SOME RESULTS ON FARTHEST POINTS IN 2-NORMED SPACES

M. Iranmanesh¹ and F. Soleimany²

Abstract. In this paper, we consider the problem of the farthest poinst for bounded sets in a real 2-normed spaces. We investigate some properties of farthest points in the setting of 2-normalised spaces and present various characterizations of b-farthest point of elements by bounded sets in terms of b-linear functional. We also provide some applications of farthest points in the setting of 2- inner product spaces.

AMS Mathematics Subject Classification (2010) : 41A65; 46A70 Key words and phrases: 2-norm space; b-farthest point; b-linear function; 2- inner product

1. Introduction

The concepts of 2-metric spaces and linear 2-normed spaces were first introduced by Gähler in 1963 [8] and have been developed extensively in different subjects by others authors (see [3, 4, 9, 10, 12]). Elumalai, Vijayaragavan and Sistani, Moghaddam in [6, 14] gave some results on the concept best approximation in the context of bounded linear 2-functionals on real linear 2-normed spaces. They established various characterizations of the best approximation elements in these spaces. The concepts of farthest point in normed spaces have been studied by many authors (see [1, 2, 5, 7, 13]). In this paper we study this concept in 2-normed spaces, and obtain some results on characterization and existence of farthest points in normed linear spaces in terms of bounded b-linear functionals. In section 2, we give some preliminary results. In section 3, we give some fundamental concepts of b-farthest points and give characterization of farthest points in 2-normed linear spaces and some basic properties of farthest points. Also we study the farthest point mapping on X by virtue of the Gateaux derivative in 2-normed spaces. We show in the case that 2-normed space is strictly convex there exists a unique farthest points of the closed convex set from each point. In the end, we delineate some applications of farthest points in 2-inner product spaces.

2. Preliminaries

Definition 2.1. Let X be a linear space of dimension greater than 1. Suppose $\|.,.\|$ is a real-valued function on $X \times X$ satisfying the following conditions:

 $^{^1\}mathrm{Department}$ of mathematical sciences, Shahrood university, Iran, e-mail: m.iranmanesh2012@gmail.com

 $^{^2}$ Department of mathematical sciences, Shahrood university, Iran, e-mail: enfazh.bmaam@gmail.com

- a) $||x, z|| \ge 0$ and ||x, z|| = 0 if and only if x and z are linearly dependent.
- b) ||x, z|| = ||z, x||,
- d) $\|\alpha x, z\| = \alpha \|x, z\|$ for any scalar $\alpha \in R$,
- e) $||x + x', z|| \le ||x, z|| + ||x', z||.$

Then $\|.,.\|$ is called a 2-norm on X and $(X, \|.,.\|)$ is called a linear 2- normed space.

Example 2.2. Let $X = R^3$, and consider the following 2-norm on X:

$$||x,y|| = |xxy| = |det \begin{bmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix} |.$$

where $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3)$. Then X is a 2-normed space.

Example 2.3. Let X be a real linear space having two seminorms $\|.\|_1$ and $\|.\|_2$. Then $(X, \|.\|)$ is a generalized 2-normed space with the 2-norm defined by

$$||x, y|| = ||x||_1 ||. ||y||_2, \text{ for } x, y \in X.$$

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X$, $p_b = ||x, b||$; $x \in X$ is a semi-norm on X and the family $P = \{p_b : b \in X\}$ of semi-norms generates a locally convex topology.

Definition 2.4. Let $(X, \|., b\|)$ be a 2-normed linear space, E be a nonempty subset of X. The set E is called b-open if and only if for each $a_0 \in E$, there exists $\varepsilon_{a_0} > 0$ such that for each $c \in E$ with $\|a_0 - c, b\| < \varepsilon_{a_0}$ implies $a_0 - c \in E$. The b-interior of E is denoted $int_b(E)$, is the largest b-open set contained in E.

A sequence $\{x_n\}$ in 2-normed linear space X is said to be a b-convergent if there exists an element $x \in X$ such that $\lim_{n\to\infty} ||x_n - x, b|| = 0$. A set is b-closed if and only if it contains all of its limit points.

