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SOME RESULTS ON FARTHEST POINTS IN
2-NORMED SPACES

M. Iranmanesh1 and F. Soleimany2

Abstract. In this paper, we consider the problem of the farthest poinst
for bounded sets in a real 2-normed spaces. We investigate some proper-
ties of farthest points in the setting of 2-normalised spaces and present
various characterizations of b-farthest point of elements by bounded sets
in terms of b-linear functional. We also provide some applications of far-
thest points in the setting of 2- inner product spaces.
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1. Introduction

The concepts of 2-metric spaces and linear 2-normed spaces were first intro-
duced by Gähler in 1963 [8] and have been developed extensively in different
subjects by others authors (see [3, 4, 9, 10, 12]). Elumalai, Vijayaragavan and
Sistani, Moghaddam in [6, 14] gave some results on the concept best approxi-
mation in the context of bounded linear 2-functionals on real linear 2-normed
spaces. They established various characterizations of the best approximation
elements in these spaces. The concepts of farthest point in normed spaces have
been studied by many authors (see [1, 2, 5, 7, 13]). In this paper we study
this concept in 2-normed spaces, and obtain some results on characterization
and existence of farthest points in normed linear spaces in terms of bounded
b-linear functionals. In section 2, we give some preliminary results. In section
3, we give some fundamental concepts of b-farthest points and give character-
ization of farthest points in 2-normed linear spaces and some basic properties
of farthest points. Also we study the farthest point mapping on X by virtue of
the Gateaux derivative in 2-normed spaces. We show in the case that 2-normed
space is strictly convex there exists a unique farthest points of the closed con-
vex set from each point. In the end, we delineate some applications of farthest
points in 2-inner product spaces.

2. Preliminaries

Definition 2.1. Let X be a linear space of dimension greater than 1. Suppose
∥., .∥ is a real-valued function on X ×X satisfying the following conditions:
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a) ∥x, z∥ ≥ 0 and ∥x, z∥ = 0 if and only if x and z are linearly dependent.

b) ∥x, z∥ = ∥z, x∥,

d) ∥αx, z∥ = α∥x, z∥ for any scalar α ∈ R,

e) ∥x+ x
′
, z∥ ≤ ∥x, z∥+ ∥x′

, z∥.

Then ∥., .∥ is called a 2-norm on X and (X, ∥., .∥) is called a linear 2- normed
space.

Example 2.2. Let X = R3, and consider the following 2-norm on X:

∥x, y∥ = |xxy| = |det

 i j k
x1 x2 x3

y1 y2 y3

 |.

where x = (x1, x2, x3), y = (y1, y2, y3). Then X is a 2-normed space.

Example 2.3. Let X be a real linear space having two seminorms ∥.∥1 and
∥.∥2. Then (X, ∥.∥) is a generalized 2-normed space with the 2-norm defined
by

∥x, y∥ = ∥x∥1∥.∥y∥2, for x, y ∈ X.

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b ∈ X, pb = ∥x, b∥ ; x ∈ X is a semi-norm on X and the family
P = {pb : b ∈ X} of semi-norms generates a locally convex topology.

Definition 2.4. Let (X, ∥., b∥) be a 2-normed linear space, E be a nonempty
subset of X. The set E is called b-open if and only if for each a0 ∈ E, there
exists εa0 > 0 such that for each c ∈ E with ∥a0−c, b∥ < εa0 implies a0−c ∈ E.
The b-interior of E is denoted intb(E), is the largest b-open set contained in
E.

A sequence {xn} in 2-normed linear space X is said to be a b-convergent
if there exists an element x ∈ X such that limn→∞ ∥xn − x, b∥ = 0. A set is
b-closed if and only if it contains all of its limit points.

