, so this case also leads to a contradiction. For $\gamma \in\{1,3,5,7\}$ and $\delta=0, \varepsilon=1$ we get group $\left\langle x^{4}, y, e\right\rangle \cong E_{8}$, a contradiction again. Furthermore, a group in which we have $x^{e}=x^{-1}, y^{e}=y, z^{e}=x^{4} z$ does not stand, because if we observe this group as a factor-group over $\left\langle x^{4}\right\rangle$ we get: $\bar{x}^{\bar{e}}=\bar{x}, \bar{y}^{\bar{e}}=\bar{y}, \bar{z}^{\bar{e}}=\bar{z}$, i.e. $\langle\bar{x}, \bar{z}, \bar{e}\rangle \cong Z_{4} \times E_{4}$, and this is a non-metacyclic group not generated with involutions, so according to Lemma 1.6 the original group is also not generated with involutions. It is a contradiction. The group in which we have $x^{e}=x, y^{e}=x^{4} y, z^{e}=x^{4} z$ also does not stand, because its factor-group over $\left\langle x^{4}\right\rangle$ is again group $\langle\bar{x}, \bar{z}, \bar{e}\rangle \cong Z_{4} \times E_{4}$. Therefore we have 2 groups:

$$
\begin{aligned}
& G_{6}=\left\langle x, y, z, e \mid x^{8}=1, z^{2}=x^{4}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y\right\rangle=\langle y e, e| \\
& \quad(y e)^{16}=e^{2}=1,\left(y e e^{e}=(y e)^{-1}\right\rangle *\left\langle z \mid z^{4}=1\right\rangle \cong D_{32} * Z_{4} ; \\
& G_{7}=\langle x, y, z, e| x^{8}=1, z^{2}=x^{4}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y, z^{e}=x^{4} z= \\
& \left.\quad z^{-1}\right\rangle=\left\langle y e, x^{2} z \mid(y e)^{16}=\left(x^{2} z\right)^{2}=1,(y e)^{x^{2} z}=(y e)^{9}\right\rangle \cdot\left\langle e \mid e^{2}=1\right\rangle \cong \\
& \cong M_{32} \cdot Z_{2} \cong D_{32} \times_{2} E_{4} .
\end{aligned}
$$

This ends proof of Theorem 2.9. Now it remains to verify that all the established groups $G_{1}-G_{5}$ and G_{6}, G_{7} are not mutually isomorphic.

Remark 2.10. (Maximal subgroups of the $\mathcal{M C} \mathcal{C}_{3}$ 2-groups with property \mathcal{S})
Having observed all maximal subgroups of the groups established in Theorem 2.9. we verify that each of those groups is a $\mathcal{M C}_{3}$ 2-group with property \mathcal{S} and also prove that the groups established in Theorem 2.9 are not mutually isomorphic. Specifically, those maximal subgroups are either metacyclic ($D_{16}, S D_{16}, M_{16}, D_{32}, S D_{32}, M_{32}, Z_{16} \times Z_{2}, Z_{8} \times Z_{2}, Z_{4} \times Z_{4}$) or non-metacyclic $\left(E_{16}, D_{8} \times Z_{2}, D_{8} * Z_{4}, D_{16} * Z_{4}, D_{16} \times Z_{2}\right)$. Here is a list of all determined maximal subgroups:
a) of order 32
$G_{1}=\langle a, b, c, d\rangle \cong E_{32}$
According to Proposition 2.7 group G_{1} has 31 maximal subgroups, and all these subgroups are isomorphic to E_{16}.
$G_{2}=\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=b c\right\rangle \cong$ $\left(Z_{4} \times Z_{4}\right) \cdot Z_{2}$
$\Phi\left(G_{2}\right)=\left\langle a^{2}, c\right\rangle \cong E_{4}$ holds. Therefore, $G_{2} / \Phi\left(G_{2}\right) \cong E_{8}$ and according to Proposition 2.7 it follows that G_{2} possesses 7 maximal subgroups which are:
$H_{1}=\langle a, b, c\rangle \cong\langle a, b\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{2}=\langle a, c, d\rangle \cong\langle a, d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{3}=\langle a, c, b d\rangle \cong\langle a\rangle \times\langle b d\rangle \cong Z_{4} \times Z_{4}$,
$H_{4}=\langle b, d, c\rangle \cong\langle b d, d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{5}=\langle b, a d, c\rangle \cong\langle b a d, a d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{6}=\langle a b, d, c\rangle \cong\langle a b d, d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{7}=\langle a b, a d, c\rangle \cong\langle a b a d, a d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$.

