LOCALLY ϕ-QUASICONFORMALLY SYMMETRIC SASAKIAN FINSLER STRUCTURES ON TANGENT BUNDLES

Nesrin Caliskan1,2 and A. Funda Saglamer3

Abstract. In this study, the notion of locally ϕ-quasiconformally symmetric Sasakian Finsler structures on the distributions of tangent bundles is introduced and its various geometric properties are studied with an example in dimension 3.

AMS Mathematics Subject Classification (2010): 53D15; 53C05; 53C15; 53C60

Key words and phrases: quasi-conformal curvature tensor; ϕ-quasiconformally symmetry; Sasakian Finsler structure; tangent bundle

1. Introduction

Miron 3, used the vector bundle approach in Finsler geometry. Sinha and Yadav 7, defined almost contact structures on vector bundles and studied their integrability condition. In 8, Yaliniz and Caliskan analysed almost contact and Sasakian Finsler structures on vector bundles and extended their characteristics with curvature properties and some structure theorems. Massamba and Mbatakou 4, approved pulled-back bundles to construct Sasakian Finsler structures. In this paper, tangent bundle approach is chosen to clarify locally ϕ-quasiconformally symmetry property of Sasakian Finsler structures. On the other hand, quasiconformal curvature tensor appears in the literature with Yano and Sawaki 9. Also, ϕ-quasiconformal flatness and ϕ-quasiconformal symmetry features of several manifolds, like $^2, 3$, are studied quite frequently. Here, we are interested in locally ϕ-quasiconformally symmetric Sasakian Finsler structures on tangent bundles.

In this section, a brief account of Sasakian Finsler structures on tangent bundles is given:

Let M be an $m = (2n + 1)$-dimensional smooth manifold. In this manner, T_xM is denoted as the tangent space at $x \in M$ where $x = (x^1, \ldots, x^m)$ are the local coordinates of M and $y = y^i \frac{\partial}{\partial x^i} \in T_xM$. Then $u = (x, y) \in TM$ where TM is the tangent bundle.

1Department of Mathematics and Science Education, Faculty of Education, Usak University, 64200, Usak-TURKEY, e-mail: nesrin.caliskan@usak.edu.tr
2Corresponding author
3Department of Mathematics, Faculty of Art and Sciences, Dumlupinar University, 43100, Kutahya-TURKEY, e-mail: fyaliniz@dumlupinar.edu.tr
Definition 1.1. The function $F : TM \rightarrow [0, \infty[$, the Hessian G and the manifold $F^m = (M, F)$ are called "Finsler norm", "Finsler metric" and "Finsler manifold", respectively, if the following relations hold \([\mathbb{H}]\):

1. F is smooth on the slit tangent bundle TM,
2. $F(x, \lambda y) = |\lambda|F(x, y)$, for $\lambda \in \mathbb{R}$ and $u = (x, y) \in TM$,
3. $g_{ij}(x, y) = \frac{1}{2} \left[\frac{\partial^2 F^2}{\partial y^i \partial y^j} \right]$ is positive definite on TM.

Assume that (x^i, y^j) and $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^j}\}$ denote the local coordinates of TM and natural bases of $T_u TM$, respectively. If $\pi : TM \rightarrow M$ is the projection map, the differential map $\pi_* : T_u TM \rightarrow T_{\pi(u)}M$ satisfies $\pi_u \in \pi_* (X_u)$. So, $\ker(\pi) = VTM$.

The non-linear connection $HTM = (N^j_i (x, y))$ is the complementary distribution of VTM for TTM i.e. $TTM = HTM \oplus VTM$, where $N^j_i = \frac{\partial N^j}{\partial y^i}$ are obtained via the spray coefficients $N^j_i = \frac{1}{4} g^{ik} \left(\frac{\partial^2 F^2}{\partial y^k \partial x^i} y^j - \frac{\partial F^2}{\partial x^i} \right)$ \([\mathbb{S}]\).

