SOME RESULTS ON FARTHEST POINTS IN 2-NORMED SPACES

M. Iranmanesh ${ }^{\text {W }}$ and F. Soleimany ${ }^{\text {D }}$

Abstract

In this paper, we consider the problem of the farthest poinst for bounded sets in a real 2 -normed spaces. We investigate some properties of farthest points in the setting of 2-normalised spaces and present various characterizations of b-farthest point of elements by bounded sets in terms of b-linear functional. We also provide some applications of farthest points in the setting of 2 - inner product spaces.

AMS Mathematics Subject Classification (2010) : 41A65; 46A70
Key words and phrases: 2-norm space; b-farthest point; b-linear function; 2- inner product

1. Introduction

The concepts of 2-metric spaces and linear 2-normed spaces were first introduced by Gähler in 1963 [$\mathbb{Z}]$ and have been developed extensively in different subjects by others authors (see [3, 4, [9, [10, [2]). Elumalai, Vijayaragavan and Sistani, Moghaddam in [6, [4] gave some results on the concept best approximation in the context of bounded linear 2-functionals on real linear 2-normed spaces. They established various characterizations of the best approximation elements in these spaces. The concepts of farthest point in normed spaces have been studied by many authors (see [$[\mathbb{I},[\mathbb{Z},[\boxed{5}, \boxed{\pi}, \boxed{\pi}]$). In this paper we study this concept in 2-normed spaces, and obtain some results on characterization and existence of farthest points in normed linear spaces in terms of bounded b-linear functionals. In section Z , we give some preliminary results. In section [3, we give some fundamental concepts of b-farthest points and give characterization of farthest points in 2-normed linear spaces and some basic properties of farthest points. Also we study the farthest point mapping on X by virtue of the Gateaux derivative in 2-normed spaces. We show in the case that 2-normed space is strictly convex there exists a unique farthest points of the closed convex set from each point. In the end, we delineate some applications of farthest points in 2-inner product spaces.

2. Preliminaries

Definition 2.1. Let X be a linear space of dimension greater than 1. Suppose $\|.,$.$\| is a real-valued function on X \times X$ satisfying the following conditions:

[^0]a) $\|x, z\| \geq 0$ and $\|x, z\|=0$ if and only if x and z are linearly dependent.
b) $\|x, z\|=\|z, x\|$,
d) $\|\alpha x, z\|=\alpha\|x, z\|$ for any scalar $\alpha \in R$,
e) $\left\|x+x^{\prime}, z\right\| \leq\|x, z\|+\left\|x^{\prime}, z\right\|$.

Then $\|.,$.$\| is called a 2$-norm on X and $(X,\|.,\|$.$) is called a linear 2-normed$ space.

Example 2.2. Let $X=R^{3}$, and consider the following 2-norm on X :

$$
\|x, y\|=|x x y|=\left|\operatorname{det}\left[\begin{array}{ccc}
i & j & k \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]\right| .
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right)$. Then X is a 2 -normed space.
Example 2.3. Let X be a real linear space having two seminorms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. Then $(X,\|\cdot\|)$ is a generalized 2 -normed space with the 2 -norm defined by

$$
\|x, y\|=\|x\|_{1}\|\cdot\| y \|_{2}, \quad \text { for } x, y \in X
$$

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X, p_{b}=\|x, b\| ; x \in X$ is a semi-norm on X and the family $P=\left\{p_{b}: b \in X\right\}$ of semi-norms generates a locally convex topology.

Definition 2.4. Let $(X,\|., b\|)$ be a 2 -normed linear space, E be a nonempty subset of X. The set E is called b-open if and only if for each $a_{0} \in E$, there exists $\varepsilon_{a_{0}}>0$ such that for each $c \in E$ with $\left\|a_{0}-c, b\right\|<\varepsilon_{a_{0}}$ implies $a_{0}-c \in E$. The b-interior of E is denoted $\operatorname{int}_{b}(E)$, is the largest b-open set contained in E.