Definition 2.5. Let $(X, \|., .\|)$ be a 2-normed space, $b \in X$ be fixed, then a map $T: X \times \langle b \rangle \rightarrow R$ is called a b-linear functional on $X \times \langle b \rangle$ whenever

- 1) T(a+c,b) = T(a,b) + T(c,b) for $a; c, b \in X$ such that ;
- 2) $T(\alpha a, b) = \alpha T(a, b)$ for $\alpha \in R$.

A b-linear functional $T: X \times \langle b \rangle \to R$ is said to be bounded if there exists a real number M > 0 such that $|T(x, b)| \langle M || x, b ||$ for every $x \in X$. The norm of the b-linear functional $T: X \times \langle b \rangle \to R$ is defined by

$$||T|| = \sup\{||T(x,b)|| : ||x,b|| \neq 0\}.$$

3. Farthest points in 2-normed spaces

Let X be a 2-normed vector space. For a nonempty subset G of X and $x \in X$, define

(3.1)
$$f_G(x,b) = \sup_{g \in G} ||x - g, b||.$$

Recall that a point $g_0 \in G$ is called a b-farthest point for $x \in X$ if

(3.2)
$$||x - g_0, b|| = f_G(x, b).$$

The set of all b-farthest points to x from G is denoted by $\mathbf{F}_G(x, b)$. Let

 $R_b(G) = \{ x \in X : \mathbf{F}_G(x, b) \neq \emptyset \}.$

The set G is said to be a b-remotal set if $R_b(G) = X$.

Corollary 3.1. Let X be a 2-normed vector space and G be a nonempty bounded subset of X. Then for any x, z of X

- i) $| f_G(x,b) f_G(z,b) | \le ||x-z,b||.$
- *ii)* $||x z, b|| \le f_G(x, b) + f_G(z, b).$

Proof. i) Let $y \in \mathbf{F}_G(z, b)$. By the definition of b-farthest points, we have

$$f_G(x,b) \ge ||x-y,b|| = ||x-z+z-y,b|| \ge ||x-z,b|| - ||z-y,b||$$
$$f_G(x,b) - f_G(z,b) \ge ||x-z,b||.$$

Interchanging x and y, we get

$$f_G(z,b) - f_G(x,b) \ge ||x - z, b||$$

Hence $| f_G(x,b) - f_G(z,b) | \le ||x - z, b||.$

ii) It's proof is similar to that of (i).

Theorem 3.2. Let G is a closed bounded b-remotal set in a 2-normed space X. Then $\mathbf{F}_G(x,b) \cap int_b(G) = \emptyset$.

Proof. Suppose $e \in G$ such that $e \in \mathbf{F}_G(x,b) \cap int_b(G)$. There exists a number r > 0 such that $\{y \in X : \|y - e, b\| < r\} \subseteq G$. Put $u = e - \frac{r}{2\|x - e, b\|}(x - e)$. Then $\|u - e, b\| = \frac{r}{2} \leq r$, and hence $u \in G$ and

$$\begin{aligned} \|x - u, b\| &= \|x - e + \frac{r}{2\|x - e, b\|}(x - e), b\| \\ &= \|(1 + \frac{r}{2\|x - e, b\|})(x - e), b\| \\ &= (1 + \frac{r}{2\|x - e, b\|})\|(x - e), b\| > \|(x - e), b\| \end{aligned}$$

This is a contradiction.

Theorem 3.3. A nonvoid bounded set G in a 2-normed space X is b-remotal if and only if the following associated set