Definition 2.5. Let (X, ∥., .∥) be a 2-normed space, b ∈ X be fixed, then a
map T : X× < b >→ R is called a b-linear functional on X× < b > whenever

1) T (a+ c, b) = T (a, b) + T (c, b) for a; c, b ∈ X such that ;

2) T (αa, b) = αT (a, b) for α ∈ R.

A b-linear functional T : X× < b >→ R is said to be bounded if there exists a
real number M > 0 such that |T (x, b)| < M∥x, b∥ for every x ∈ X.. The norm
of the b-linear functional T : X× < b >→ R is defined by

∥T∥ = sup{∥T (x, b)∥ : ∥x, .b∥ ≠ 0}.
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3. Farthest points in 2-normed spaces

Let X be a 2-normed vector space. For a nonempty subset G of X and
x ∈ X, define

(3.1) fG(x, b) = sup
g∈G

∥x− g, b∥.

Recall that a point g0 ∈ G is called a b-farthest point for x ∈ X if

(3.2) ∥x− g0, b∥ = fG(x, b).

The set of all b-farthest points to x from G is denoted by FG(x, b). Let

Rb(G) = {x ∈ X : FG(x, b) ̸= ∅}.

The set G is said to be a b-remotal set if Rb(G) = X.

Corollary 3.1. Let X be a 2-normed vector space and G be a nonempty
bounded subset of X. Then for any x, z of X

i) | fG(x, b)− fG(z, b) |≤ ∥x− z, b∥.

ii) ∥x− z, b∥ ≤ fG(x, b) + fG(z, b).

Proof. i) Let y ∈ FG(z, b). By the definition of b-farthest points, we have

fG(x, b) ≥ ∥x− y, b∥ = ∥x− z + z − y, b∥ ≥ ∥x− z, b∥ − ∥z − y, b∥

fG(x, b)− fG(z, b) ≥ ∥x− z, b∥.
Interchanging x and y, we get

fG(z, b)− fG(x, b) ≥ ∥x− z, b∥.

Hence | fG(x, b)− fG(z, b) |≤ ∥x− z, b∥.

ii) It’s proof is similar to that of (i).

Theorem 3.2. Let G is a closed bounded b-remotal set in a 2-normed space
X. Then FG(x, b) ∩ intb(G) = ∅.

Proof. Suppose e ∈ G such that e ∈ FG(x, b)∩ intb(G). There exists a number

r > 0 such that {y ∈ X : ∥y − e, b∥ < r} ⊆ G. Put u = e− r

2∥x− e, b∥
(x− e).

Then ∥u− e, b∥ =
r

2
≤ r, and hence u ∈ G and

∥x− u, b∥ = ∥x− e+
r

2∥x− e, b∥
(x− e), b∥

= ∥(1 + r

2∥x− e, b∥
)(x− e), b∥

= (1 +
r

2∥x− e, b∥
)∥(x− e), b∥ > ∥(x− e), b∥.

This is a contradiction.
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Theorem 3.3. A nonvoid bounded set G in a 2-normed space X is b-remotal
if and only if the following associated set

Kd = G+ CBb
d(0)

is closed for d > 0, where CBb
d(0) = {y ∈ X : ∥x, b∥ ≥ d∥}.

Proof. Let x be an adherent element of G+CBb
d(0), i.e. there exist a sequence

(xn)∈N which converges to x and a sequence (un)n∈N ⊂ G such that for all
n ∈ N ∥xn − un, b∥ ≥ d. Thus, for every ε > 0 there exists nε ∈ N such that
∥xn − un, b∥ > d− ε for all n ≥ nε. Now, if G is b-remotal, taking an element
g, ∈ FG(x, b) we obtain that ∥x − g,, b∥ ≥ ∥xn − un, b∥ for all n ≥ nε and so
∥x − g,, b∥ ≥ d − ε, for every ε > 0. Consequently ∥x − g,, b∥ ≥ d i.e. x ∈
G+CBb