A sequence $\left\{x_{n}\right\}$ in 2-normed linear space X is said to be a b-convergent if there exists an element $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, b\right\|=0$. A set is b-closed if and only if it contains all of its limit points.

Definition 2.5. Let $(X,\|.,\|$.$) be a 2-normed space, b \in X$ be fixed, then a $\operatorname{map} T: X \times\rightarrow R$ is called a b-linear functional on $X \times$ whenever

1) $T(a+c, b)=T(a, b)+T(c, b)$ for $a ; c, b \in X$ such that ;
2) $T(\alpha a, b)=\alpha T(a, b)$ for $\alpha \in R$.

A b-linear functional $T: X \times\rightarrow R$ is said to be bounded if there exists a real number $M>0$ such that $|T(x, b)|<M\|x, b\|$ for every $x \in X$.. The norm of the b-linear functional $T: X \times\rightarrow R$ is defined by

$$
\|T\|=\sup \{\|T(x, b)\|:\|x, . b\| \neq 0\}
$$

3. Farthest points in 2-normed spaces

Let X be a 2-normed vector space. For a nonempty subset G of X and $x \in X$, define

$$
\begin{equation*}
f_{G}(x, b)=\sup _{g \in G}\|x-g, b\| \tag{3.1}
\end{equation*}
$$

Recall that a point $g_{0} \in G$ is called a b-farthest point for $x \in X$ if

$$
\begin{equation*}
\left\|x-g_{0}, b\right\|=f_{G}(x, b) \tag{3.2}
\end{equation*}
$$

The set of all b-farthest points to x from G is denoted by $\mathbf{F}_{G}(x, b)$. Let

$$
R_{b}(G)=\left\{x \in X: \mathbf{F}_{G}(x, b) \neq \varnothing\right\}
$$

The set G is said to be a b-remotal set if $R_{b}(G)=X$.
Corollary 3.1. Let X be a 2-normed vector space and G be a nonempty bounded subset of X. Then for any x, z of X
i) $\left|f_{G}(x, b)-f_{G}(z, b)\right| \leq\|x-z, b\|$.
ii) $\|x-z, b\| \leq f_{G}(x, b)+f_{G}(z, b)$.

Proof. i) Let $y \in \mathbf{F}_{G}(z, b)$. By the definition of b-farthest points, we have

$$
\begin{gathered}
f_{G}(x, b) \geq\|x-y, b\|=\|x-z+z-y, b\| \geq\|x-z, b\|-\|z-y, b\| \\
f_{G}(x, b)-f_{G}(z, b) \geq\|x-z, b\| .
\end{gathered}
$$

Interchanging x and y, we get

$$
f_{G}(z, b)-f_{G}(x, b) \geq\|x-z, b\| .
$$

Hence $\left|f_{G}(x, b)-f_{G}(z, b)\right| \leq\|x-z, b\|$.
ii) It's proof is similar to that of (i).

Theorem 3.2. Let G is a closed bounded b-remotal set in a 2-normed space X. Then $\mathbf{F}_{G}(x, b) \cap \operatorname{int}_{b}(G)=\varnothing$.
Proof. Suppose $e \in G$ such that $e \in \mathbf{F}_{G}(x, b) \cap \operatorname{int}_{b}(G)$. There exists a number $r>0$ such that $\{y \in X:\|y-e, b\|<r\} \subseteq G$. Put $u=e-\frac{r}{2\|x-e, b\|}(x-e)$. Then $\|u-e, b\|=\frac{r}{2} \leq r$, and hence $u \in G$ and

$$
\begin{aligned}
\|x-u, b\| & =\left\|x-e+\frac{r}{2\|x-e, b\|}(x-e), b\right\| \\
& =\left\|\left(1+\frac{r}{2\|x-e, b\|}\right)(x-e), b\right\| \\
& =\left(1+\frac{r}{2\|x-e, b\|}\right)\|(x-e), b\|>\|(x-e), b\|
\end{aligned}
$$

This is a contradiction.

