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ON GENERALIZED PARTIALLY NULL MANNHEIM
CURVES IN MINKOWSKI SPACE-TIME

Milica Grbović1 and Emilija Nešović2

Abstract. In this paper we define generalized partially null and pseudo
null Mannheim curves in Minkowski space-time E4

1 . We prove that there
are no non-geodesic generalized partially null Mannheim curves in E4

1 , by
considering the cases when the corresponding mate curve is a spacelike,
timelike, null Cartan, partially null or pseudo null Frenet curve. We also
answer the question: ”Can a partially null Frenet curve be a generalized
mate curve of the generalized pseudo null Mannheim curve in Minkowski
space-time?”
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1. Introduction

In Euclidean 3-space there are many associated curves such as Bertrand
mates ([5]), Mannheim mates ([9]), spherical images, evolutes, involutes, the
principal-direction curves ([2]), etc., whose frame’s vector fields satisfy some
extra conditions. Mannheim curves in the Euclidean 3-space were discovered
by A. Mannheim in 1887. They are defined as the curves having the property
that their principal normal lines coincide with binormal lines of their mate
curves at the corresponding points. It is well-known that a regular smooth
curve in E3 is a Mannheim curve if and only if its curvature functions κ and
τ satisfy the relation κ = a(κ2 + τ2), for some positive constant a. Some
characterizations of Mannheim curves in the Euclidean 3-space and Minkowski
3-space can be found in [7, 9].
Parameter equation of the Mannheim curve in E3 is given by ([4])

α(t) = (

∫
h(t) sin(t)dt,

∫
h(t) cos(t)dt,

∫
h(t)g(t)dt),

where g : I → R is any smooth function and the function h : I → R is given by

h =
(1 + g2 + g′ 2)3 + (1 + g2)3(g + g′′)2

(1 + g2)
3
2 (1 + g2 + g′ 2)

5
2

.
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In Euclidean 4-space a special Frenet curve α is called a generalized Mann-
heim curve, if there exists a special Frenet curve α∗ and a bijection ϕ : α →
α⋆ such that the principal normal line of α at each point of α lies in the
plane spanned by the first and second binormal line of α∗ at the corresponding
point ([10]). In particular, the curve α∗ is called a generalized Mannheim mate
(partner) curve of α. Parameter equations and basic geometric properties of
the generalized Mannheim curves in E4 are given in [10]. In Minkowski space-
time, generalized spacelike Mannheim curves whose Frenet frame contains only
non-null vectors are defined in [6]. Mannheim curves lying in 3-dimensional
space forms E3 and S3 in E4, as well as in H3 in E4

1 , are studied in [3].
In this paper, we define generalized partially null and pseudo null Mannheim

curves in Minkowski space-time. We prove that there are no non-geodesic gen-
eralized partially null Mannheim curves in E4

1 , by considering the cases when
the corresponding mate curve is a spacelike, timelike, null Cartan, partially
null, or pseudo null Frenet curve. We also answer the question: ”Can a par-
tially null Frenet curve be a generalized mate curve of the generalized pseudo
null Mannheim curve in Minkowski space-time?”

2. Preliminaries

Minkowski space-time E4
1 is a 4-dimensional affine space endowed with an

indefinite flat metric g with signature (−,+,+,+). This means that there are
affine coordinates (x1, x2, x3, x4) such that metric bilinear form can be written
as

g(x, y) = −x1y1 + x2y2 + x3y3 + x4y4,

for any two x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in E4
1 . Recall that

a vector v ∈ E4
1\{0} can be spacelike if g(v, v) > 0, timelike if g(v, v) < 0

and null (lightlike) if g(v, v) = 0. In particular, the vector v = 0 is said to
be spacelike. The norm of a vector v is given by ||v|| =

√
|g(v, v)|. Two

vectors v and w are said to be orthogonal, if g(v, w) = 0. An arbitrary curve
α in E4

1 , can locally be spacelike, timelike or null (lightlike), if all its velocity
vectors α′ are respectively spacelike, timelike or null ([11]). A non-null curve
α is parametrized by the arc-length parameter s (or has the unit speed), if
g(α′(s), α′(s)) = ±1. In particular, a null curve α is said to be parameterized
by a pseudo-arc s, if g (α′′ (s) , α′′ (s)) = 1, where pseudo-arc function s is

defined by s(t) =
∫ t

0
(g(α′′(u), α′′(u)))

1
4 du ([1]).