For every $u \in TM$ and $X \in T_u TM$, by using non-linear connections, $X = (X^i \frac{\partial}{\partial x^i} - N^j_i (x, y) X^i \frac{\partial}{\partial y^j}) + ((N^j_i (x, y) X^i + X^j) \frac{\partial}{\partial y^i}) = X^H + X^V$ unique decomposition is obtained as the horizontal part and the vertical part of vector field X where $X^H \in T^H u TM$ and $X^V \in T^V u TM$ and $T^H u TM$ and $T^V u TM$ are spanned by $\{\frac{\delta}{\delta x^i}\}$ and $\{\frac{\delta}{\delta y^j}\}$, respectively. In addition, their dual bases are $\{dx^i\}$ and $\{dy^j = dy^j + N^j_i dx^i\}$, respectively.

Similarly, for $\eta \in (T_u TM)^*$, $\eta = \tilde{\eta}_i dx^i + \eta_j dy^j = \eta^H + \eta^V$ is obtained where $\eta^H \in (T^H u TM)^*$ and $\eta^V \in (T^V u TM)^*$.

The Sasaki-Finsler metric G on TM is defined as follows:

\[G = G^H + G^V \] in the type of \(\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}\) and \(\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}\) on TM^H and TM^V, respectively. Thus, Sasaki Finsler metric structures $(\phi^H, \xi^H, \eta^H, G^H)$ and $(\phi^V, \xi^V, \eta^V, G^V)$ can be constructed on either TM^H or TM^V, respectively where; ϕ denotes the tensor field of type \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\), ξ is the structure vector field of type \(\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\), η is the 1-form of type \(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\)$, ∇ is the Finsler connection with respect to G on TM, L is the Lie differential operator, R is the Riemann curvature tensor field of type \(\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}\), S is the Ricci tensor field of type \(\begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}\), for $X^H, Y^H, \xi^H \in T^H u TM$ and $X^V, Y^V, \xi^V \in T^V u TM$, respectively.

The following relations hold for m-dimensional Sasaki Finsler metric manifolds $(TM^H, \phi^H, \xi^H, \eta^H, G^H)$ and $(TM^V, \phi^V, \xi^V, \eta^V, G^V)$ \([\mathbb{S}]\):

\begin{align*}
(1.1) & \quad \phi \phi = -I + \eta^H \otimes \xi^H + \eta^V \otimes \xi^V \\
(1.2) & \quad \phi \xi^H = 0, \phi \xi^V = 0
\end{align*}
(1.3) $\eta^H(\xi^H) = 1, \eta^V(\xi^V) = 1$

(1.4) $\eta^H(\phi X^H) = 0, \eta^V(\phi X^V) = 0, \eta^H(\phi X^V) = 0$

(1.5) $\Omega(X^H, Y^H) = 2(\nabla^H_X \eta)(Y^H) = -2(\nabla^H_Y \eta)(X^H)$

(1.6) $G(X^H, Y^H) = G(\phi^H X^H, \phi^H Y^H) + \eta^H(X^H)\eta^H(Y^H)$

(1.7) $G(X^H, \xi^H) = \eta^H(X^H), G(X^V, \xi^V) = \eta^V(X^V)$

(1.8) $G(\phi^H X^H, Y^H) = -G(X^H, \phi^H Y^H)$

(1.9) $\Omega(X^H, Y^H) = 2(\nabla^H_X \eta)(Y^H) = -2(\nabla^H_Y \eta)(X^H)$

(1.10) $G(X^V, Y^V) = G(\phi^V X^V, \phi^V Y^V) + \eta^V(X^V)\eta^V(Y^V)$

(1.11) $G(X^H, \phi^H Y^H) = d\eta^H(X^H, Y^H), G(X^V, \phi^V Y^V) = d\eta^H(X^H, Y^H)$

(1.12) $\nabla^H_X \xi^H = -\frac{1}{2} \phi^H X^H, \nabla^V_X \xi^V = -\frac{1}{2} \phi^V X^V$