$$K_d = G + CB_d^b(0)$$

is closed for d > 0, where $CB_d^b(0) = \{y \in X : ||x, b|| \ge d||\}.$

Proof. Let x be an adherent element of $G + CB_d^b(0)$, i.e. there exist a sequence $(x_n)_{\in N}$ which converges to x and a sequence $(u_n)_{n\in N} \subset G$ such that for all $n \in N ||x_n - u_n, b|| \ge d$. Thus, for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in N$ such that $||x_n - u_n, b|| \ge d - \varepsilon$ for all $n \ge n_{\varepsilon}$. Now, if G is b-remotal, taking an element $g \in \mathbf{F}_G(x, b)$ we obtain that $||x - g, b|| \ge ||x_n - u_n, b||$ for all $n \ge n_{\varepsilon}$ and so $||x - g, b|| \ge d - \varepsilon$, for every $\varepsilon > 0$. Consequently $||x - g, b|| \ge d$ i.e. $x \in G + CB_d^b(0)$. Conversely, for an arbitrary element $x \in X$ we take $d = f_G(x, b)$. We can suppose d > 0 since $f_G(x, b) = 0$ if and only if $G = \{x\}$. When G is b-remotal obviously for every $n \in N$ exist $u_n \in G$ such that $||x - u_n, b|| \ge d - \frac{1}{n}$. But, we have

$$\frac{1}{n}(d-\frac{1}{n})^{-1}(x-u_n) + x \in u_n + CB^b_d(0) \subset G + CB^b_d(0),$$

for all $n \in N$ such that n > 1. Since $(u_n)_{n \in N}$ is bounded, by passing to the limit we get $x \in \overline{G + CB_d^b(0)}$. Therefore, if $G + CB_d^b(0)$ is closed there exists $g' \in G$ such that $||x - g', b|| \ge d$ i.e. $g' \in \mathbf{F}_G(x, b)$. Hence the set G is b-remotal.

Some characterizations of farthest points in 2-normed spaces are provided in following theorems.

Theorem 3.4. Let G be a subset of a 2-norm space X and $x \in X \setminus M + \langle b \rangle$, then $g_0 \in \mathbf{F}_G(x, b)$, if and only if there exists a b-bilinear function p such that

(3.3)
$$p(x-g_0,b) = \sup_{g \in G} ||x-g,b|| \text{ and } ||p|| = 1.$$

Proof. Suppose that there is a b-bilinear function p which satisfies (3.3), then

$$||x - g_0, b|| = ||x - g_0, b|| ||p|| \ge |p(x - g_0, b)| = \sup_{g \in G} ||x - g, b|| \ge ||x - g, b||.$$

Conversely, let $g_0 \in \mathbf{F}_G(x, b)$, by Hahn-Banach theorem in the context of 2normed spaces (see Theorem 2.2 [11]) there exists a b-bilinear function p such that $\|p\| = 1$, $p(x - g_0, b) = \|x - g_0, b\| = \sup_{q \in G} \|x - g, b\|$.

Theorem 3.5. Let G be a subset of a 2-norm space X and $x \in X \setminus M + \langle b \rangle$. Then the following statements are equivalent.

i)
$$g_0 \in \mathbf{F}_G(x,b)$$

ii) There is a b-bilinear function p on X which satisfies

(3.4)
$$| p(x - g_0, b) | = \sup_{g \in G} ||x - g, b|| \text{ and } ||p|| = 1,$$

(3.5)
$$| p(x-g_0,b) | \ge | p(x-g,b) |.$$

iii) There is a b-bilinear function p on X which satisfies (3.4) and

(3.6)
$$p(g_0 - g, b)p(g_0 - x, b) \ge 0.$$

Proof. Let $g_0 \in \mathbf{F}_G(x, b)$. Then by Theorem 3.4 we have (3.4) and

$$| p(x - g_0, b) | = \sup_{g \in G} ||x - g, b|| \ge ||x - g, b|| \ge | p(x - g, b) |,$$

which proves (3.5). Thus, $(i) \Rightarrow (ii)$.

 $(ii) \Rightarrow (iii)$. Suppose that there is a b-bilinear function p on X satisfying (3.4), (3.5) then

$$\begin{aligned} |p(x-g_0,b)|^2 &\geq |p(x-g,b)|^2 &= |p(x-g_0,b)|^2 + |p(g-g_0,b)|^2 \\ &+ 2p(g_0-g,b)p(g_0-x,b) \\ &\geq |p(x-g_0,b)|^2 + 2p(g_0-g,b)p(g_0-x,b), \end{aligned}$$

whence it follows that $p(g_0 - g, b)p(g_0 - x, b) \ge 0$. (*iii*) \Rightarrow (*i*) It is a consequence of Theorem 3.4.