Definition 2.1. A non-geodesic null curve α : I → E4
1 parameterized by the

pseudo-arc s is called a Cartan curve, if there exists a unique positively oriented
Cartan frame {T,N,B1, B2} along α and three smooth functions κ1, κ2 and
κ3 satisfying the Cartan equations ([1])

(2.1)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0

−κ2 0 −κ1 0
0 κ2 0 κ3

−κ3 0 0 0




T
N
B1

B2

 .
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The functions κ1(s) = 1, κ2(s) and κ3(s) are called the first, second and
third Cartan curvature of α. The Cartan frame vector fields satisfy the condi-
tions

g(T, T ) = g(B1, B1) = 0, g(N,N) = g(B2, B2) = 1,

g(T,N) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0, g(T,B1) = 1.

In particular, a Cartan frame is positively oriented, if det(T,N,B1, B2) = 1.

Definition 2.2. A spacelike or timelike non-geodesic unit speed smooth curve
α : I → E4

1 is called a Frenet curve, if there exists a unique positively oriented
orthonormal or pseudo-orthonormal Frenet frame {T,N,B1, B2} along α and
the three smooth functions κ1 ̸= 0, κ2 and κ3 satisfying the Frenet equations.

The smooth functions κ1 ̸= 0, κ2 and κ3 are called the first, second and
third Frenet curvature of α, respectively. A Frenet frame is positively oriented if
det(T,N,B1, B2) = 1. Let {T,N,B1, B2} be the moving Frenet frame along the
unit speed Frenet curve α : I → E4

1 , consisting of the tangent, principal normal,
first binormal and second binormal vector field, respectively. Depending on the
causal character of Frenet vector fields, we have three types of Frenet equations.

Type 1. Let α be a timelike or a spacelike Frenet curve whose Frenet frame
{T,N,B1, B2} contains only non-null vector fields. The Frenet equations are
given by ([8])

(2.2)


T ′

N ′

B′
1

B′
2

 =


0 ϵ2κ1 0 0

−ϵ1κ1 0 ϵ3κ2 0
0 −ϵ2κ2 0 −ϵ1ϵ2ϵ3κ3

0 0 −ϵ3κ3 0




T
N
B1

B2

 ,

where g(T, T ) = ϵ1, g(N,N) = ϵ2, g(B1, B1) = ϵ3, g(B2, B2) = ϵ4, ϵ1ϵ2ϵ3ϵ4 =
−1, ϵi ∈ {−1, 1}, i ∈ {1, 2, 3, 4}. In particular, the following conditions hold:

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0.

Type 2. Let α be pseudo null Frenet curve, i.e. a spacelike Frenet curve
with null principal normal and the second binormal. The Frenet formulae read
([12])

(2.3)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
0 0 κ2 0
0 κ3 0 −κ2

−κ1 0 −κ3 0




T
N
B1

B2

 ,

where the first curvature κ1(s) = 1 for each s. Then the following conditions
are satisfied:

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.
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Type 3. Let α be partially null Frenet curve, i.e. a spacelike Frenet curve
with null first and second binormal . The Frenet formulae read ([12])

(2.4)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0

−κ1 0 κ2 0
0 0 κ3 0
0 −κ2 0 −κ3




T
N
B1

B2

 ,

where the third curvature κ3(s) = 0 for each s. Consequently, such curve has
only two curvatures κ1 ̸= 0 and κ2 and the following conditions hold:

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.

3. Generalized partially null Mannheim curves
in Minkowski space-time

In this section we define generalized partially null Mannheim curves in
Minkowski space-time. We first consider non-geodesic generalized partially
null Mannheim curves and their non-geodesic mate curves, having the first
curvatures different from zero. At the end of this section, we will consider the
case of the first curvature being zero.

Definition 3.1. Partially null Frenet curve α : I → E4
1 is called a generalized

partially null Mannheim curve if there exists a null Cartan or Frenet curve
α⋆ : I⋆ → E4

1 and a bijection ϕ : α → α⋆ given by ϕ(α(s)) = α⋆(f(s)) such
that for each s ∈ I the principal normal line of α contains the corresponding
points of the curves α and α⋆ and lies in the plane spanned by the first and
second binormal line of α⋆.