d(0). Conversely, for an arbitrary element x ∈ X we take d = fG(x, b).
We can suppose d > 0 since fG(x, b) = 0 if and only if G = {x}. When G is
b-remotal obviously for every n ∈ N exist un ∈ G such that ∥x−un, b∥ ≥ d− 1

n .
But, we have

1

n
(d− 1

n
)−1(x− un) + x ∈ un + CBb

d(0) ⊂ G+ CBb
d(0),

for all n ∈ N such that n > 1. Since (un)n∈N is bounded, by passing to

the limit we get x ∈ G+ CBb
d(0)). Therefore, if G + CBb

d(0) is closed there
exists g′ ∈ G such that ∥x − g′, b∥ ≥ d i.e. g′ ∈ FG(x, b). Hence the set G is
b-remotal.

Some characterizations of farthest points in 2-normed spaces are provided
in following theorems.

Theorem 3.4. Let G be a subset of a 2-norm space X and x ∈ X \M+ < b >,
then g0 ∈ FG(x, b), if and only if there exists a b-bilinear function p such that

(3.3) p(x− g0, b) = sup
g∈G

∥x− g, b∥ and ∥p∥ = 1.

Proof. Suppose that there is a b-bilinear function p which satisfies (3.3), then

∥x− g0, b∥ = ∥x− g0, b∥∥p∥ ≥| p(x− g0, b) |= sup
g∈G

∥x− g, b∥ ≥ ∥x− g, b∥.

Conversely, let g0 ∈ FG(x, b), by Hahn-Banach theorem in the context of 2-
normed spaces (see Theorem 2.2 [11]) there exists a b-bilinear function p such
that ∥p∥ = 1, p(x− g0, b) = ∥x− g0, b∥ = supg∈G ∥x− g, b∥.

Theorem 3.5. Let G be a subset of a 2-norm space X and x ∈ X \M+ < b >.
Then the following statements are equivalent.

i) g0 ∈ FG(x, b).
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ii) There is a b-bilinear function p on X which satisfies

(3.4) | p(x− g0, b) |= sup
g∈G

∥x− g, b∥ and ∥p∥ = 1,

(3.5) | p(x− g0, b) |≥| p(x− g, b) | .

iii) There is a b-bilinear function p on X which satisfies (3.4) and

(3.6) p(g0 − g, b)p(g0 − x, b) ≥ 0.

Proof. Let g0 ∈ FG(x, b). Then by Theorem 3.4 we have (3.4) and

| p(x− g0, b) |= sup
g∈G

∥x− g, b∥ ≥ ∥x− g, b∥ ≥| p(x− g, b) |,

which proves (3.5). Thus, (i) ⇒ (ii).
(ii) ⇒ (iii). Suppose that there is a b-bilinear function p on X satisfying (3.4),
(3.5) then

|p(x− g0, b)|2 ≥ |p(x− g, b)|2 = |p(x− g0, b)|2 + |p(g − g0, b)|2

+ 2p(g0 − g, b)p(g0 − x, b)

≥ |p(x− g0, b)|2 + 2p(g0 − g, b)p(g0 − x, b),

whence it follows that p(g0 − g, b)p(g0 − x, b) ≥ 0.
(iii) ⇒ (i) It is a consequence of Theorem 3.4.

Definition 3.6. A linear 2-normed space (X, ∥., .∥) is said to be strictly convex
if ∥x + y, c∥ = ∥x, c∥ + ∥y, c∥ and c /∈ Span{x, y} imply that x = αy for some
α > 0.

Definition 3.7. A real-valued function f on X× < b > is said to be b-Gateaux
differentiable at a point x of X if there is a b-linear functional dfx such that,
for each y ∈ X,

dfx(y, b) = lim
t→0

f(x+ ty, b)− f(x, b)

t
,

and we call dfx the b-Gateaux derivative of f at x.