Theorem 3.3. A nonvoid bounded set G in a 2-normed space X is b-remotal if and only if the following associated set

$$
K_{d}=G+C B_{d}^{b}(0)
$$

is closed for $d>0$, where $C B_{d}^{b}(0)=\{y \in X:\|x, b\| \geq d \|\}$.
Proof. Let x be an adherent element of $G+C B_{d}^{b}(0)$, i.e. there exist a sequence $\left(x_{n}\right)_{\in N}$ which converges to x and a sequence $\left(u_{n}\right)_{n \in N} \subset G$ such that for all $n \in N\left\|x_{n}-u_{n}, b\right\| \geq d$. Thus, for every $\varepsilon>0$ there exists $n_{\varepsilon} \in N$ such that $\left\|x_{n}-u_{n}, b\right\|>d-\varepsilon$ for all $n \geq n_{\varepsilon}$. Now, if G is b-remotal, taking an element $g^{\prime} \in \mathbf{F}_{G}(x, b)$ we obtain that $\left\|x-g^{\prime}, b\right\| \geq\left\|x_{n}-u_{n}, b\right\|$ for all $n \geq n_{\varepsilon}$ and so $\left\|x-g^{\prime}, b\right\| \geq d-\varepsilon$, for every $\varepsilon>0$. Consequently $\left\|x-g^{\prime}, b\right\| \geq d$ i.e. $x \in$ $G+C B_{d}^{b}(0)$. Conversely, for an arbitrary element $x \in X$ we take $d=f_{G}(x, b)$. We can suppose $d>0$ since $f_{G}(x, b)=0$ if and only if $G=\{x\}$. When G is b-remotal obviously for every $n \in N$ exist $u_{n} \in G$ such that $\left\|x-u_{n}, b\right\| \geq d-\frac{1}{n}$. But, we have

$$
\frac{1}{n}\left(d-\frac{1}{n}\right)^{-1}\left(x-u_{n}\right)+x \in u_{n}+C B_{d}^{b}(0) \subset G+C B_{d}^{b}(0)
$$

for all $n \in N$ such that $n>1$. Since $\left(u_{n}\right)_{n \in N}$ is bounded, by passing to the limit we get $x \in \overline{\left.G+C B_{d}^{b}(0)\right)}$. Therefore, if $G+C B_{d}^{b}(0)$ is closed there exists $g^{\prime} \in G$ such that $\left\|x-g^{\prime}, b\right\| \geq d$ i.e. $g^{\prime} \in \mathbf{F}_{G}(x, b)$. Hence the set G is b-remotal.

Some characterizations of farthest points in 2-normed spaces are provided in following theorems.

Theorem 3.4. Let G be a subset of a 2-norm space X and $x \in X \backslash M+$, then $g_{0} \in \mathbf{F}_{G}(x, b)$, if and only if there exists a b-bilinear function p such that

$$
\begin{equation*}
p\left(x-g_{0}, b\right)=\sup _{g \in G}\|x-g, b\| \text { and }\|p\|=1 \tag{3.3}
\end{equation*}
$$

Proof. Suppose that there is a b-bilinear function p which satisfies ($\mathbf{B 2 3} \mathbf{3})$, then

$$
\left\|x-g_{0}, b\right\|=\left\|x-g_{0}, b\right\|\|p\| \geq\left|p\left(x-g_{0}, b\right)\right|=\sup _{g \in G}\|x-g, b\| \geq\|x-g, b\| .
$$

Conversely, let $g_{0} \in \mathbf{F}_{G}(x, b)$, by Hahn-Banach theorem in the context of 2normed spaces (see Theorem 2.2 [[I]) there exists a b-bilinear function p such that $\|p\|=1, p\left(x-g_{0}, b\right)=\left\|x-g_{0}, b\right\|=\sup _{g \in G}\|x-g, b\|$.