The curve α∗ is called a generalized Mannheim mate curve of α. By the
principal normal (binormal) line, we mean a straight line in a direction of the
principal normal (binormal) vector field. A function f : I ⊂ R → I⋆ ⊂ R is
some smooth function.

Remark 3.2. According to the Definition 3.1, the principal normal line l =
span{N} of α contains the corresponding points of the curves α and α⋆, which
implies relation α⋆ − α = λN for some smooth function λ on I. In [10], the
special Frenet curve C in E4 is called a generalized Mannheim curve, if there
exists a special Frenet curve Ĉ in E4 such that the first normal line at each
point of C is included in the plane generated by the second normal line and the
third normal line of Ĉ at the corresponding point under bijection ϕ : C → Ĉ.
Note that this definition of a generalized Mannheim curve in E4 in general
case does not imply the relation α⋆ − α = λN , which is used in proofs of the
theorems in [10].
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Let α : I → E4
1 be a generalized partially null Mannheim curve in E4

1 with
the Frenet frame {T,N,B1, B2} and α⋆ : I⋆ → E4

1 a generalized Mannheim
mate curve of α with Cartan or Frenet frame {T ⋆, N⋆, B⋆

1 , B
⋆
2}. Since the

principal normal vector N lies in the plane spanned by {B⋆
1 , B

⋆
2}, thus N(s) =

a(s)B⋆
1(s) + b(s)B⋆

2(s) holds for some differentiable functions a(s) and b(s).
Depending on the causal character of the plane span{B⋆

1 , B
⋆
2}, we distinguish

the following three cases:

(A) the plane span{B⋆
1 , B

⋆
2} is spacelike;

(B) the plane span{B⋆
1 , B

⋆
2} is timelike;

(C) the plane span{B⋆
1 , B

⋆
2} is lightlike.

In what follows, we consider these three cases separately.

Case (A). The plane span{B⋆
1 , B

⋆
2} is spacelike.

Theorem 3.3. There is no non-geodesic generalized partially null Mannheim
curve α in Minkowski space-time whose non-geodesic generalized Mannheim
mate curve α⋆ is a timelike Frenet curve or a spacelike Frenet curve with a
timelike principal normal.

Proof. Assume that there exists a non-geodesic generalized partially null Mann-
heim curve α : I → E4

1 whose non-geodesic generalized Mannheim mate curve
α⋆ : I⋆ → E4

1 is a timelike Frenet curve or a spacelike Frenet curve with a
timelike principal normal. Then the principal normal N of α lies in a space-
like plane spanned by the spacelike vectors B⋆

1 and B⋆
2 . Hence N is given by

N(s) = a(s)B⋆
1(s) + b(s)B⋆

2(s), where a(s) and b(s) are some differentiable
functions. In particular, the curve α⋆ can be parameterized by

(3.1) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the arc-length parameter of α, s⋆ = f(s) =
∫ s

0
||α⋆ ′(t)|| dt is the

arc-length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth
functions.

Differentiating the relation (3.1) with respect to s and using the Frenet equa-
tions (2.4), we find

(3.2) T ⋆f ′ = (1− λκ1)T + λ′N + λκ2B1.

By taking the scalar product of (3.2) with N = aB⋆
1 + bB⋆

2 , we get

(3.3) λ′ = 0.

Therefore,

λ = constant ̸= 0.

Substituting (3.3) in (3.2), we get

(3.4) T ⋆f ′ = (1− λκ1)T + λκ2B1.
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Differentiating the relation (3.4) with respect to s and using (2.2) and (2.4),
we obtain

(3.5) ϵ⋆2κ
⋆
1N

⋆f ′2 + T ⋆f ′′ = (1− λκ1)
′T + (1− λκ1)κ1N + λκ′

2B1 + λκ2B
′
1.

By taking the scalar product of relation (3.5) with N = aB⋆
1 + bB⋆

2 , it follows
that

(3.6) 1− λκ1 = 0.

Moreover, by using (3.4) we obtain

(3.7) g(T ⋆f ′, T ⋆f ′) = ϵ⋆1f
′2 = (1− λκ1)

2.