(1.13) $\nabla^H_X \phi^H Y^H = \frac{1}{2}[G(X^H, Y^H)\xi^H - \eta^H(Y^H)X^H]$

(1.14) $\nabla^V_X \phi^V Y^V = \frac{1}{2}[G(X^V, Y^V)\xi^V - \eta^V(Y^V)X^V]$

(1.15) $R(X^H, Y^H)\xi^H = \frac{1}{4}[\eta^H(Y^H)X^H - \eta^H(X^H)Y^H]$

(1.16) $R(X^V, Y^V)\xi^V = \frac{1}{4}[\eta^V(Y^V)X^V - \eta^V(X^V)Y^V]$

(1.17) $R(X^H, \xi^H)Y^H = \frac{1}{4}[\eta^H(Y^H)X^H - G(X^H, Y^H)\xi^H]$

(1.18) $R(X^V, \xi^V)Y^V = \frac{1}{4}[\eta^V(Y^V)X^V - G(X^V, Y^V)\xi^V]$
\[S(X^H, \xi^H) = \frac{n}{2} \eta^H(X^H), S(X^V, \xi^V) = \frac{n}{2} \eta^V(X^V) \]

\[S(\xi^H, \xi^H) = \frac{n}{2}, S(\xi^V, \xi^V) = \frac{n}{2} \]

\[S(X^H, Y^H) = G(QX^H, Y^H), S(X^H, Y^H) = G(QX^V, Y^V) \]

\[Q(X^H) = \sum_{i=1}^{2n+1} R(E_i^H, X^H)E_i^H, Q(X^V) = \sum_{i=1}^{2n+1} R(E_i^V, X^V)E_i^V \]

\[r = \sum_{i=1}^{2n+1} (S(E_i^H, E_i^H) + S(E_i^u, E_i^u)) \]

Above-stated formulas can be used to construct Sasakian Finsler structures on both \(TM^H \) and \(TM^V \). But in this paper, in second and third sections, locally \(\phi \)-quasiconformal symmetry of \(TM^H \) and 3-dimensional \(TM^H \) is discussed briefly.

2. Locally \(\phi \)-quasiconformally symmetric Sasakian Finsler structures on \(TM^H \)

Definition 2.1. Let \(TM^H \) be a Sasakian Finsler manifold, then it is locally \(\phi \)-symmetric if and only if

\[\phi^2((\nabla^H_w R)(X^H, Y^H)Z^H) = 0 \]

for all \(X^H, Y^H, Z^H, W^H \in T^H_u TM \).

Definition 2.2. Let \(TM^H \) be a Sasakian Finsler manifold, then it is locally \(\phi \)-symmetric if and only if

\[\phi^2((\nabla^H_W C^*)(X^H, Y^H)Z^H) = 0 \]

for all vector fields \(X^H, Y^H, Z^H, W^H \in T^H_u TM \) and where the quasiconformal curvature tensor \(C^* \) is defined by

\[-\frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) (G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) \]

for all \(X^H, Y^H, Z^H, W^H \in T^H_u TM \) and the constants \(a, b \).

If \(a = 1 \) and \(b = \frac{1}{2n-1} \), (2.3) can be expressed as follows:
Locally ϕ-quasiconformally symmetric Sasakian Finsler structures

\[C^*(X^H, Y^H)Z^H = R(X^H, Y^H)Z^H + \frac{1}{2n-1}S(Y^H, Z^H)X^H - \frac{r}{(2n)(2n-1)}(G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) = C(X^H, Y^H)Z^H \]

where C is Weyl conformal curvature tensor.

Calculating the covariant differentiation of (2.3), the following equality is obtained:

\[

\[
\quad - \frac{dr(W^H)}{2n+1}(\frac{a}{2n} + 2b)(G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H).
\]

(2.4)

If $S(Y^H, W^H) = \lambda G(W^H, Y^H)$ is satisfied, where λ is a constant and $X^H, Y^H \in T^u TM$, the manifold TM^H is called an Einstein manifold, where $QX^H = \lambda X^H$.

By using (1.1), (2.2) takes the following form:

\[-(\nabla^H_W C)(X^H, Y^H)Z^H + \gamma^H(\nabla^H_W C)(X^H, Y^H)Z^H)\xi^H = 0.\]

By virtue of (2.3), we obtain

\]

\[\quad + a\gamma^H(\nabla^H_W R)(X^H, Y^H)Z^H)\xi^H + b(\nabla^H_W S)(Y^H, Z^H)\eta^H(\nabla^H_W Q)X^H)\xi^H - bG(Y^H, Z^H)\eta^H(\nabla^H_W Q)Y^H)\xi^H + \frac{dr(W^H)}{2n+1}(\frac{a}{2n} + 2b)\eta^H(\nabla^H_W Q)Y^H)\xi^H.
\]

