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SOME RESULTS ON FARTHEST POINTS IN
2-NORMED SPACES

M. Iranmanesh” and F. Soleimany®?

Abstract. In this paper, we consider the problem of the farthest poinst
for bounded sets in a real 2-normed spaces. We investigate some proper-
ties of farthest points in the setting of 2-normalised spaces and present
various characterizations of b-farthest point of elements by bounded sets
in terms of b-linear functional. We also provide some applications of far-
thest points in the setting of 2- inner product spaces.
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1. Introduction

The concepts of 2-metric spaces and linear 2-normed spaces were first intro-
duced by Gdahler in 1963 [8] and have been developed extensively in different
subjects by others authors (see [3, @, 9, [0, [2]). Elumalai, Vijayaragavan and
Sistani, Moghaddam in [B, [4] gave some results on the concept best approxi-
mation in the context of bounded linear 2-functionals on real linear 2-normed
spaces. They established various characterizations of the best approximation
elements in these spaces. The concepts of farthest point in normed spaces have
been studied by many authors (see [@, B, 5, [, [3]). In this paper we study
this concept in 2-normed spaces, and obtain some results on characterization
and existence of farthest points in normed linear spaces in terms of bounded
b-linear functionals. In section B, we give some preliminary results. In section
B, we give some fundamental concepts of b-farthest points and give character-
ization of farthest points in 2-normed linear spaces and some basic properties
of farthest points. Also we study the farthest point mapping on X by virtue of
the Gateaux derivative in 2-normed spaces. We show in the case that 2-normed
space is strictly convex there exists a unique farthest points of the closed con-
vex set from each point. In the end, we delineate some applications of farthest
points in 2-inner product spaces.

2. Preliminaries

Definition 2.1. Let X be a linear space of dimension greater than 1. Suppose
II., .|| is a real-valued function on X x X satisfying the following conditions:
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a) ||z, z|| >0 and ||z, z| =0 if and only if z and =z are linearly dependent.
b) [l z[| = [z, =],

d) ||az, z|| = a||z, z|| for any scalar « € R,

e) lle+a,zl| <l 2] +[lz, 2]

Then ||.,.|| is called a 2-norm on X and (X, ||.,.||) is called a linear 2- normed
space.

Example 2.2. Let X = R?, and consider the following 2-norm on X:

) J k
|z, yll = [zzy| = |det |21 22 x3] |
Y1 Y2 Y3

where @ = (z1, 22, 23),y = (y1,¥2,y3). Then X is a 2-normed space.

Example 2.3. Let X be a real linear space having two seminorms ||.||; and
l.ll2. Then (X, |.||) is a generalized 2-normed space with the 2-norm defined
by

[z, yll = [l llall-lyll2, for 2,y € X.

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b € X, pp, = ||z,b]| ; * € X is a semi-norm on X and the family
P ={py:be X} of semi-norms generates a locally convex topology.

Definition 2.4. Let (X, ||.,b||) be a 2-normed linear space, E be a nonempty
subset of X. The set E is called b-open if and only if for each ag € E, there
exists g4, > 0 such that for each ¢ € F with ||ag—¢,b|| < &4, implies ag—c € E.
The b-interior of F is denoted int,(E), is the largest b-open set contained in
E.

A sequence {z,} in 2-normed linear space X is said to be a b-convergent
if there exists an element z € X such that lim, o ||z, — 2,b|| = 0. A set is
b-closed if and only if it contains all of its limit points.

Definition 2.5. Let (X, ||.,.||) be a 2-normed space, b € X be fixed, then a
map T : XX < b>— R is called a b-linear functional on X x < b > whenever

1) T(a+¢,b) =T(a,b) +T(c,b) for a;e,b € X such that ;
2) T(aa,b) = aT(a,b) for a € R.

A b-linear functional T : X x < b >— R is said to be bounded if there exists a
real number M > 0 such that |T'(x,b)| < M||x,b|| for every x € X.. The norm
of the b-linear functional T': X x < b >— R is defined by

1T = sup{{IT(x,b)| : ||z, .bl| # O}
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3. Farthest points in 2-normed spaces

Let X be a 2-normed vector space. For a nonempty subset G of X and
r € X, define

(3.1) fo(x,b) = supllz — g, b||.
geG

Recall that a point gy € G is called a b-farthest point for x € X if

(32) [z = go,bll = fa(x,b).