$$
\begin{aligned}
G_{3} & =\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a^{d}=a^{-1}, b^{d}=a b\right\rangle \cong \\
& \cong\left(Z_{8} \times Z_{2}\right) \cdot Z_{2}
\end{aligned}
$$

$\Phi\left(G_{3}\right)=\langle a\rangle \cong Z_{4}$ holds. Therefore, $G_{3} / \Phi\left(G_{3}\right) \cong E_{8}$, so it follows that G_{3} possesses 7 maximal subgroups which are:
$H_{1}=\langle a, b, c\rangle \cong\langle a, b\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{2}=\langle a, b, d\rangle \cong\langle b d, d\rangle \cong D_{16}$,
$H_{3}=\langle a, c, d\rangle \cong\langle a, d\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}$,
$H_{4}=\langle a, b c, b\rangle \cong\langle b c d, d\rangle \cong D_{16}$,
$H_{5}=\langle a, b d, c\rangle \cong\langle b d\rangle \times\langle c\rangle \cong Z_{8} \times Z_{2}$,
$H_{6}=\langle a, c d, b\rangle \cong\langle b c d, c d\rangle \cong D_{16}$,
$H_{7}=\langle a, b d, c d\rangle \cong\langle b d, c d\rangle \cong D_{16}$.
$G_{4}=\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, c^{d}=a^{2} c\right\rangle \cong D_{8} * D_{8}$
$\Phi\left(G_{4}\right)=\left\langle a^{2}\right\rangle \cong Z_{2}$ holds. Therefore, $G_{4} / \Phi\left(G_{4}\right) \cong E_{16}$, so it follows that G_{4} possesses 15 maximal subgroups which are:

$$
\begin{aligned}
& H_{1}=\langle a, b, c\rangle \cong\langle a, b\rangle \times\langle c\rangle \cong D_{8} \times Z_{2}, \\
& H_{2}=\langle a, b, d\rangle \cong\langle a, b\rangle \times\langle d\rangle \cong D_{8} \times Z_{2}, \\
& H_{3}=\langle a, c, d\rangle \cong\langle a c, d\rangle *\langle a\rangle \cong D_{8} * Z_{4}, \\
& H_{4}=\langle b, c, d\rangle \cong\langle c d, d\rangle \times\langle b\rangle \cong D_{8} \times Z_{2}, \\
& H_{5}=\langle a, b, c d\rangle \cong\langle a, b\rangle *\langle c d\rangle \cong D_{8} * Z_{4}, \\
& H_{6}=\langle a, c, b d\rangle \cong\langle a, b d\rangle *\langle a c\rangle \cong D_{8} * Z_{4}, \\
& H_{7}=\langle a, d, b c\rangle \cong\langle a, b c\rangle *\langle a d\rangle \cong D_{8} * Z_{4}, \\
& H_{8}=\langle b, c, a d\rangle \cong\langle a d, b\rangle \times\langle b c\rangle \cong D_{8} \times Z_{2}, \\
& H_{9}=\langle b, d, a c\rangle \cong\langle a c, b\rangle \times\langle b d\rangle \cong D_{8} \times Z_{2}, \\
& H_{10}=\langle c, d, a b\rangle \cong\langle c d, d\rangle \times\langle a b\rangle \cong D_{8} \times Z_{2}, \\
& H_{11}=\langle a, b c, b d\rangle \cong\langle a, b c\rangle \times\langle a c d\rangle \cong D_{8} \times Z_{2}, \\
& H_{12}=\langle b, a c, a d\rangle \cong\langle a c, b\rangle *\langle b c d\rangle \cong D_{8} * Z_{4}, \\
& H_{13}=\langle c, a b, a d\rangle \cong\langle a d, c\rangle \times\langle a b c\rangle \cong D_{8} \times Z_{2}, \\
& H_{14}=\langle a b, a c, d\rangle \cong\langle a c, d\rangle \times\langle a b d\rangle \cong D_{8} \times Z_{2}, \\
& H_{15}=\langle b c, c d, a\rangle \cong\langle c d, b c\rangle \times\langle a c d\rangle \cong D_{8} \times Z_{2} .
\end{aligned}
$$

$$
G_{5}=\left\langle a, b, c, d \mid a^{4}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, b^{d}=a b c, c^{d}=a^{2} c\right\rangle \cong
$$

