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INEXTENSIBLE FLOWS OF PARTIALLY NULL AND
PSEUDO NULL CURVES IN SEMI-EUCLIDEAN

4-SPACE WITH INDEX 2
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Abstract. In this paper, we consider the inextensible flows in semi-
Euclidean 4-space with index 2 (E4

2). We give the necessary and sufficient
conditions for the flow to be inextensible and we find the evolution equa-
tions for the inextensible flows in semi-Euclidean 4-space with index 2
(E4

2).
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1. Introduction

The time evolution of a curve or surface is generated by its corresponding
flow in E3. For this reason we shall also refer to curve and surface evolutions as
flows throughout this article. Flow is said to be inextensible if, in the former
case, its arclength is preserved, and in the latter case, if its intrinsic curvature is
preserved. Physically, inextensible curve and surface flows give rise to motions
in which no strain energy is induced. The swinging motion of a cord of fixed
length, for example, or of a piece of paper carried by the wind, can be described
by inextensible curve and surface flows. Such motions arise quite naturally in a
wide range of physical applications. For example, both Chirikjian and Burdick
[4] and Mochiyama et al. [15] study the shape control of hyper-redundant, or
snake-like, robots. Inextensible curve and surface flows also arise in the context
of many problems in computer vision [10] and [14] and computer animation [5],
and even structural mechanics [19].

Inextensible flows are studied in Euclidean 3-space by Körpınar in [12].
In addition, many researchers have studied on inextensible flows such as [8],
[11], [13], [1] and [7]. In [1] and [13], the authors studied inextensible flows in
Minkowski space-time E4

1. By drawing inspiration from them, in this paper,
we consider the inextensible flows in semi-Euclidean 4-space with index 2 (E4

2).
We give the necessary and sufficient conditions for the flow to be inextensible
and we find the evolution equations for the inextensible flows in semi-Euclidean
4-space with index 2 (E4

2).
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2. Preliminaries

The semi-Euclidean 4-space with index 2 (E4
2) is the Euclidean 4-space E4

equipped with indefinite flat metric given by

g = −dx21 − dx22 + dx23 + dx24,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
2. Recall that a

vector v ∈ E4
2\{0} can be spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and

null (lightlike) if g(v, v) = 0. In particular, the vector v = 0 is said to be
lightlike. The norm of a vector v is given by ||v|| =

√
|g(v, v)|. Two vectors v

and w are said to be orthogonal, if g(v, w) = 0. An arbitrary curve α(s) in E4
2,

can locally be spacelike, timelike or null (lightlike), if all its velocity vectors
α′(s) are respectively spacelike, timelike or null ([16]). Recall that a non-null
curve in E4

2 is called pseudo null curve or partially null curve, if respectively its
principal normal vector is null or its first binormal vector is null ([3]).

A null curve α is parameterized by pseudo-arc s if g(α′′(s), α′′(s)) = 1
([2]). On the other hand, a non-null curve α is parametrized by the arclength
parameter s if g(α′(s), α′(s)) = ±1.

Let {T,N,B1, B2} be the moving Frenet frame along a curve α in E4
2, con-

sisting of the tangent, the principal normal, the first binormal and the second
binormal vector field respectively.

If α is a non-null curve whose Frenet frame {T,N,B1, B2} contains only
non-null vector fields, the Frenet equations are given by ([9])

(2.1)


T ′

N ′

B′
1

B′
2

 =


0 ϵ2κ1 0 0

−ϵ1κ1 0 ϵ3κ2 0
0 −ϵ2κ2 0 ϵ1ϵ2ϵ3κ3
0 0 −ϵ3κ3 0




T
N
B1

B2

 ,
where g(T, T ) = ϵ1, g(N,N) = ϵ2, g(B1, B1) = ϵ3, g(B2, B2) = ϵ4, ϵ1ϵ2ϵ3ϵ4 = 1,
ϵi ∈ {−1, 1}, i ∈ {1, 2, 3, 4}. In particular, the following conditions hold:

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0.

