CORRIGENDUM AND ADDENDUM TO "CHAOS EXPANSION METHODS IN MALLIAVIN CALCULUS: A SURVEY OF RECENT RESULTS"

Tijana Levajkovićal Stevan Pilipovicic ${ }^{[\sqrt{[1}}$ and Dora Seleši ${ }^{[\sqrt{1}}$

The estimate $\alpha!\leq(2 \mathbb{N})^{\alpha}$ on page 51 in [I]], as well as the inclusions $(S)_{-1,-(p-1)} \subseteq(S)_{0,-p}$ and $(S)_{0, p} \subseteq(S)_{1, p}, p \in \mathbb{N}$, are not correct. The correct inclusions are: $(S)_{1, p} \subseteq(S)_{0, p}$ and $(S)_{0,-p} \subseteq(S)_{-1,-p}, p \in \mathbb{N}_{0}$.

Consequently, the statement and proof of Theorem 6.5 will hold only for the Hida spaces but not for the Kondratiev spaces. For this purpose we note that we may define $\operatorname{Dom}_{0,-p}(\mathbb{D})=\left\{u \in X \otimes(S)_{0,-p}: \sum_{\alpha \in \mathcal{I}}\left\|u_{\alpha}\right\|_{X}^{2}|\alpha| \alpha!(2 \mathbb{N})^{-p \alpha}<\right.$ $\infty\}$, and by the proof of Theorem $2.19[\mathbb{I}], \mathbb{D}: \operatorname{Dom}_{0,-p}(\mathbb{D}) \rightarrow X \otimes S_{-l}(\mathbb{R}) \otimes$ $(S)_{0,-p}, l>p+1$. Similarly, we define $\operatorname{Dom}_{0,-l,-q}(\delta)=\left\{u \in X \otimes S_{-l}(\mathbb{R}) \otimes\right.$ $\left.(S)_{0,-q}: \sum_{\alpha \in \mathcal{I}} \sum_{k=1}^{\infty}\left\|u_{\alpha, k}\right\|_{X}^{2} \alpha!\left(\alpha_{k}+1\right)(2 k)^{-l}(2 \mathbb{N})^{-q \alpha}<\infty\right\}$ and by the proof of Theorem $2.22[\mathbb{I}], \delta: \operatorname{Dom}_{0,-l,-q}(\delta) \rightarrow X \otimes(S)_{0,-q}, q>l+1, l \in \mathbb{N}$.

The statement and proof of Theorem 6.5 on page 86 now have to be modified as follows.

Theorem 6.5. (Weak duality) Let $F \in \operatorname{Dom}_{0,-p}(\mathbb{D})$ and $u \in \operatorname{Dom}_{0,-q}(\mathbb{D})$ for $p, q \in \mathbb{N}$. For any $\varphi \in S_{-n}(\mathbb{R}), n<q-1$, it holds that

$$
\ll\langle\mathbb{D} F, \varphi\rangle_{-r}, u>_{-r}=\ll F, \delta(\varphi u)>_{-r},
$$

for $r>\max \{q, p+1\}$.
Proof. Let $F=\sum_{\alpha \in \mathcal{I}} f_{\alpha} H_{\alpha} \in \operatorname{Dom}_{0,-p}(\mathbb{D}), u=\sum_{\alpha \in \mathcal{I}} u_{\alpha} H_{\alpha} \in \operatorname{Dom}_{0,-q}(\mathbb{D})$ and $\varphi=\sum_{k \in \mathbb{N}} \varphi_{k} \xi_{k} \in S_{-n}(\mathbb{R})$. Then, for $k>p+1, \mathbb{D} F \in X \otimes S_{-k}(\mathbb{R}) \otimes$ $(S)_{0,-p} \subseteq X \otimes S_{-r}(\mathbb{R}) \otimes(S)_{0,-r}$ if $r>p+1$. Also, one can easily check that $\varphi u \in \operatorname{Dom}_{0,-n,-q}(\delta)$ and since $q>n+1$, this implies that $\delta(\varphi u) \in$ $X \otimes(S)_{0,-q} \subseteq X \otimes(S)_{0,-r}$, for $r \geq q$. Therefore we let $r>\max \{p+1, q\}$. The rest of the proof is conducted as in [IT].

References

[1] Levajković, T., Pilipović, S.,Seleši, D., Chaos expansion methods in Malliavin calculus: A survey of recent results. Novi Sad J. Math. 45(1) (2015), 45-103. http://www.dmi.uns.ac.rs/nsjom/Papers/45_1/NSJOM_45_1_045_103.pdf

Received by the editors May 7, 2016

[^0]
[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Austria, email: tijana.levajkovic@uibk.ac.at
 ${ }^{2}$ Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad email: stevan.pilipovic@dmi.uns.ac.rs
 ${ }^{3}$ Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, e-mail: dora(onmi.uns.ac.rs