Substituting (3.6) in (3.7) yields

(3.8) f ′ = 0,

which is a contradiction.

Case (B). The plane span{B⋆
1 , B

⋆
2} is timelike.

In this case, we obtain two theorems depending on the causal character of
basis vectors B⋆

1 and B⋆
2 . It is known that any timelike plane can be spanned by

spacelike and timelike mutually orthogonal vectors, or else by the two linearly
independent null vectors. The next theorem can be proved in a similar way as
Theorem 3.3, so we omit its proof.

Theorem 3.4. There is no non-geodesic generalized partially null Mannheim
curve α in Minkowski space-time whose non-geodesic generalized Mannheim
mate curve α⋆ is a spacelike Frenet curve with a spacelike (timelike) first bi-
normal and a timelike (spacelike) second binormal.

Theorem 3.5. There is no non-geodesic generalized partially null Mannheim
curve α in Minkowski space-time whose non-geodesic generalized Mannheim
mate curve α⋆ is partially null Frenet curve.

Proof. Assume that there exists a non-geodesic generalized partially null Mann-
heim curve α : I → E4

1 whose non-geodesic generalized Mannheim mate curve
α⋆ : I⋆ → E4

1 is a partially null Frenet curve. Consequently, the principal
normal N of α lies in the timelike plane spanned by two linearly independent
null vectors B⋆

1 and B⋆
2 and α⋆ can be parameterized by

(3.9) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the arc-length parameter of α, s⋆ = f(s) =
∫ s

0
||α⋆ ′(t)|| dt is the

arc-length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth
functions.
Differentiating the relation (3.9) with respect to s and using Frenet equations
(2.4), we find

(3.10) T ⋆f ′ = (1− λκ1)T + λ′N + λκ2B1.
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By taking the scalar product of (3.10) with N = aB⋆
1 + bB⋆

2 , we get

(3.11) λ′ = 0.

Therefore,
λ = constant ̸= 0.

Substituting (3.11) in (3.10), we find

(3.12) T ⋆f ′ = (1− λκ1)T + λκ2B1.

Differentiating the relation (3.12) with respect to s and using the Frenet
equations (2.2) and (2.4), we obtain

(3.13) κ⋆
1N

⋆f ′2 + T ⋆f ′′ = (1− λκ1)
′T + (1− λκ1)κ1N + λκ′

2B1 + λκ2B
′
1.

By taking the scalar product of relation (3.13) with N = aB⋆
1 + bB⋆

2 , it follows
that

(3.14) 1− λκ1 = 0.

Moreover, by using (3.12) we obtain

(3.15) g(T ⋆f ′, T ⋆f ′) = f ′2 = (1− λκ1)
2.

Substituting (3.14) in (3.15) yields

(3.16) f ′ = 0,

which is a contradiction.

Case (C). The plane span{B⋆
1 , B

⋆
2} is lightlike.

In this case, we obtain two theorems depending on the causal character of
a basis vectors of a lightlike plane, which can be spanned by a null vector B⋆

1

and a spacelike vector B⋆
2 , or else by a spacelike vector B⋆

1 and a null vector
B⋆

2 .

Theorem 3.6. There is no non-geodesic generalized partially null Mannheim
curve α in E4

1 whose non-geodesic generalized Mannheim mate curve is a null
Cartan curve.

Proof. Assume that there exists a non-geodesic generalized partially null Mann-
heim curve α : I → E4

1 whose non-geodesic generalized Mannheim mate curve
α⋆ : I⋆ → E4

1 is a null Cartan curve. Hence the principal normal N of α lies
in a lightlike plane spanned by a null vector B⋆

1 and a spacelike vector B⋆
2 and

α⋆ can be parameterized by

(3.17) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the arc-length parameter of α, s⋆ = f(s) is the pseudo-arc parameter
of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth functions. Differentiating
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the relation (3.17) with respect to s and using the Frenet equations (2.1) and
(2.4), we find

(3.18) T ⋆f ′ = (1− λκ1)T + λ′N + λκ2B1.

By taking the scalar product of (3.18) with N = aB⋆
1 + bB⋆

2 , we get

(3.19) af ′ = λ′.