Theorem 3.5. Let G be a subset of a 2-norm space X and $x \in X \backslash M+$. Then the following statements are equivalent.
i) $g_{0} \in \mathbf{F}_{G}(x, b)$.
ii) There is a b-bilinear function p on X which satisfies

$$
\begin{gather*}
\left|p\left(x-g_{0}, b\right)\right|=\sup _{g \in G}\|x-g, b\| \text { and }\|p\|=1, \tag{3.4}\\
\left|p\left(x-g_{0}, b\right)\right| \geq|p(x-g, b)| \tag{3.5}
\end{gather*}
$$

iii) There is a b-bilinear function p on X which satisfies (3.4) and

$$
\begin{equation*}
p\left(g_{0}-g, b\right) p\left(g_{0}-x, b\right) \geq 0 \tag{3.6}
\end{equation*}
$$

Proof. Let $g_{0} \in \mathbf{F}_{G}(x, b)$. Then by Theorem [3.4 we have (3.4) and

$$
\left|p\left(x-g_{0}, b\right)\right|=\sup _{g \in G}\|x-g, b\| \geq\|x-g, b\| \geq|p(x-g, b)|,
$$

which proves (3.5). Thus, $(i) \Rightarrow(i i)$.
$(i i) \Rightarrow(i i i)$. Suppose that there is a b-bilinear function p on X satisfying (B.4), (3.5) then

$$
\begin{aligned}
\left|p\left(x-g_{0}, b\right)\right|^{2} \geq|p(x-g, b)|^{2} & =\left|p\left(x-g_{0}, b\right)\right|^{2}+\left|p\left(g-g_{0}, b\right)\right|^{2} \\
& +2 p\left(g_{0}-g, b\right) p\left(g_{0}-x, b\right) \\
& \geq\left|p\left(x-g_{0}, b\right)\right|^{2}+2 p\left(g_{0}-g, b\right) p\left(g_{0}-x, b\right)
\end{aligned}
$$

whence it follows that $p\left(g_{0}-g, b\right) p\left(g_{0}-x, b\right) \geq 0$.
(iii) \Rightarrow (i) It is a consequence of Theorem [3.4.

Definition 3.6. A linear 2-normed space $(X,\|.,\|$.$) is said to be strictly convex$ if $\|x+y, c\|=\|x, c\|+\|y, c\|$ and $c \notin \operatorname{Span}\{x, y\}$ imply that $x=\alpha y$ for some $\alpha>0$.

Definition 3.7. A real-valued function f on $X \times\langle b\rangle$ is said to be b-Gateaux differentiable at a point x of X if there is a b-linear functional $d f_{x}$ such that, for each $y \in X$,

$$
d f_{x}(y, b)=\lim _{t \rightarrow 0} \frac{f(x+t y, b)-f(x, b)}{t}
$$

and we call $d f_{x}$ the b-Gateaux derivative of f at x.
Theorem 3.8. Let G be a subset of a 2-norm space $X, x \in X$ and $y \in$ $\mathbf{F}_{G}(x, b)$. Suppose that the functional $d f_{x, b}$ is the Gateaux derivative of the function $f_{G}(., b)$ at the point x. Then

$$
d f_{x}(x-y, b)=\|x-y, b\| \text { and }\left\|d f_{x}\right\|=1
$$

Proof. If G is a single point this is clear. Otherwise $x \neq y$ and $\|x-y, b\|=$ $f_{G}(x, b)$, for $0<t<1$,

$$
\begin{aligned}
f_{G}(x, b)+t\|x-y, b\| & =(1+t)\|x-y, b\|=\|x+t(x-y)-y, b\| \\
& \leq f_{G}(x+t(x-y), b) \leq f_{G}(x, b)+t\|x-y, b\| .
\end{aligned}
$$

As above and Corollary [.] so omitted holds throughout, and

$$
d f_{x}(x-y, b)=\lim _{t \rightarrow 0} \frac{f_{G}(x+t(y-x), b)-f_{G}(x, b)}{t}=\|x-y, b\|
$$

Corollary 3.1 implies that $\left\|d f_{x, b}\right\| \leq 1$, so this also show that $\left\|d f_{x}\right\|=1$.
Theorem 3.9. Let G be a convex subset of a strictly convex 2-normed space $X, x \in X \backslash G$ and $b \notin \operatorname{Span}\{x, G\}$. Suppose that the functional $d f_{x, b}$ is the Gateaux derivative of the function $f_{G}(., b)$ at the point x. Then there is at most one b-farthest point in G to x.