For $U^H \in T^u TM$, the last equality is expressed by

\[0 = -aG((\nabla^H_W R)(X^H, Y^H)Z^H, U^H) - b(\nabla^H_W S)(Y^H, Z^H)G(X^H, U^H) + b(\nabla^H_W S)(X^H, Z^H)G(Y^H, U^H) - bG(Y^H, Z^H)(\nabla^H_W Q)X^H)G(X^H, U^H) + \frac{dr(W^H)}{2n+1}(\frac{a}{2n} + 2b)\eta^H(\nabla^H_W Q)Y^H)\xi^H + \frac{dr(W^H)}{2n+1}(\frac{a}{2n} + 2b)\eta^H(\nabla^H_W Q)Y^H)\xi^H.
\]

Putting $X^H = U^H = E^H_i$, where $\{E^H_i\}, i = 1, 2, \ldots, 2n + 1$ is an orthonormal basis of $T^u TM$, and taking summation over i, we have
0 = (-a - b(2n + 1))(\nabla^H_W S)(Y^H, Z^H) + b(\nabla^H_W S)(E^H_i, Z^H)G(Y^H, E^H_i) \\
- G(Y^H, Z^H)[bG((\nabla^H_W Q)E^H_i, E^H_i) + dr(W^H)(\frac{a}{2n} + 2b)] + bG((\nabla^H_W Q)Y^H, Z^H) \\
- \frac{dr(W^H)}{2n+1}(\frac{a}{2n} + 2b)G(E^H_i, Z^H)G(Y^H, E^H_i) \\
+ a\eta^H((\nabla^H_W R)(E^H_i, Y^H)Z^H)\eta^H(E^H_i) \\
(2.5)

In (2.4) an\eta^H((\nabla^H_W R)(E^H_i, Y^H)Z^H)\eta^H(E^H_i) is expressed by

\eta^H((\nabla^H_W R)(E^H_i, Y^H)Z^H) = G(\nabla^H_W R)(E^H_i, Y^H)\eta^H(E^H_i, Y^H) \\
- G(\nabla^H_W E^H_i, Y^H)\xi^H, \xi^H) \\
(2.6) \\
- G(R(E^H_i, \nabla^H_W Y^H)\xi^H, \xi^H) - G(R(E^H_i, Y^H)\nabla^H_W \xi^H, \xi^H)

Owing to the fact that \(E^H_i \) is an orthonormal basis, it is easily seen that
\(\nabla^H_W E^H_i = 0 \).

By virtue of (1.13), it is possible to obtain below relation:

\[0 = G(R(E^H_i, \nabla^H_W Y^H)\xi^H, \xi^H) = \frac{1}{4}[G(\nabla^H_W Y^H, \xi^H)G(E^H_i, \xi^H) - G(E^H_i, \xi^H)G(\nabla^H_W Y^H, \xi^H)] \]
(2.7)

By using these equalities, the second and third terms of the right part of
(2.6) vanish. Thus (2.6) takes this form:

\[G((\nabla^H_W R)(E^H_i, Y^H)\xi^H, \xi^H) = G((\nabla^H_W R)(E^H_i, Y^H)\xi^H, \xi^H) \\
- G(R(E^H_i, Y^H)\nabla^H_W \xi^H, \xi^H). \]

Due to \(G((\nabla^H_W R)(E^H_i, Y^H)\xi^H, \xi^H) + G(R(E^H_i, Y^H)\xi^H, \nabla^H_W \xi^H) = 0, \) (2.7)

can be expressed as follows:

\[0 = G((\nabla^H_W R)(E^H_i, Y^H)\xi^H, \xi^H) \\
- G((R)(E^H_i, Y^H)\xi^H, \nabla^H_W \xi^H) + G(R(E^H_i, Y^H)\xi^H, \nabla^H_W \xi^H) \]

In consequence of these calculations and by putting \(Z^H = \xi^H \) in (2.3) we
have the following:

\[(-a - b(2n + 1))(\nabla^H_W S)(Y^H, \xi^H) + b(\nabla^H_W S)(\xi^H, \xi^H)\eta^H(Y^H) \\
- \eta^H(Y^H)[bG((\nabla^H_W Q)\xi^H, \xi^H) \\
+ dr(W^H)(\frac{a}{2n} + 2b)] + bG((\nabla^H_W Q)Y^H, \xi^H) = 0 \]
(2.8)