Theorem 3.8. Let G be a subset of a 2-norm space X, x ∈ X and y ∈
FG(x, b). Suppose that the functional dfx,b is the Gateaux derivative of the
function fG(., b) at the point x. Then

dfx(x− y, b) = ∥x− y, b∥ and ∥dfx∥ = 1.

Proof. If G is a single point this is clear. Otherwise x ̸= y and ∥x − y, b∥ =
fG(x, b), for 0 < t < 1,

fG(x, b) + t∥x− y, b∥ = (1 + t)∥x− y, b∥ = ∥x+ t(x− y)− y, b∥
≤ fG(x+ t(x− y), b) ≤ fG(x, b) + t∥x− y, b∥.
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As above and Corollary 3.1 so omitted holds throughout, and

dfx(x− y, b) = lim
t→0

fG(x+ t(y − x), b)− fG(x, b)

t
= ∥x− y, b∥.

Corollary 3.1 implies that ∥dfx,b∥ ≤ 1, so this also show that ∥dfx∥ = 1.

Theorem 3.9. Let G be a convex subset of a strictly convex 2-normed space
X, x ∈ X \ G and b /∈ Span{x,G}. Suppose that the functional dfx,b is the
Gateaux derivative of the function fG(., b) at the point x. Then there is at most
one b-farthest point in G to x.

Proof. Suppose that y, z of FG(x, b). Theorem 3.8 shows that

dfx(x− y, b) = ∥x− y, b∥ = ∥x− z, b∥ = dfx(x− z, b).

fG(x, b) =
1

2
(∥x− y, b∥+ ∥x− z, b∥) =

1

2
(dfx(x− y, b) + dfx(x− z, b))

= dfx(x− y + z

2
, b) ≤ ∥x− y + z

2
, b∥

≤ fG(x, b).

Hence equality must hold throughout these inequalities. Since X is strictly
convex 2-normed space and b /∈ Span{x,G}, it follows that FG(x, b) has at
most one element.

The properties of linear 2-normed spaces have been extensively studied by
many authors. The same properties also hold in 2-inner product spaces, which
were introduced by Diminnie et al [4].

Definition 3.10. Let X be a linear space. Suppose that ⟨.|.⟩ is a R valued
function defined on X ×X ×X satisfying the following conditions:

a) ⟨x, x|z⟩ ≥ 0 and ⟨x, x|z⟩ = 0 if and only if x and z are linearly dependent.

b) ⟨x, x|z⟩ =< z, z|x⟩,

c) ⟨x, y|z⟩ = ⟨y, x|z⟩,

d) ⟨αx, x|z⟩ = α⟨x, x|z⟩ for any scalar α ∈ R,

e) ⟨x+ x
′
, y|z⟩ = ⟨x, y|z⟩+ ⟨x′

, y|z⟩.

⟨., .|, ⟩ is called a 2-inner product and (X, ⟨., , |.⟩) is called a 2-inner product
space (or a 2-perHilbert space).

In any given 2-inner product space (X, (., .|.)), we can define a function ∥., .∥
on X ×X by

∥x, z∥ = ⟨x, x | z⟩ 1
2 .

Using the above properties, we can prove the Cauchy-Schwarz inequality

|⟨x, y | z⟩| 12 ≤ ⟨x, x | z⟩⟨y, y | z⟩.
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Theorem 3.11. Let G be a bounded subset of 2-inner product space X, x ∈ X,
and y0 ∈ G. If ⟨x− y, y0 − y|b⟩ ≤ 0 for all y ∈ G, then y0 ∈ FG(x, b).

Proof. Suppose that ⟨x− y, y0 − y|b⟩ ≤ 0 for all y ∈ G, then

∥x− y, b∥2 = ⟨x− y, x− y|b⟩ = ⟨x− y, x− y0 + y0 − y|b⟩
= ⟨x− y, x− y0|b⟩+ ⟨x− y, y0 − y|b⟩
≤ ⟨x− y, x− y0|b⟩ ≤ ∥x− y, b∥∥x− y0, b∥.