The set of all b-farthest points to « from G is denoted by F¢g(x,b). Let
Ry(G) ={x € X : Fg(x,b) # o}.

The set G is said to be a b-remotal set if Ry(G) = X.

Corollary 3.1. Let X be a 2-normed vector space and G be a nonempty
bounded subset of X. Then for any x,z of X

i) | fa(,b) — fa(z,b) |< |z — 2,0
i) ||z —2,bl| < fa(z,b) + fa(z,b).
Proof. i) Let y € Fg(z,b). By the definition of b-farthest points, we have
fa(@,b) > |lo —y,bl| = [lv — 2+ 2 =y, bl = |lz — 2,b]| — [z —y, 0|
fo(z,b) — fa(z,b) > ||l — 2z, 0]
Interchanging x and y, we get
fG(va) - fG(xab) > ||(E - ZabH
Hence | fG(va) - fG(va) |S ||Q3 - Z’bH

ii) It’s proof is similar to that of (i).
O

Theorem 3.2. Let G is a closed bounded b-remotal set in a 2-normed space
X. Then Fg(z,b) Ninty(G) = 2.

Proof. Suppose e € G such that e € Fg(z,b) Nint,(G). There exists a number

r > 0 such that {y € X : ||[y —¢,b]| <7} C G. Putu:efm(a:fe).

Then ||u — e, b]| = g <r, and hence u € G and

(z —e), b

,
—wbl = _ -
e —wbl = o —et gt

;
= 14— Y-
10+ g ) = el

(1+2Hx )iz =€), bl > [|(z —€),b].

—e b

This is a contradiction. O
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Theorem 3.3. A nonvoid bounded set G in a 2-normed space X is b-remotal
if and only if the following associated set

K4 =G+ CB40)
is closed for d > 0, where CB4(0) = {y € X : ||z,b] > d|}.

Proof. Let x be an adherent element of G+ CBY(0), i.e. there exist a sequence
(zn)en which converges to x and a sequence (un)neny C G such that for all
n € N ||y — up,b|| > d. Thus, for every € > 0 there exists n. € N such that
|€n, — tn, b|| > d — ¢ for all n > n.. Now, if G is b-remotal, taking an element
¢ € Fg(z,b) we obtain that ||z — ¢°,b|| > ||z, — un,b|| for all n > n. and so
|z — ¢,b]| > d — ¢, for every ¢ > 0. Consequently ||z — ¢’,b|| > d ie. z €
G + CBY(0). Conversely, for an arbitrary element x € X we take d = fg(z,b).
We can suppose d > 0 since fg(x,b) = 0 if and only if G = {z}. When G is
b-remotal obviously for every n € N exist u, € G such that ||z —u,,b|| > d— 2.
But, we have

1 1
~(d— E)*l(x —up) + 2 € u, + CB50) C G+ CB50),
for all n € N such that n > 1. Since (uy)nen is bounded, by passing to

the limit we get © € G + CBY(0)). Therefore, if G + CBY(0) is closed there
exists ¢’ € G such that ||z — ¢',b|| > d i.e. ¢’ € Fg(x,b). Hence the set G is
b-remotal. O

Some characterizations of farthest points in 2-normed spaces are provided
in following theorems.

Theorem 3.4. Let G be a subset of a 2-norm space X and x € X \ M+ < b >,
then go € Fg(x,b), if and only if there exists a b-bilinear function p such that

(3.3) p(x — go,b) = sup [lx — g,b[| and |p[| = 1.
geG

Proof. Suppose that there is a b-bilinear function p which satisfies (B3), then

12 = g0, bl = llz — go, bllllpll =] p(z — g0.b) |= sup [z —g,bll = [l — g,b].
ge

Conversely, let g9 € Fg(z,b), by Hahn-Banach theorem in the context of 2-
normed spaces (see Theorem 2.2 [I]) there exists a b-bilinear function p such
that [[p[| =1, p(x — g0,b) = [l — go, bl| = sup,eq [l — g, bll. O

Theorem 3.5. Let G be a subset of a 2-norm space X and x € X\ M+ < b >.
Then the following statements are equivalent.