If α is a pseudo null curve, the Frenet formulas read ([17])

(2.2)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
0 0 κ2 0
0 κ3 0 −ϵ2κ2

−ϵ1κ1 0 −ϵ2κ3 0




T
N
B1

B2

 ,
where the first curvature κ1(s) = 0, if α is straight line, or κ1(s) = 1 in all
other cases. Then, the following conditions are satisfied:

g(T, T ) = ϵ1 , g(B1, B1) = ϵ2, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0,
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g(N,B2) = 1, ϵ1ϵ2 = −1.

If α is a Cartan null curve, the Frenet formulas read ([6],[18])

(2.3)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0

−ϵ1κ2 0 −ϵ1κ1 0
0 κ2 0 κ3

−ϵ2κ3 0 0 0




T
N
B1

B2

 ,
where the first curvature κ1(s) = 0, if α is straight line, or κ1(s) = 1 in all
other cases. Then, the following conditions are satisfied:

g(N,N) = ϵ1 , g(B2, B2) = ϵ2, g(T, T ) = g(B1, B1) = 0,

g(T,N) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0,

g(T,B1) = 1, ϵ1ϵ2 = −1.

If α is a partially null curve, the Frenet formulas read ([17])

(2.4)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
κ1 0 κ2 0
0 0 κ3 0
0 −ϵ2κ2 0 −κ3




T
N
B1

B2

 ,
where the third curvature κ3(s) = 0 for each s. Moreover, the following condi-
tions hold:

g(T, T ) = ϵ1 , g(N,N) = ϵ2, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B2) = g(T,B1) = g(N,B1) = g(N,B2) = 0,

g(B1, B2) = 1, ϵ1ϵ2 = −1.

3. Inextensible flows of partially null and pseudo null
curves in E4

2

In this paper, we assume that γ : [0, l] × [0, ω] → E4
2 is a one parameter

family of smooth partially null or pseudo null curves in the semi-Euclidean 4-
space with index 2, where l is arclength of the initial curve. Let u be the curve
parametrization variable, 0 ≤ u ≤ l. The arclength of γ is given by

s (u) =

∫ u

0

∥∥∥∥∂γ∂t
∥∥∥∥ du.

The operator ∂
∂s is given in terms of u by

∂

∂s
=

1

v

∂

∂u

where v =
∥∥∥∂γ

∂t

∥∥∥. The arclength parameter is ds = vdu.
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Definition 3.1. Let γ be a partially null or pseudo null curve with the Frenet
frame {T,N,B1, B2} in the semi-Euclidean space with index 2. Any flow of
the partially null or pseudo null curves can be given as follows

(3.1)
∂γ

∂t
= β1T + β2N + β3B1 + β4B2

where βi (1 ≤ i ≤ 4) is a C∞-function.

Let the arclength parameter be

s (u, t) =

∫ u

0

vdu.

In E4
2, the requirement that the partially null or pseudo null curves are not

subjected to any elongation or compression can be expressed by the condition

∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du = 0

where u ∈ [0, l].

Definition 3.2. Let γ be a partially null or pseudo null curve in E4
2. A

partially null or pseudo null curve evolution γ (u, t) and its flow ∂γ
∂t are said to

be inextensible if

(3.2)
∂

∂t

∥∥∥∥∂γ∂u
∥∥∥∥ = 0.

3.1. Inextensible flows of partially null curves in E4
2

In this section, we consider inextensible flows of partially null curves in E4
2.

Lemma 3.3. Let ∂γ
∂t = β1T+β2N+β3B1+β4B2 be a smooth flow of a partially

null curve γ with κ3 = 0 in E4
2. If the flow is inextensible, then

(3.3)
∂v

∂t
= ε1

(
∂β1
∂u

+ β2vk1

)
.

Proof. Assume that ∂γ
∂t is a smooth flow of a partially null curve γ with κ3 = 0

in E4
2. By using the definition of γ, we get

(3.4) v2 = g

(
∂γ

∂u
,
∂γ

∂u

)
.