Definition 3.6. A linear 2-normed space $(X, \|., .\|)$ is said to be strictly convex if $\|x + y, c\| = \|x, c\| + \|y, c\|$ and $c \notin \text{Span}\{x, y\}$ imply that $x = \alpha y$ for some $\alpha > 0$.

Definition 3.7. A real-valued function f on $X \times \langle b \rangle$ is said to be b-Gateaux differentiable at a point x of X if there is a b-linear functional df_x such that, for each $y \in X$,

$$df_x(y,b) = \lim_{t \to 0} \frac{f(x+ty,b) - f(x,b)}{t},$$

and we call df_x the b-Gateaux derivative of f at x.

Theorem 3.8. Let G be a subset of a 2-norm space X, $x \in X$ and $y \in \mathbf{F}_G(x,b)$. Suppose that the functional $df_{x,b}$ is the Gateaux derivative of the function $f_G(.,b)$ at the point x. Then

$$df_x(x-y,b) = ||x-y,b||$$
 and $||df_x|| = 1$.

Proof. If G is a single point this is clear. Otherwise $x \neq y$ and $||x - y, b|| = f_G(x, b)$, for 0 < t < 1,

$$\begin{aligned} f_G(x,b) + t \|x - y, b\| &= (1+t) \|x - y, b\| = \|x + t(x - y) - y, b\| \\ &\leq f_G(x + t(x - y), b) \leq f_G(x, b) + t \|x - y, b\|. \end{aligned}$$

As above and Corollary 3.1 so omitted holds throughout, and

$$df_x(x-y,b) = \lim_{t \to 0} \frac{f_G(x+t(y-x),b) - f_G(x,b)}{t} = ||x-y,b||.$$

Corollary 3.1 implies that $||df_{x,b}|| \leq 1$, so this also show that $||df_x|| = 1$. \Box

Theorem 3.9. Let G be a convex subset of a strictly convex 2-normed space $X, x \in X \setminus G$ and $b \notin \text{Span}\{x, G\}$. Suppose that the functional $df_{x,b}$ is the Gateaux derivative of the function $f_G(.,b)$ at the point x. Then there is at most one b-farthest point in G to x.

Proof. Suppose that y, z of $\mathbf{F}_G(x, b)$. Theorem 3.8 shows that

$$df_x(x - y, b) = ||x - y, b|| = ||x - z, b|| = df_x(x - z, b)$$

$$\begin{aligned} f_G(x,b) &= \frac{1}{2}(\|x-y,b\| + \|x-z,b\|) &= \frac{1}{2}(df_x(x-y,b) + df_x(x-z,b)) \\ &= df_x(x - \frac{y+z}{2},b) \le \|x - \frac{y+z}{2},b\| \\ &\le f_G(x,b). \end{aligned}$$

Hence equality must hold throughout these inequalities. Since X is strictly convex 2-normed space and $b \notin \text{Span}\{x, G\}$, it follows that $\mathbf{F}_G(x, b)$ has at most one element.

The properties of linear 2-normed spaces have been extensively studied by many authors. The same properties also hold in 2-inner product spaces, which were introduced by Diminnie et al [4].

Definition 3.10. Let X be a linear space. Suppose that $\langle . | . \rangle$ is a R valued function defined on $X \times X \times X$ satisfying the following conditions:

a) $\langle x, x | z \rangle \ge 0$ and $\langle x, x | z \rangle = 0$ if and only if x and z are linearly dependent.

b)
$$\langle x, x | z \rangle = \langle z, z | x \rangle$$
,

c)
$$\langle x, y | z \rangle = \langle y, x | z \rangle$$
,

- d) $\langle \alpha x, x | z \rangle = \alpha \langle x, x | z \rangle$ for any scalar $\alpha \in R$,
- e) $\langle x + x', y | z \rangle = \langle x, y | z \rangle + \langle x', y | z \rangle.$

 $\langle ., .|, \rangle$ is called a 2-inner product and $(X, \langle ., , |. \rangle)$ is called a 2-inner product space (or a 2-perHilbert space).