$$
\cong M_{16} \cdot Z_{2} \cong D_{16} \times_{2} E_{4}
$$

$\Phi\left(G_{5}\right)=\langle a c\rangle \cong Z_{4}$ holds. Therefore, $G_{5} / \Phi\left(G_{5}\right) \cong E_{8}$, so it follows that G_{5} possesses 7 maximal subgroups which are:
$H_{1}=\langle a c, a, b\rangle \cong\langle a c, a\rangle \times\langle b\rangle \cong D_{8} \times Z_{2}$,
$H_{2}=\langle a c, a, d\rangle \cong\langle a c, d\rangle *\langle a\rangle \cong D_{8} * Z_{4}$,
$H_{3}=\langle a c, b, d\rangle \cong\langle b d, d\rangle \cong D_{16}$,
$H_{4}=\langle a c, a b, d\rangle \cong\langle a b d, d\rangle \cong D_{16}$,
$H_{5}=\langle a c, a d, b\rangle \cong\langle b a d, a d\rangle \cong S D_{16}$,
$H_{6}=\langle a c, b d, a\rangle \cong\langle b d, c\rangle \cong M_{16}$,
$H_{7}=\langle a c, a b, a d\rangle \cong\langle a b a d, a d\rangle \cong S D_{16}$.
b) of order 64

$$
\begin{aligned}
G_{6} & =\left\langle x, y, z, e \mid x^{8}=1, x^{4}=z^{2}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y, z^{e}=z\right\rangle \cong \\
& \cong D_{32} * Z_{4}
\end{aligned}
$$

$\Phi\left(G_{6}\right)=\langle x\rangle \cong Z_{8}$ holds. Therefore, $G_{6} / \Phi\left(G_{6}\right) \cong E_{8}$, so it follows that G_{6} possesses 7 maximal subgroups which are:
$H_{1}=\langle x, y, z\rangle \cong\langle x, y\rangle *\langle z\rangle \cong D_{16} * Z_{4}$,
$H_{2}=\langle x, y, e\rangle \cong\langle y e, e\rangle \cong D_{32}$,
$H_{3}=\langle x, z, e\rangle \cong\langle x, e\rangle *\langle z\rangle \cong D_{16} * Z_{4}$,
$H_{4}=\langle x, y z, e\rangle \cong\langle y z e, e\rangle \cong S D_{32}$,
$H_{5}=\langle x, y e, z\rangle \cong\langle y e\rangle \times\left\langle x^{2} z\right\rangle \cong Z_{16} \times Z_{2}$,
$H_{6}=\langle x, z e, y\rangle \cong\langle y z e, e\rangle \cong S D_{32}$,
$H_{7}=\langle x, y e, z e\rangle \cong\left\langle y e, z^{2} e\right\rangle \cong D_{32}$.
$G_{7}=\left\langle x, y, z, e \mid x^{8}=1, x^{4}=z^{2}, x^{y}=x^{-1}, x^{e}=x^{-1}, y^{e}=x y, z^{e}=z^{-1}\right\rangle \cong$ $\cong M_{32} \cdot Z_{2} \cong D_{32} \times_{2} E_{4}$
$\Phi\left(G_{7}\right)=\langle x\rangle \cong Z_{8}$ holds. Therefore, $G_{7} / \Phi\left(G_{7}\right) \cong E_{8}$, so it follows that G_{7} possesses 7 maximal subgroups which are:
$H_{1}=\langle x, y, z\rangle \cong\langle x, y\rangle *\langle z\rangle \cong D_{16} * Z_{4}$,
$H_{2}=\langle x, y, e\rangle \cong\langle y e, e\rangle \cong D_{32}$,
$H_{3}=\langle x, z, e\rangle \cong\langle x, e\rangle \times\left\langle x^{2} z\right\rangle \cong D_{16} \times Z_{2}$,
$H_{4}=\langle x, y z, e\rangle \cong\langle y z e, e\rangle \cong S D_{32}$,
$H_{5}=\langle x, y e, z\rangle \cong\left\langle y e, x^{2} z\right\rangle \cong M_{32}$,
$H_{6}=\langle x, z e, y\rangle \cong\langle y z e, z e\rangle \cong D_{32}$,
$H_{7}=\langle x, y e, z e\rangle \cong\langle y e, z e\rangle \cong S D_{32}$.

References

[1] Ćepulić, V., Ivanković, M., Kovač Striko, E., Second-metacyclic finite 2-groups. Glasnik Matematički 40(60) (2005), 59-69.
[2] Janko, Z., Finite 2-groups with exactly four cyclic subgroups of order 2^{n}. J. Reine Angew. Math. 566 (2004), 135-181.

Received by the editors December 19, 2015
First published online August 26, 2016

[^0]: ${ }^{1}$ Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, University of Zagreb, Zagreb, Croatia, e-mail: marijana.greblicki@fer.hr