Differentiating (3.4) with resprect to t, we have

(3.5) 2v
∂v

∂t
=

∂

∂t
g

(
∂γ

∂u
,
∂γ

∂u

)
= 2g

(
∂γ

∂u
,
∂

∂u

(
∂γ

∂t

))
which leads to the following

(3.6) v
∂v

∂t
= g

(
∂γ

∂u
,
∂

∂u

(
∂γ

∂t

))
.
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Substituting (3.1) in (3.6), we find

(3.7) v
∂v

∂t
= g

(
∂γ

∂u
,
∂

∂u
(β1T + β2N + β3B1 + β4B2)

)
which implies that

∂v

∂t
= g

(
T,

(
∂β1
∂u

+ β2vk1

)
T +

(
β1vk1 +

∂β2
∂u

− β4vε2k2

)
N(3.8)

+

(
β2vk2 +

∂β3
∂u

)
B1 +

(
∂β4
∂u

)
B2

)
.

From (3.8) , we obtain

(3.9)
∂v

∂t
= ε1

(
∂β1
∂u

+ β2vk1

)
which completes the proof.

Theorem 3.4. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth flow of a

partially null curve γ with κ3 = 0 in E4
2. Then the flow is inextensible if and

only if

(3.10)
∂β1
∂u

= −β2vk1.

Proof. Let ∂γ
∂t be inextensible. From (3.2) , we have

(3.11)
∂

∂t
s(u, t) =

∫ u

0

∂v

∂t
du = 0

Substituting (3.3) in (3.11), we obtain

(3.12)
∂β1
∂u

= −β2vk1.

We now restrict ourselves to arc length parametrized curves. That is, v = 1
and the local coordinate u corresponds to the curve arclength s. Then, we have
the following lemma.

Lemma 3.5. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth inextensible

flow of a partially null curve γ with κ3 = 0 in E4
2. Then we have the following

∂T

∂t
=

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
N +

(
β2k2 +

∂β3
∂s

)
B1 +

∂β4
∂s

B2,

∂N

∂t
=

(
β1k1 +

∂β2
∂s

− ε2β4k2

)
T + ψ2B1 + ψ1B2,
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∂B1

∂t
= −ε1

∂β4
∂s

T − ε2ψ1N + ψ3B1,

∂B2

∂t
= −ε1

(
β2k2 +

∂β3
∂s

)
T − ε2ψ2N − ψ3B2

where ψ1 = g
(
∂N
∂t , B1

)
, ψ2 = g

(
∂N
∂t , B2

)
and ψ3 = g

(
∂B1

∂t , B2

)
.

Proof. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth inextensible flow of a

partially null curve γ with κ3 = 0 in E4
2. Then

(3.13)
∂T

∂t
=

∂

∂t

∂γ

∂s
=

∂

∂s

∂γ

∂t
=

∂

∂s
(β1T + β2N + β3B1 + β4B2)

which brings about

(3.14)
∂T

∂t
=

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
N +

(
β2k2 +

∂β3
∂s

)
B1 +

∂β4
∂s

B2.

From (3.14), we obtain

0 =
∂

∂t
g (T,N) = g

(
∂T

∂t
,N

)
+ g

(
T,
∂N

∂t

)
= ε2

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
+ g

(
T,
∂N

∂t

)
,

0 =
∂

∂t
g (T,B1) = g

(
∂T

∂t
,B1

)
+ g

(
T,
∂B1

∂t

)
=

(
∂β4
∂s

− β4k3

)
+ g

(
T,
∂B1

∂t

)
,

0 =
∂

∂t
g (T,B2) = g

(
∂T

∂t
,B2

)
+ g

(
T,
∂B2

∂t

)
=

(
β2k2 +

∂β3
∂s

)
+ g

(
T,
∂B2

∂t

)
,

0 =
∂

∂t
g(N,B1) = g

(
∂N

∂t
,B1

)
+ g

(
N,

∂B1

∂t

)
= ψ1 + g

(
N,

∂B1

∂t

)
,

0 =
∂

∂t
g(N,B2) = g

(
∂N

∂t
,B2

)
+ g

(
N,

∂B2

∂t

)
= ψ2 + g

(
N,

∂B2

∂t

)
,

0 =
∂

∂t
g(B1, B2) = g

(
∂B1

∂t
,B2

)
+ g

(
B1,

∂B2

∂t

)
= ψ3 + g

(
B1,

∂B2

∂t

)
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which implies that

∂N

∂t
=

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
T + ψ2B1 + ψ1B2,

∂B1

∂t
= −ε1

∂β4
∂s

T − ε2ψ1N + ψ3B1,

∂B2

∂t
= −ε1

(
β2k2 +

∂β3
∂s

)
T − ε2ψ2N − ψ3B2

where ψ1 = g
(
∂N
∂t , B1

)
, ψ2 = g

(
∂N
∂t , B2

)
and ψ3 = g

(
∂B1

∂t , B2

)
. This completes

the proof.