Z) go € Fg(l’,b>



Some results on farthest points in 2-normed spaces 211

it) There is a b-bilinear function p on X which satisfies

(3.4) | p(x — go,b) |=sup ||z — g,b]| and |[|]p|| =1,
geG

(3:5) | p(z — g0, b) | =] p(z — g,b) | -
iii) There is a b-bilinear function p on X which satisfies (54) and
(3.6) p(go = g,b)p(g0 — x,b) > 0.
Proof. Let go € Fe(x,b). Then by Theorem B4 we have (8d) and

| p(z — go,b) |= sugIIw—gvbII > ||z — g,b|| >| p(z —g,b) |,
ge

which proves (B3). Thus, (i) = ().
(#4) = (4i1). Suppose that there is a b-bilinear function p on X satisfying (84),
(BH) then

Ip(z — g0,0)* + |p(g — g0, b)[?
2p(go — 9,b)p(go — x,b)
lp(x — g0, b)|* + 2p(go — 9,b)p(g0 — ., b),

|p($€ - gOab)|2 Z |p($ - g,b)|2

vV +

whence it follows that p(go — g,b)p(go — x,b) > 0.
(#9i) = (i) It is a consequence of Theorem B4. O

Definition 3.6. A linear 2-normed space (X, ., .||) is said to be strictly convex
if |x +y,c|| = ||z, ]| + ||y, || and ¢ ¢ Span{x,y} imply that z = ay for some
a>0.

Definition 3.7. A real-valued function f on X x < b > is said to be b-Gateaux
differentiable at a point x of X if there is a b-linear functional df, such that,

for each y € X,
dfe(y,b) = lim , ;

and we call df, the b-Gateaux derivative of f at x.

Theorem 3.8. Let G be a subset of a 2-norm space X, x € X and y €
Fg(z,b). Suppose that the functional dfyp is the Gateaux derivative of the
function fg(.,b) at the point x. Then

dfe(x —y,0) = |z =y, b and ||dfs]l =1.

Proof. If G is a single point this is clear. Otherwise  # y and ||z — y,b|| =
fa(z,b), for 0 <t < 1,

fG(mv b) =+ t”x - Y b”

L+ B)llz =y, = llz + t(z —y) -y, 0
fa(z +t(z —y),b) < fo(z,b) +t]z —y,bl.

IN
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As above and Corollary B so omitted holds throughout, and
fa(z +t(y —x),b) — fa(,b)
t
Corollary B implies that ||dfs || < 1, so this also show that ||df,| = 1. O

df(z — y,b) :tli_% = ||z —y,b|.

Theorem 3.9. Let G be a convex subset of a strictly conver 2-normed space
X,z € X\ G and b ¢ Span{x, G}. Suppose that the functional dfy is the
Gateauz derivative of the function fg(.,b) at the point x. Then there is at most
one b-farthest point in G to x.

Proof. Suppose that y, z of Fg(z,b). Theorem B8 shows that

dfy(x —y,b) = ||l — y,b|| = ||z — 2,b|| = dfz(x — 2,b).

%(dfl.(x —9,0) +dfe(v - 2,b))

_ dfi(x—¥,b) <Jo— y;

< fG(xab)

Hence equality must hold throughout these inequalities. Since X is strictly
convex 2-normed space and b ¢ Span{z,G}, it follows that Fg(z,b) has at
most one element. O

1
fa(z,b) = S(llz =y, bl + [lz = 2, bl])

z
,0ll

The properties of linear 2-normed spaces have been extensively studied by
many authors. The same properties also hold in 2-inner product spaces, which
were introduced by Diminnie et al [4].