We calculate \((\nabla^H_W S)(\xi^H, \xi^H) = 0 \) and \(G((\nabla^H_W Q)\xi^H, \xi^H) = 0 \) and additionally
\(G((\nabla^H_W Q)Y^H, \xi^H) = 0. \)

So, (2.3) is expressed by

\[(\nabla^H_W S)(Y^H, \xi^H) = dr(W^H)(-\frac{a + 4bn}{(2n + 1)(a + (2n - 1)b)})\eta^H(Y^H) \]
(2.9)

where \(a + 4bn \neq 0 \). Because if \(a + 4bn = 0 \) from (2.3), we get \(C^* = aC \). By
putting \(Y^H = \xi^H \) in (2.9), we find the following:
Locally ϕ-quasiconformally symmetric Sasakian Finsler structures...

$$(\nabla^SH)(\xi^H, \xi^H) = dr(W^H)(-\frac{a+4bn}{(2n+1)(a+(2n-1)b)})$$

$$0 = dr(W^H).$$

This implies r is constant. So we find $(\nabla^SH)(Y^H, \xi^H) = 0$.

By the virtue of (1.14) and (1.16), from (2.9) we have

$$S(Y^H, \phi W^H) = \frac{n}{2}G(W^H, \phi Y^H)$$

By putting ϕW^H instead of W^H, we find $S(Y^H, W^H) = \frac{n}{2}G(W^H, Y^H)$. If we get $\frac{n}{2} = \lambda$ this means that a ϕ-quasiconformally symmetric manifold TM^H is an Einstein manifold. Then it is possible to have the following theorem:

Theorem 2.3. If a Sasakian Finsler manifold TM^H is locally ϕ-quasiconformally symmetric, then it is an Einstein manifold.

If we get $S(X^H, Y^H) = \lambda G(X^H, Y^H)$ in (2.9), the below relation is found.

$$C^*(X^H, Y^H)Z^H = (a + 4bn)$$

$$-\frac{4r}{2n+1}(\frac{a}{2n} + 2b))R(X^H, Y^H)Z^H$$

From (2.9), it is possible to say that TM^H is locally ϕ-quasiconformally symmetric because C^* satisfies $\phi^2(\nabla^H W^H C^*(X^H, Y^H)Z^H) = 0$ for all vector fields $X^H, Y^H, Z^H \in T^uT^MT$. Also $\phi^2(\nabla^H W R)(X^H, Y^H)Z^H = 0$ implies that TM^H is locally ϕ-symmetric. So, it enables to state the following corollary:

Corollary 2.4. Let TM^H be locally ϕ-quasiconformally symmetric. Then it is locally ϕ-symmetric.

3. **Locally ϕ-quasiconformally symmetric Sasakian Finsler structures on 3-dimensional TM^H**

In a 3-dimensional TM^H, due to $C = 0$ [1], we have

$$R(X^H, Y^H)Z^H = [S(Y^H, Z^H)X^H - S(X^H, Z^H)Y^H + G(Y^H, Z^H)QX^H$$

$$-G(X^H, Z^H)QY^H] - \frac{r}{2}(G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H)$$

(3.1)

Putting $Z^H = \xi^H$ in(3.1), by the virtue of (1.4) and (1.10), we find

$$\frac{1}{4} - \frac{r}{2}[\eta^H(Y^H)X^H - \eta^H(X^H)Y^H] = [\eta^H(X^H)QY^H$$

$$-\eta^H(Y^H)QX^H].$$

(3.2)

Changing $Y^H = \xi^H$ in (3.2), we get
we have

\[(3.3) \quad QX^H = \left(\frac{r}{2} - \frac{1}{4} \right)X^H + \left(\frac{3}{4} - \frac{r}{2} \right)\eta^H(X^H)\xi^H. \]

By using (3.3), we have

\[(3.4) \quad S(X^H, Y^H) = \left(\frac{r}{2} - \frac{1}{4} \right)G(X^H, Y^H) + \left(\frac{3}{4} - \frac{r}{2} \right)\eta^H(X^H)\eta^H(Y^H). \]