Proof. Suppose that y, z of $\mathbf{F}_{G}(x, b)$. Theorem $[8]$ shows that

$$
\begin{aligned}
d f_{x}(x-y, b)=\|x-y, b\| & =\|x-z, b\|=d f_{x}(x-z, b) \\
f_{G}(x, b)=\frac{1}{2}(\|x-y, b\|+\|x-z, b\|) & =\frac{1}{2}\left(d f_{x}(x-y, b)+d f_{x}(x-z, b)\right) \\
& =d f_{x}\left(x-\frac{y+z}{2}, b\right) \leq\left\|x-\frac{y+z}{2}, b\right\| \\
& \leq f_{G}(x, b)
\end{aligned}
$$

Hence equality must hold throughout these inequalities. Since X is strictly convex 2-normed space and $b \notin \operatorname{Span}\{x, G\}$, it follows that $\mathbf{F}_{G}(x, b)$ has at most one element.

The properties of linear 2-normed spaces have been extensively studied by many authors. The same properties also hold in 2-inner product spaces, which were introduced by Diminnie et al [4].
Definition 3.10. Let X be a linear space. Suppose that \langle.$| . \rangle$ is a R valued function defined on $X \times X \times X$ satisfying the following conditions:
a) $\langle x, x \mid z\rangle \geq 0$ and $\langle x, x \mid z\rangle=0$ if and only if x and z are linearly dependent.
b) $\langle x, x \mid z\rangle=<z, z|x\rangle$,
c) $\langle x, y \mid z\rangle=\langle y, x \mid z\rangle$,
d) $\langle\alpha x, x \mid z\rangle=\alpha\langle x, x \mid z\rangle$ for any scalar $\alpha \in R$,
e) $\left\langle x+x^{\prime}, y \mid z\right\rangle=\langle x, y \mid z\rangle+\left\langle x^{\prime}, y \mid z\right\rangle$.
$\langle., . \mid$,$\rangle is called a 2$-inner product and $(X,\langle.,, \mid\rangle$.$) is called a 2$-inner product space (or a 2-perHilbert space).

In any given 2-inner product space ($X,(., . \mid$.$)), we can define a function \|.,$. on $X \times X$ by

$$
\|x, z\|=\langle x, x \mid z\rangle^{\frac{1}{2}} .
$$

Using the above properties, we can prove the Cauchy-Schwarz inequality

$$
|\langle x, y \mid z\rangle|^{\frac{1}{2}} \leq\langle x, x \mid z\rangle\langle y, y \mid z\rangle
$$

Theorem 3.11. Let G be a bounded subset of 2-inner product space $X, x \in X$, and $y_{0} \in G$. If $\left\langle x-y, y_{0}-y \mid b\right\rangle \leq 0$ for all $y \in G$, then $y_{0} \in \mathbf{F}_{G}(x, b)$.

Proof. Suppose that $\left\langle x-y, y_{0}-y \mid b\right\rangle \leq 0$ for all $y \in G$, then

$$
\begin{aligned}
\|x-y, b\|^{2} & =\langle x-y, x-y \mid b\rangle=\left\langle x-y, x-y_{0}+y_{0}-y \mid b\right\rangle \\
& =\left\langle x-y, x-y_{0} \mid b\right\rangle+\left\langle x-y, y_{0}-y \mid b\right\rangle \\
& \leq\left\langle x-y, x-y_{0} \mid b\right\rangle \leq\|x-y, b\|\left\|x-y_{0}, b\right\| .
\end{aligned}
$$

Hence $\|x-y, b\|^{2} \leq\left\|x-y_{0}, b\right\|$ i.e. $y_{0} \in \mathbf{F}_{G}(x, b)$.
Definition 3.12. A set A in a 2 -normed space X is said to be b-strongly convex with constant $r>0$ if there exists a set $A_{1} \subset E$ such that

$$
A=\cap_{a \in A_{1}} B_{r}^{b}(a),
$$

where $B_{r}^{b}(a)=\{y \in X:\|x-a, b\| \leq r \|\}$.
A set A is called a b-strongly convex set of radius $R>0$ if this set is the intersection of balls of radius R.