Definition 3.10. Let X be a linear space. Suppose that (.|.) is a R valued
function defined on X x X x X satisfying the following conditions:
a) (z,z|z) > 0and (z,z|z) = 0if and only if x and z are linearly dependent.
b

x,x|z) =< z, z|x),

d
)

(.,.],) is called a 2-inner product and (X, {(.,,|.)) is called a 2-inner product
space (or a 2-perHilbert space).

ax,x|z) = oz, x|z) for any scalar « € R,

) (

c) (z,ylz) = (y, z[2),
)
(

z+a',ylz) = (z,y]2) + (@, yl2).

In any given 2-inner product space (X, (.,.|.)), we can define a function ||., .||
on X x X by )
[, 2l = (| 2)=.

Using the above properties, we can prove the Cauchy-Schwarz inequality

a,y | 2)F < (z,z | 2){y,y | 2).
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Theorem 3.11. Let G be a bounded subset of 2-inner product space X, x € X,
and yo € G. If (x —y,yo — y|b) <0 for all y € G, then yo € Fg(z,b).

Proof. Suppose that (z —y,yo — y|b) <0 for all y € G, then
e =y, 0> = (&—y,z—ylb) = (r—y,z—yo+y0—ylb)

= (v—y,x—yol|b) + (x —y,y0 — y[b)
< (z—y,r—yolb) < |[lz—y,b|l[|x — yo, b

A

Hence ||z — y,b||> < ||z — yo,b|| i.e. yo € Fg(x,b). O

Definition 3.12. A set A in a 2-normed space X is said to be b-strongly
convex with constant r > 0 if there exists a set A; C F such that

A= mCL€A1BS(a)7

where Bb(a) ={y € X : |z —a,b|| < 7|}
A set A is called a b-strongly convex set of radius R > 0 if this set is the
intersection of balls of radius R.

In the following, we study uniqueness problem for a point of closed bounded
set that is the farthest point from a given point in 2-inner product spaces.

Lemma 3.13. Let G be a b-strongly convex set of radius r > 0 in the 2-inner
product space X .Then the inequality

llar — a2,b]|* < R{ay — az,p2 — p1|b),
holds for vectors p1,pa such that ||p1,b|, ||p2,b| > 1.

Proof. We fix vectors p1,ps. According to the definition of strongly convex
sets, we have

D1 b P2
G C B%a; — R N B%ay — R ,
rlon = R, o) 0 Brloa = R 50
which implies the inequalities
las — <R lag —
[p1 bll [p2 bll
and hence
laz — a1 + =(as—a1 +R——,a0 —a1 + R b)),
(1 bll ||p1,b\| ||p1,b||
b1
= (ag —a1,a2 — a1|b) + (R R b) +2(az — a1, R b) <
[p1, 0 ||p1,bH p 17b||
and hence

llar — az,b||* < 2R{a; — az, —p1|b)
lar — a2, b]|* < 2R{a1 — az, p2|b).

We sum the last two inequalities and obtain the desired inequality. O
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For a set G in a 2-normed space X and a number r > 0, we define the set
T(G)={x € X : fa(x,b) >r}.

Theorem 3.14. Let G be a b-strongly convex set of radius r > 0 in the 2-inner
product space X. Then for x1,x9 € T}%(G) the inequality

r

||$1 — T2, bH7

(3.7) [ fo(z1) = fo(w2),b])* < 7

-7
holds for any R > r and fy(x;) € Fg(x;,b), i =1,2.

Proof. We choose a number R > r, and introduce the vectors

1
i = 5 i_ia':1a2'
pi = 3 (folw) — @2),i
From Lemma B3, we obtain

1fo(z1) — fo(z2),b]?
r(fo(x1) — fo(x2), p2 — p1]b)
= o) = folwa), g (folw) — 22)

= Flfle) = folwa). bl - -

Hence by Cauchy-Schwarz inequality we get

IA

— 2 () — ), 8

(fo(w1) = fo(z2), 22 — 21[D).

r T
(1= ) fo(@r) = fol@a),b]* < Sl folw1) = folwa), bl s — s, .
which implies formula (877). O

Corollary 3.15. Let G be a b-strongly convex set of radius v > 0 in the 2-
inner product space X, x € T3(G) and b ¢ Span{G}. Then there is at most
one b-farthest point in G to x.

Proof. 1t is a consequence of Theorem B4l O
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