Writing (3.3) and (3.4) in (2.2), we get the following:

\[R(X^H, Y^H)Z^H = \left(\frac{r}{2} - \frac{1}{4} \right)(G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) + \left(\frac{3}{4} - \frac{r}{2} \right)\eta^H(Y^H)\eta^H(Z^H)X^H - \eta^H(X^H)\eta^H(Z^H)Y^H \]
\[+ G(Y^H, Z^H)\eta^H(X^H)\xi^H - G(X^H, Z^H)\eta^H(Y^H)\xi^H. \]

Using (1.3), (2.2) and (3.3) in (2.2), we obtain

\[C^*(X^H, Y^H)Z^H = \left[\frac{1}{3} \frac{(a+b)r}{3} - \frac{1}{2} \frac{(a+b)}{3} \right] (G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) \]
\[+ \left(\frac{3}{4} - \frac{r}{2} \right) \frac{(a+b)}{3} G(Y^H, Z^H)\eta^H(X^H)\xi^H - G(X^H, Z^H)\eta^H(Y^H)\xi^H \]
\[+ \left(\frac{3}{4} - \frac{r}{2} \right) \frac{(a+b)}{3} \eta^H(Y^H)\eta^H(Z^H)X^H - \eta^H(X^H)\eta^H(Z^H)Y^H \]

By calculating covariant differentiation of both sizes of (3.3)

\[-(\nabla^H_W C^*)(X^H, Y^H)Z^H = \left[\frac{(a+b)}{3} dr(W^H) (G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) \right] \]
\[+ \left(\frac{a+b}{3} - \frac{1}{2} \frac{(a+b)}{3} \right) (\nabla^H_W G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) \]
\[+ \left(\frac{3}{4} - \frac{r}{2} \right) (a+b) \left(\nabla^H_W (G(Y^H, Z^H)\eta^H(X^H)\xi^H) - \nabla^H_W (G(X^H, Z^H)\eta^H(Y^H)\eta^H(Z^H)X^H) - \nabla^H_W (\eta^H(X^H)\eta^H(Z^H)Y^H) \right). \]

Then we can write the following relation:

\[(\nabla^H_W C)(X^H, Y^H)Z^H = \left[\frac{(a+b)}{3} dr(W^H) (G(Y^H, Z^H)X^H - G(X^H, Z^H)Y^H) \right] \]
\[+ \left(\frac{a+b}{3} - \frac{1}{2} \frac{(a+b)}{3} \right) (\nabla^H_W G(Y^H, Z^H)) \nabla^H_W(\eta^H(X^H))\xi^H - G(X^H, Z^H)\nabla^H_W(\eta^H(X^H))\xi^H \]
\[- G(X^H, Z^H)\nabla^H_W(\eta^H(Y^H)\eta^H(Z^H)X^H) - \nabla^H_W(\eta^H(X^H)\eta^H(Z^H)Y^H). \]

Because \(X^H, Y^H, Z^H \in T_u \) are orthogonal to \(\xi^H \), by using (1.3) we get \(\phi^2(\nabla^H_W C(X^H, Y^H)Z^H) = -\nabla^H_W C(X^H, Y^H)Z^H + \eta^H(\nabla^H_W C(X^H, Y^H)Z^H) \)

from which we have

\[\phi^2(\nabla^H_W C(X^H, Y^H)Z^H) = -\left(\frac{a+b}{3} \right) dr(W^H) (G(Y^H, Z^H)X^H) \]
\[- G(X^H, Z^H)Y^H \]

Due to \(\phi^2(\nabla^H_W C(X^H, Y^H)Z^H) = 0 \) if we take \(a+b = 0 \) and \(a = -b \) in (2.2), we have \(C(X^H, Y^H)Z^H = aC(X^H, Y^H)Z^H \). Because of \(C = 0 \), in (3.7) we find \(dr(W^H) = 0 \). This means that the curvature \(r \) is constant. Then it is possible to state the following theorem:
Theorem 3.1. Let TM^H be a 3-dimensional Sasakian Finsler manifold. A necessary and sufficient condition to be locally ϕ-quasiconformally symmetric is that r is constant.