Moreover, by using (3.18) we obtain

(3.20) g(T ⋆f ′, T ⋆f ′) = (1− λκ1)
2 + λ′ 2 = 0.

It follows that
λ′ = 0, 1− λκ1 = 0.

Substituting λ′ = 0 in (3.19), we find

(3.21) a = 0.

Therefore,

(3.22) N = ±B⋆
2 .

Differentiating the last relation with respect to s and using (2.1) and (2.4), we
obtain

−κ1T + κ2B1 = ∓κ⋆
3T

⋆f ′.

The last relation implies

g(−κ1T + κ2B1,−κ1T + κ2B1) = κ2
1 = 0,

which is a contradiction.

If a lightlike plane span{B⋆
1 , B

⋆
2} is spanned by a spacelike vector B⋆

1 and a
null vector B⋆

2 , the following theorem can be proved.

Theorem 3.7. There is no non-geodesic generalized partially null Mannheim
curve α in E4

1 whose non-geodesic generalized Mannheim mate curve α⋆ is a
pseudo null Frenet curve.

Proof. Assume that there exists a non-geodesic generalized partially null Mann-
heim curve α : I → E4

1 whose non-geodesic generalized Mannheim mate curve
α⋆ : I⋆ → E4

1 is a pseudo null curve. Therefore, the principal normal N of α
lies in a lightlike plane spanned by a spacelike vector B⋆

1 and a null vector B⋆
2 ,

so α⋆ can be parameterized as

(3.23) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the arc-length parameter of α, s⋆ = f(s) is the arc-length parameter
of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth functions. Differentiating
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the relation (3.23) with respect to s and using the Frenet equations (2.3) and
(2.4), we find

(3.24) T ⋆f ′ = (1− λκ1)T + λ′N + λκ2B1.

By taking the scalar product of (3.24) with N = aB⋆
1 + bB⋆

2 , we obtain

(3.25) λ′ = 0.

Substituting (3.25) in (3.24), it follows that

(3.26) T ⋆f ′ = (1− λκ1)T + λκ2B1.

The last relation implies

g(T ⋆f ′, T ⋆f ′) = f ′ 2 = (1− λκ1)
2.

Consequently,

(3.27) |f ′| = |1− λκ1|.

Differentiating the last relation with respect to s, we find

(3.28) |f ′′| = |λκ′
1|.

On the other hand, differentiating the relation (3.26) with respect to s and
using (2.3) and (2.4), we get

N⋆f ′ 2 + T ⋆f ′′ = −λκ′
1T + (1− λκ1)κ1N + λκ′

2B1 + λκ2B
′
1.

According to relation (2.4), B′
1 = 0, so the last relation gives

g(N⋆f ′ 2 + T ⋆f ′′, N⋆f ′ 2 + T ⋆f ′′) = f ′′ 2 = λ2κ′ 2
1 + (1− λκ1)

2κ2
1.

By using (3.28) and the last relation, we find

(3.29) 1− λκ1 = 0.

Substituting (3.29) in (3.27), it follows that f ′ = 0, which is a contradiction.

Analogously, we define a generalized pseudo null Mannheim curve as follows.

Definition 3.8. Pseudo null Frenet curve α : I → E4
1 is called a generalized

pseudo null Mannheim curve, if there exists a null Cartan or Frenet curve
α⋆ : I⋆ → E4

1 and a bijection ϕ : α → α⋆ given by ϕ(α(s)) = α⋆(f(s)) such
that for each s ∈ I the principal normal line of α contains the corresponding
points of the curves α and α⋆ and lies in the plane spanned by the first and
second binormal line of α⋆.

Now we can ask the following question ”Can a non-geodesic partially null
Frenet curve be the mate curve of a non-geodesic generalized pseudo null Mann-
heim curve in Minkowski space-time?” The answer is given in the following
theorem.
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Theorem 3.9. There is no non-geodesic generalized pseudo null Mannheim
curve α in E4

1 whose non-geodesic generalized Mannheim mate curve α⋆ is a
partially null Frenet curve.

Proof. Assume that there exists a non-geodesic generalized pseudo null Mann-
heim curve α : I → E4

1 whose non-geodesic generalized Mannheim mate curve
α⋆ : I⋆ → E4

1 is a partially null Frenet curve. Consequently, the principal
normal N of α lies in a timelike plane spanned by two null vectors B⋆

1 and B⋆
2 .