In the following, we study uniqueness problem for a point of closed bounded set that is the farthest point from a given point in 2-inner product spaces.

Lemma 3.13. Let G be a b-strongly convex set of radius $r>0$ in the 2-inner product space X.Then the inequality

$$
\left\|a_{1}-a_{2}, b\right\|^{2} \leq R\left\langle a_{1}-a_{2}, p_{2}-p_{1} \mid b\right\rangle,
$$

holds for vectors p_{1}, p_{2} such that $\left\|p_{1}, b\right\|,\left\|p_{2}, b\right\| \geq 1$.
Proof. We fix vectors p_{1}, p_{2}. According to the definition of strongly convex sets, we have

$$
G \subseteq B_{r}^{b}\left(a_{1}-R \frac{p_{1}}{\left\|p_{1}, b\right\|}\right) \cap B_{r}^{b}\left(a_{2}-R \frac{p_{2}}{\left\|p_{2}, b\right\|}\right)
$$

which implies the inequalities

$$
\left\|a_{2}-a_{1}+R \frac{p_{1}}{\left\|p_{1}, b\right\|}, b\right\|^{2} \leq R^{2}, \quad\left\|a_{1}-a_{2}+R \frac{p_{2}}{\left\|p_{2}, b\right\|}, b\right\|^{2} \leq R^{2}
$$

and hence

$$
\begin{gathered}
\left\|a_{2}-a_{1}+R \frac{p_{1}}{\left\|p_{1}, b\right\|}, b\right\|^{2}=\left\langle a_{2}-a_{1}+R \frac{p_{1}}{\left\|p_{1}, b\right\|}, \left.a_{2}-a_{1}+R \frac{p_{1}}{\left\|p_{1}, b\right\|} \right\rvert\, b\right\rangle, \\
=\left\langle a_{2}-a_{1}, a_{2}-a_{1} \mid b\right\rangle+\left\langle R \frac{p_{1}}{\left\|p_{1}, b\right\|}, \left.R \frac{p_{1}}{\left\|p_{1}, b\right\|} \right\rvert\, b\right\rangle+2\left\langle a_{2}-a_{1}, \left.R \frac{p_{1}}{\left\|p_{1}, b\right\|} \right\rvert\, b\right\rangle \leq R^{2},
\end{gathered}
$$

and hence

$$
\begin{gathered}
\left\|a_{1}-a_{2}, b\right\|^{2} \leq 2 R\left\langle a_{1}-a_{2},-p_{1} \mid b\right\rangle \\
\left\|a_{1}-a_{2}, b\right\|^{2} \leq 2 R\left\langle a_{1}-a_{2}, p_{2} \mid b\right\rangle .
\end{gathered}
$$

We sum the last two inequalities and obtain the desired inequality.

For a set G in a 2 -normed space X and a number $r>0$, we define the set

$$
T_{r}^{b}(G)=\left\{x \in X: f_{G}(x, b)>r\right\}
$$

Theorem 3.14. Let G be a b-strongly convex set of radius $r>0$ in the 2-inner product space X. Then for $x_{1}, x_{2} \in T_{R}^{b}(G)$ the inequality

$$
\begin{equation*}
\left\|f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), b\right\|^{2} \leq \frac{r}{R-r}\left\|x_{1}-x_{2}, b\right\|, \tag{3.7}
\end{equation*}
$$

holds for any $R>r$ and $f_{b}\left(x_{i}\right) \in \mathbf{F}_{G}\left(x_{i}, b\right), i=1,2$.
Proof. We choose a number $R>r$, and introduce the vectors