Corollary 3.2. Let TM^H be a 3-dimensional Sasakian Finsler manifold. A necessary and sufficient condition to be ϕ-symmetric is that r is constant.

Corollary 3.3. Let TM^H be a 3-dimensional Sasakian Finsler manifold. A necessary and sufficient condition to be locally ϕ-quasiconformally symmetric is to be locally ϕ-symmetric.

Example 3.4. Suppose $T(TM) = \{TM, \pi, M\}$ is the tangent bundle with $M = R^3$, where $u \in TM$ is defined by $(x^1, x^2, x^3, y^1, y^2, y^3)$. Assume the adapted local frames of T_u^HTM and T_u^VTM are $(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta \pi^i}, \frac{\delta}{\delta y^i})$ and $(\frac{\delta}{\delta \pi^i}, \frac{\delta}{\delta \pi^i}, \frac{\delta}{\delta y^i})$, respectively. Then the orthonormal frame of T_uTM is

$$E_j = E^i_j \frac{\delta}{\delta x^i} + E_{j} \frac{\partial}{\partial y^i} = E^1_j \frac{\delta}{\delta x^i} + E^2_2 \frac{\delta}{\delta x^i} + E^3_3 \frac{\delta}{\delta x^i} + E^1_1 \frac{\partial}{\partial y^i} + E^2_2 \frac{\partial}{\partial y^i} + E^3_3 \frac{\partial}{\partial y^i},$$

where

$$E_1 = - \frac{\delta}{\delta x^i} - y^3 \frac{\partial}{\partial y^i};$$

$$E_2 = -(x^2)^2 \frac{\delta}{\delta x^i} + x^1 \frac{\delta}{\delta x^i} + (y^2)^2 \frac{\partial}{\partial y^i};$$

$$E_3 = \delta \frac{\delta}{\delta x^i} + \frac{\partial}{\partial y^i}.$$

Let $\eta = \tilde{\eta}_1 dx^1 + \eta_2 dx^2 + \eta_3 dx^3 + \tilde{\eta}_1 dy^1 + \tilde{\eta}_2 dy^2 + \tilde{\eta}_3 dy^3 = \eta^H + \eta^V$ be defined by $\eta = \frac{x^1}{(x^2)^2} dx^2 + dx^3 - \frac{y^3}{(y^2)^2} dy^2 + \delta y^3$.

Suppose that $\phi = \phi^H + \phi^V$ is a tensor field such that its coefficients are tensor fields ϕ^H and ϕ^V with the type of $(1,1)$. Their matrix forms are:

$$\phi^H = \begin{bmatrix} 0 & -\frac{1}{(x^2)^2} & 0 \\ (x^2)^2 & 0 & 0 \\ -x^1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \phi^V = \begin{bmatrix} 0 & -\frac{1}{(y^2)^2} & 0 \\ (y^2)^2 & 0 & 0 \\ -y^1 & 0 & 0 \end{bmatrix}.$$

The Sasaki-Finsler metric is defined by the matrix forms:

$$G^H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{(x^2)^2} & \frac{x^1}{(x^2)^2} \\ 0 & \frac{x^1}{(x^2)^2} & 1 \end{bmatrix} \quad \text{and} \quad G^V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{(y^2)^2} & \frac{y^1}{(y^2)^2} \\ 0 & \frac{y^1}{(y^2)^2} & 1 \end{bmatrix}.$$

It is possible to construct Sasakian Finsler manifolds on both horizontal and vertical distributions. In this example, it is shown that 3-dimensional TM^H admits the Sasakian Finsler structure $(\phi^H, \xi^H, \eta^H, G^H)$.

We calculate

$$\phi^H(\xi^H) = 0, \phi^H(E^H_1) = -E^H_2, \phi^H(E^H_2) = E^H_1,$$

so relation (1.2) is satisfied. Similarly, (1.3) holds. Also it is possible to see that
\[\phi^H(\phi^H(Z^H)) = -a_1E_1^H - b_1E_2^H = -Z^H + \eta^H(Z^H)\zeta^H, \]

for any \(Z^H = a_1E_1^H + b_1E_2^H + c_1E_3^H \in T_u^uTM \). Hence, it is shown that (1.1) is true.