In any given 2-inner product space (X, (., .|.)), we can define a function $\|., .\|$ on $X \times X$ by

$$||x,z|| = \langle x,x \mid z \rangle^{\frac{1}{2}}.$$

Using the above properties, we can prove the Cauchy-Schwarz inequality

$$|\langle x, y \mid z \rangle|^{\frac{1}{2}} \le \langle x, x \mid z \rangle \langle y, y \mid z \rangle.$$

Theorem 3.11. Let G be a bounded subset of 2-inner product space $X, x \in X$, and $y_0 \in G$. If $\langle x - y, y_0 - y | b \rangle \leq 0$ for all $y \in G$, then $y_0 \in \mathbf{F}_G(x, b)$.

Proof. Suppose that $\langle x - y, y_0 - y | b \rangle \leq 0$ for all $y \in G$, then

$$\begin{aligned} \|x-y,b\|^2 &= \langle x-y,x-y|b\rangle = \langle x-y,x-y_0+y_0-y|b\rangle \\ &= \langle x-y,x-y_0|b\rangle + \langle x-y,y_0-y|b\rangle \\ &\leq \langle x-y,x-y_0|b\rangle \le \|x-y,b\|\|x-y_0,b\|. \end{aligned}$$

Hence $||x - y, b||^2 \le ||x - y_0, b||$ i.e. $y_0 \in \mathbf{F}_G(x, b)$.

Definition 3.12. A set A in a 2-normed space X is said to be b-strongly convex with constant r > 0 if there exists a set $A_1 \subset E$ such that

$$A = \bigcap_{a \in A_1} B_r^b(a),$$

where $B_r^b(a) = \{ y \in X : \|x - a, b\| \le r \| \}.$

A set A is called a b-strongly convex set of radius R > 0 if this set is the intersection of balls of radius R.

In the following, we study uniqueness problem for a point of closed bounded set that is the farthest point from a given point in 2-inner product spaces.

Lemma 3.13. Let G be a b-strongly convex set of radius r > 0 in the 2-inner product space X. Then the inequality

$$||a_1 - a_2, b||^2 \le R\langle a_1 - a_2, p_2 - p_1|b\rangle,$$

holds for vectors p_1, p_2 such that $||p_1, b||, ||p_2, b|| \ge 1$.

Proof. We fix vectors p_1, p_2 . According to the definition of strongly convex sets, we have

$$G \subseteq B_r^b(a_1 - R\frac{p_1}{\|p_1, b\|}) \cap B_r^b(a_2 - R\frac{p_2}{\|p_2, b\|}),$$

which implies the inequalities

$$||a_2 - a_1 + R \frac{p_1}{||p_1, b||}, b||^2 \le R^2, \quad ||a_1 - a_2 + R \frac{p_2}{||p_2, b||}, b||^2 \le R^2$$

and hence

$$\begin{aligned} \|a_2 - a_1 + R\frac{p_1}{\|p_1, b\|}, b\|^2 &= \langle a_2 - a_1 + R\frac{p_1}{\|p_1, b\|}, a_2 - a_1 + R\frac{p_1}{\|p_1, b\|}|b\rangle, \\ &= \langle a_2 - a_1, a_2 - a_1|b\rangle + \langle R\frac{p_1}{\|p_1, b\|}, R\frac{p_1}{\|p_1, b\|}|b\rangle + 2\langle a_2 - a_1, R\frac{p_1}{\|p_1, b\|}|b\rangle \le R^2 \end{aligned}$$

and hence

$$\|a_1 - a_2, b\|^2 \le 2R\langle a_1 - a_2, -p_1|b\rangle$$
$$\|a_1 - a_2, b\|^2 \le 2R\langle a_1 - a_2, p_2|b\rangle.$$

We sum the last two inequalities and obtain the desired inequality.

 \square

For a set G in a 2-normed space X and a number r > 0, we define the set

$$T_r^b(G) = \{x \in X : f_G(x, b) > r\}.$$

Theorem 3.14. Let G be a b-strongly convex set of radius r > 0 in the 2-inner product space X. Then for $x_1, x_2 \in T^b_R(G)$ the inequality

(3.7)
$$\|f_b(x_1) - f_b(x_2), b\|^2 \le \frac{r}{R-r} \|x_1 - x_2, b\|,$$

holds for any R > r and $f_b(x_i) \in \mathbf{F}_G(x_i, b), i = 1, 2$.