Hence ∥x− y, b∥2 ≤ ∥x− y0, b∥ i.e. y0 ∈ FG(x, b).

Definition 3.12. A set A in a 2-normed space X is said to be b-strongly
convex with constant r > 0 if there exists a set A1 ⊂ E such that

A = ∩a∈A1
Bb

r(a),

where Bb
r(a) = {y ∈ X : ∥x− a, b∥ ≤ r∥}.

A set A is called a b-strongly convex set of radius R > 0 if this set is the
intersection of balls of radius R.

In the following, we study uniqueness problem for a point of closed bounded
set that is the farthest point from a given point in 2-inner product spaces.

Lemma 3.13. Let G be a b-strongly convex set of radius r > 0 in the 2-inner
product space X.Then the inequality

∥a1 − a2, b∥2 ≤ R⟨a1 − a2, p2 − p1|b⟩,

holds for vectors p1, p2 such that ∥p1, b∥, ∥p2, b∥ ≥ 1.

Proof. We fix vectors p1, p2. According to the definition of strongly convex
sets, we have

G ⊆ Bb
r(a1 −R

p1
∥p1, b∥

) ∩Bb
r(a2 −R

p2
∥p2, b∥

),

which implies the inequalities

∥a2 − a1 +R
p1

∥p1, b∥
, b∥2 ≤ R2, ∥a1 − a2 +R

p2
∥p2, b∥

, b∥2 ≤ R2

and hence

∥a2 − a1 +R
p1

∥p1, b∥
, b∥2 = ⟨a2 − a1 +R

p1
∥p1, b∥

, a2 − a1 +R
p1

∥p1, b∥
|b⟩,

= ⟨a2 − a1, a2 − a1|b⟩+ ⟨R p1
∥p1, b∥

, R
p1

∥p1, b∥
|b⟩+ 2⟨a2 − a1, R

p1
∥p1, b∥

|b⟩ ≤ R2,

and hence
∥a1 − a2, b∥2 ≤ 2R⟨a1 − a2,−p1|b⟩
∥a1 − a2, b∥2 ≤ 2R⟨a1 − a2, p2|b⟩.

We sum the last two inequalities and obtain the desired inequality.
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For a set G in a 2-normed space X and a number r > 0, we define the set

T b
r (G) = {x ∈ X : fG(x, b) > r}.

Theorem 3.14. Let G be a b-strongly convex set of radius r > 0 in the 2-inner
product space X. Then for x1, x2 ∈ T b

R(G) the inequality

(3.7) ∥fb(x1)− fb(x2), b∥2 ≤ r

R− r
∥x1 − x2, b∥,

holds for any R > r and fb(xi) ∈ FG(xi, b), i = 1, 2.

Proof. We choose a number R > r, and introduce the vectors

pi =
1

R
(fb(xi)− xi), i = 1, 2.

From Lemma 3.13, we obtain

∥fb(x1)− fb(x2), b∥2

≤ r⟨fb(x1)− fb(x2), p2 − p1|b⟩

= r⟨fb(x1)− fb(x2),
1

R
(fb(x2)− x2)−

1

R
(fb(x1)− x1), |b⟩

=
r

R
∥fb(x1)− fb(x2), b∥2 −

r

R
⟨fb(x1)− fb(x2), x2 − x1|b⟩.

Hence by Cauchy-Schwarz inequality we get

(1− r

R
)∥fb(x1)− fb(x2), b∥2 ≤ r

R
∥fb(x1)− fb(x2), b∥∥x1 − x2, b∥.

which implies formula (3.7).

Corollary 3.15. Let G be a b-strongly convex set of radius r > 0 in the 2-
inner product space X, x ∈ T b

R(G) and b /∈ Span{G}. Then there is at most
one b-farthest point in G to x.

Proof. It is a consequence of Theorem 3.14.
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