If \(\eta^H(\phi Z^H) = 0 \), then (1.4) is satisfied. Thus, \((\phi^H, \zeta^H, \eta^H) \) is an almost contact Finsler structure on \(TM^H \).

Due to

\[\eta^H(Z^H) = c_1 = G^H(Z^H, \zeta^H) \]

for any \(Z^H \in T_u^uTM \), thus (1.7) holds.

Because of

\[G^H(\phi Z^H, \phi W^H) = a_1a_2 + b_1b_2 = G^H(Z^H, W^H) - \eta^H(Z^H)\eta^H(W^H), \]

it can be seen that (1.10) holds. This implies \((\phi^H, \zeta^H, \eta^H, G^H) \) is an almost contact Finsler metric structure.

On the other hand,

\[[E_1^H, E_2^H] = -E_3^H, [E_1^H, E_3^H] = 0, [E_2^H, E_3^H] = 0. \]

Finsler connection \(\nabla = \nabla^H + \nabla^V \) of metric \(G = G^H + G^V \) can be expressed by the Koszul formula:

\[
\]

This yields

\[
\nabla^H_{E_1^H} E_3^H = \frac{1}{2} E_2^H, \quad \nabla^H_{E_1^H} E_2^H = -\frac{1}{2} E_3^H, \quad \nabla^H_{E_1^H} E_1^H = 0, \\
\nabla^H_{E_2^H} E_3^H = -\frac{1}{2} E_1^H, \quad \nabla^H_{E_2^H} E_2^H = 0, \quad \nabla^H_{E_2^H} E_1^H = \frac{1}{2} E_3^H, \\
\nabla^H_{E_3^H} E_3^H = 0, \quad \nabla^H_{E_3^H} E_2^H = -\frac{1}{2} E_1^H, \quad \nabla^H_{E_3^H} E_1^H = \frac{1}{2} E_2^H.
\]

In consequence of these calculations,

\[\nabla^H_Z \zeta^H = -\frac{1}{2}(-a_1E_2^H + b_1E_1^H) = -\frac{1}{2}\phi Z^H \]

is satisfied, so (1.12) holds.

Due to

\[
(\nabla^H_Z \phi)W^H = \frac{1}{2}\{ -a_1c_2 E_1^H - b_1c_2 E_2^H + (a_1a_2 + b_1b_2) E_3^H \} = \frac{1}{2}[G^H(Z^H, W^H)\zeta^H - \eta^H(W^H)Z^H],
\]

it can be seen that (1.13) holds.

Because of

\[\nabla^H_Z \eta^H(W^H) = \frac{1}{2}(a_1b_2 - b_1a_2) = \frac{1}{2}G^H(Z^H, \phi W^H), \]

(1.3) and (1.8) hold. Hence, \((\phi^H, \zeta^H, \eta^H, G^H) \) is a Sasakian Finsler structure on \(TM^H \).

We can verify the following results:
Locally ϕ-quasiconformally symmetric Sasakian Finsler structures...

$$R(E_1^H, E_2^H)E_1^H = \frac{3}{4}E_2^H, R(E_1^H, E_2^H)E_2^H = -\frac{3}{4}E_1^H,$$

$$R(E_1^H, E_3^H)E_3^H = 0, R(E_3^H, E_1^H)E_1^H = \frac{1}{4}E_3^H,$$

$$R(E_1^H, E_3^H)E_2^H = 0, R(E_1^H, E_3^H)E_3^H = \frac{1}{4}E_1^H, R(E_2^H, E_3^H)E_1^H = 0,$$

$$R(E_2^H, E_3^H)E_2^H = -\frac{1}{4}E_3^H, R(E_2^H, E_3^H)E_3^H = \frac{1}{4}E_2^H$$

and

$$S(E_1^H, E_1^H) = -\frac{1}{2}, S(E_2^H, E_2^H) = -\frac{1}{2}, S(E_3^H, E_3^H) = \frac{1}{2}$$

and also (1.17) holds and we get $r = -\frac{1}{2}$. Consequently, the scalar curvature r is constant and by virtue of Corollary 3.2 and Corollary 3.3, TM^H is locally ϕ-quasiconformally symmetric. It is possible to verify that TM^V is locally ϕ-quasiconformally symmetric, similarly.

References

Received by the editors June 26, 2017
First published online November 21, 2017