Proof. We choose a number R > r, and introduce the vectors

$$p_i = \frac{1}{R}(f_b(x_i) - x_i), i = 1, 2.$$

From Lemma 3.13, we obtain

$$\begin{split} \|f_b(x_1) - f_b(x_2), b\|^2 \\ &\leq r \langle f_b(x_1) - f_b(x_2), p_2 - p_1 | b \rangle \\ &= r \langle f_b(x_1) - f_b(x_2), \frac{1}{R} (f_b(x_2) - x_2) - \frac{1}{R} (f_b(x_1) - x_1), | b \rangle \\ &= \frac{r}{R} \|f_b(x_1) - f_b(x_2), b\|^2 - \frac{r}{R} \langle f_b(x_1) - f_b(x_2), x_2 - x_1 | b \rangle. \end{split}$$

Hence by Cauchy-Schwarz inequality we get

$$(1 - \frac{r}{R}) \|f_b(x_1) - f_b(x_2), b\|^2 \le \frac{r}{R} \|f_b(x_1) - f_b(x_2), b\| \|x_1 - x_2, b\|.$$

which implies formula (3.7).

Corollary 3.15. Let G be a b-strongly convex set of radius r > 0 in the 2inner product space $X, x \in T_R^b(G)$ and $b \notin \text{Span}\{G\}$. Then there is at most one b-farthest point in G to x.

Proof. It is a consequence of Theorem 3.14.

Acknowledgement

The authors thank the anonymous referee for his/her remarks.

References

- Ahuja, G.C., Narang, T.D., Swaran, T., On farthest points, Journal of Indian Mathematical Society. 39 (1975), 293-297.
- [2] Balashov, M. V., Ivanov, G. E., On farthest points of sets, Mathematical Notes 80(2) (2006), 159166.
- [3] Cho, Y. J., Lin, Kim, P. C. S, Misiak, S. S. A., Theory of 2-inner product spaces. New York: Nova Science Publishes, Inc. 2001.

- [4] Diminnie, C., Gähler, S., White, A., 2-inner product spaces. Demonstratio Math. 6 (1973), 525–536.
- [5] Elumalai, S., Vijayaragavan, R., Farthest Points in Normed Linear Spaces. General Mathematics 14(3) (2006), 922.
- [6] Elumalai, S., Vijayaragavan, R., Characterizations of best approximations in linear 2-normed spaces. General Mathematics 17(3) (2009), 141–160.
- [7] Franchetti, C., Singer, I., Deviation and farthest points in normed linear spaces. Romanian Journal of Pure and Applied Mathematics 24 (1979), 373-381.
- [8] Gähler, S., Lineare 2-normierte Raume. Math Nachr 28 (1964), 1–43.
- [9] Lewandowska, Z., Linear operators on generalized 2-normed spaces. Bull. Math. Soc. Sce. Math. Roumanie 42 (1999), 353–368.
- [10] Lewandowska, Z., On 2-normed sets. Glasnik Mat. Ser.III, 38(1) (2003), 99–110.
- [11] Lewandowska, Z., Moslehian, M.S., Moghaddam, A.S., Hahn-banach Theorem in Generaizrd 2-normed spaces. Communications in Mathematical Analysis 1(2) (2006), 109–113.
- [12] Mazaheri, H., Kazemi, R., Some results on 2-inner product spaces. Novi Sad J. Math, 37(2) (2007), 35–40.
- [13] Precupanu, T., Relationships between farthest point problem and best approximation problem. Anal. Sci. Univ. AI. I. Cuza, Mat. 57 (2011), 112.
- [14] Sistani, T., Abrishami Moghaddam, M., Some Results on Best Approximation in Convex Subsets of 2-Normed Spaces. Int. Journal of Math. Analysis 3(21) (2009), 1043 – 1049.

Received by the editors September 8, 2015