$$
p_{i}=\frac{1}{R}\left(f_{b}\left(x_{i}\right)-x_{i}\right), i=1,2 .
$$

From Lemma [3.]3, we obtain

$$
\begin{aligned}
& \left\|f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), b\right\|^{2} \\
& \quad \leq \quad r\left\langle f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), p_{2}-p_{1} \mid b\right\rangle \\
& \quad=r\left\langle f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), \frac{1}{R}\left(f_{b}\left(x_{2}\right)-x_{2}\right)-\frac{1}{R}\left(f_{b}\left(x_{1}\right)-x_{1}\right), \mid b\right\rangle \\
& \quad=\frac{r}{R}\left\|f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), b\right\|^{2}-\frac{r}{R}\left\langle f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), x_{2}-x_{1} \mid b\right\rangle .
\end{aligned}
$$

Hence by Cauchy-Schwarz inequality we get

$$
\left(1-\frac{r}{R}\right)\left\|f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), b\right\|^{2} \leq \frac{r}{R}\left\|f_{b}\left(x_{1}\right)-f_{b}\left(x_{2}\right), b\right\|\left\|x_{1}-x_{2}, b\right\| .
$$

which implies formula (3.7).
Corollary 3.15. Let G be a b-strongly convex set of radius $r>0$ in the 2inner product space $X, x \in T_{R}^{b}(G)$ and $b \notin \operatorname{Span}\{G\}$. Then there is at most one b-farthest point in G to x.

Proof. It is a consequence of Theorem [3.14.

Acknowledgement

The authors thank the anonymous referee for his/her remarks.

References

[1] Ahuja, G.C., Narang, T.D., Swaran, T., On farthest points, Journal of Indian Mathematical Society. 39 (1975), 293-297.
[2] Balashov, M. V., Ivanov, G. E., On farthest points of sets, Mathematical Notes 80(2) (2006), 159166.
[3] Cho, Y. J., Lin, Kim, P. C. S, Misiak, S. S. A., Theory of 2-inner product spaces. New York: Nova Science Publishes, Inc. 2001.
[4] Diminnie, C., Gähler, S., White, A., 2-inner product spaces. Demonstratio Math. 6 (1973), 525-536.
[5] Elumalai, S., Vijayaragavan, R., Farthest Points in Normed Linear Spaces. General Mathematics 14(3) (2006), 922.
[6] Elumalai, S., Vijayaragavan, R., Characterizations of best approximations in linear 2-normed spaces. General Mathematics 17 (3) (2009), 141-160.
[7] Franchetti, C., Singer, I., Deviation and farthest points in normed linear spaces. Romanian Journal of Pure and Applied Mathematics 24 (1979), 373-381.
[8] Gähler, S., Lineare 2-normierte Raume. Math Nachr 28 (1964), 1-43.
[9] Lewandowska, Z., Linear operators on generalized 2-normed spaces. Bull. Math. Soc. Sce. Math. Roumanie 42 (1999), 353-368.
[10] Lewandowska, Z., On 2-normed sets. Glasnik Mat. Ser.III, 38(1) (2003), 99-110.
[11] Lewandowska, Z., Moslehian, M.S., Moghaddam, A.S., Hahn-banach Theorem in Generaizrd 2-normed spaces. Communications in Mathematical Analysis 1(2) (2006), 109-113.
[12] Mazaheri, H., Kazemi, R., Some results on 2-inner product spaces. Novi Sad J. Math, 37(2) (2007), 35-40.
[13] Precupanu, T., Relationships between farthest point problem and best approximation problem. Anal. Sci. Univ. AI. I. Cuza, Mat. 57 (2011), 112.
[14] Sistani, T., Abrishami Moghaddam, M., Some Results on Best Approximation in Convex Subsets of 2-Normed Spaces. Int. Journal of Math. Analysis 3(21) (2009), 1043 - 1049 .

Received by the editors September 8, 2015

[^0]: ${ }^{1}$ Department of mathematical sciences, Shahrood university, Iran, e-mail: m.iranmanesh2012@gmail.com

 2 Department of mathematical sciences, Shahrood university, Iran, e-mail: enfazh.bmaam@gmail.com