The curve α⋆ can be parameterized by

(3.30) α⋆(f(s)) = α(s) + λ(s)N(s),

where s is the arc-length parameter of α, s⋆ = f(s) =
∫ s

0
||α⋆ ′(t)|| dt is the

arc-length parameter of α⋆ and f : I ⊂ R → I⋆ ⊂ R and λ are some smooth
functions.

Differentiating the relation (3.30) with respect to s and applying the Frenet
formulae (2.3) and (2.4), we obtain

(3.31) T ⋆f ′ = T + λ′N + λκ2B1.

From the last relation we get

(3.32) g(T ⋆f ′, T ⋆f ′) = f ′ 2 = 1 + λ2κ2
2.

Since N = aB⋆
1 + bB⋆

2 , where a and b are some differentiable functions, the
condition g(N,N) = 0 gives 2ab = 0. Therefore, we may consider two cases:
(I) a = 0 and (II) b = 0.

Case (I) a = 0. Then N = bB⋆
2 . From relation (3.31) we get

(3.33) T ⋆ =
1

f ′T +
(λ′

f ′

)
N +

(λκ2

f ′

)
B1.

Differentiating the relation (3.33) with respect to s and using (2.3) and (2.4),
we find
(3.34)

κ⋆
1N

⋆f ′ =
( 1

f ′

)′
T +

[ 1

f ′ +
(λ′

f ′

)′
+

λκ2κ3

f ′

]
N +

(λ′κ2

f ′ +
(λκ2

f ′

)′)
B1−

λκ2
2

f ′ B2.

By taking the scalar product of (3.34) with N = bB⋆
2 , we obtain

λκ2 = 0.

Since λ ̸= 0, it follows that

(3.35) κ2 = 0.

Substituting (3.35) in (3.32) we get

(3.36) f ′ = ±1.
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Next, by using (3.34), (3.35) and (3.36), it follows that a spacelike vector N⋆

is collinear with a null vector N , which is a contradiction.

Case (II) b = 0. Then N = aB⋆
1 . By taking the scalar product of (3.34) with

N = aB⋆
1 , we obtain that (3.35) holds, which implies a contradiction.

Generally, a straight line in Euclidean 3-space can not define its Frenet
frame. But, in the study of Bertrand and Mannheim curves, the straight line
can be regarded as a Frenet curve with arbitrary Frenet frame. Assume that
the straight line l in E4

1 is the Frenet curve with a properly chosen Frenet frame
{T,N,B1, B2}. In the next two examples, we show that some straight lines in
E4

1 can be regarded as generalized partially null Mannheim curves whose mate
curves are also straight lines.

Example 3.10. Consider two parallel straight lines in E4
1 with parameter

equations α(s) = (1, 1, 1, s), α⋆(s) = (1, 1, 2, s) and with a properly chosen and
positively oriented Frenet frames

T = T ⋆ = (0, 0, 0, 1), N = B⋆
1 = (0, 0, 1, 0), B2 = B⋆

2 =
1√
2
(1, 1, 0, 0),

B1 = N⋆ =
1√
2
(−1, 1, 0, 0, ).

Therefore, α and α⋆ are partially null straight line and pseudo null straight
line respectively. It can be easily checked that α⋆ = α+N , which means that
{α, α⋆} is a generalized Mannheim pair of curves.

Example 3.11. Let α and α⋆ be two parallel straight lines in E4
1 with pa-

rameter equations α(s) = (2, 2,−4, s), α⋆(s) = (2, 2,−3, s). Assume that the
Frenet frames of α and α⋆ are properly chosen, positively oriented and given
by

T = T ⋆ = (0, 0, 0, 1), N = −B⋆
1 = (0, 0, 1, 0), N⋆ = (−1, 0, 0, 0),

B⋆
2 = (0, 1, 0, 0), B1 =

1√
2
(1, 1, 0, 0), B2 =

1√
2
(−1, 1, 0, 0, ).

Hence α and α⋆ are partially null straight line and spacelike straight line with
a timelike principal normal respectively. Since α⋆ = α + N , it follows that
{α, α⋆} is a generalized Mannheim pair of curves.
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