Theorem 3.6. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth inextensible

flow of a partially null curve γ with κ3 = 0 in E4
2. Then the following partial

differential equation holds:

∂k1
∂t

=

[
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2)− ε2k2

∂β4
∂s

]
.

Proof. From lemma 3.5, we get

∂

∂s

∂T

∂t
= k1

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
T

+

((
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2)

)
− ε2k2

∂β4
∂s

)
N

+

(
k2

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
+
∂2β3
∂s2

+
∂

∂s
(β2k2)

)
B1

+

(
∂2β4
∂s2

− k2
∂β4
∂s

)
B2.

On the other hand,

∂

∂t

∂T

∂s
=

∂

∂t
(k1N) =

∂k1
∂s

N + k1
∂N

∂t
= k1

(
β1k1 +

∂β2
∂s

− β4ε2k2

)
T

+
∂k1
∂t

N + k1ψ2B1 + k1ψ1B2.

From equality of the coefficients of N in above equalities, we get

∂k1
∂t

=

[
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2)− ε2k2

∂β4
∂s

]
.

Corollary 3.7. In theorem 3.6, from equality of the coefficients of B1 and B2

respectively, we obtain

k1ψ2 = k2
∂β2
∂s

+ k1k2β1 − ε2k
2
2β4 +

∂2β3
∂s2

+
∂

∂s
(β2k2) ,

k1ψ1 =
∂2β4
∂s2

− k2
∂β4
∂s

.
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Theorem 3.8. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth inextensible

flow of a partially null curve γ with κ3 = 0 in E4
2. Then the following partial

differential equation holds:

∂k1
∂t

− ε1k2
∂β4
∂s

=
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2) .

Proof. From lemma 3.5, we get

∂

∂s

∂N

∂t
=

(
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2)

)
T

+

((
∂β2
∂s

+ β1k1 − β4ε2k2

)
k1 − ε2k2ψ1

)
N

+
∂ψ2

∂s
B1 +

(
∂ψ1

∂s
− ψ1k3

)
B2.

On the other hand,

∂

∂t

∂N

∂s
=

(
∂k1
∂t

− ε1k2
∂β4
∂s

)
T +

(
k1
∂β2
∂s

+ β1k
2
1 − β4ε2k1k2 − ε2k2ψ1

)
N

+

(
∂k2
∂t

+ k1
∂β3
∂s

+ k1k2β2 + k2ψ3

)
B1 +

(
k1
∂β4
∂s

)
B2.

From equality of the coefficients of T in above equalities, we get

∂k1
∂t

− ε1k2
∂β4
∂s

=
∂2β2
∂s2

+
∂

∂s
(β1k1)− ε2

∂

∂s
(β4k2) .

Corollary 3.9. In Theorem 3.8, from the equality of the coefficients of B1 and
B2 respectively, we obtain

∂ψ2

∂s
=

∂k2
∂t

+ k1
∂β3
∂s

+ k1k2β2 + k2ψ3,

k1
∂β4
∂s

=
∂ψ1

∂s
− k3ψ1.

Theorem 3.10. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a partially null curve γ with κ3 = 0 in E4
2. Then the following differential

equation holds:
∂

∂s

(
1

k1

∂2β4
∂s2

)
= k1

∂β4
∂s

.

Proof. From lemma 3.5, we get

∂

∂s

∂B1

∂t
=

(
−ε1

∂2β4
∂s2

− ε2ψ1k1

)
T −

(
ε2
∂ψ1

∂s
+ ε1k1

∂β4
∂s

)
N

+

(
−ε2ψ1k2 +

∂ψ3

∂s

)
B1.
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On the other hand, ∂
∂t

∂B1

∂s = 0. Thus, we have

ψ1 =
1

k1

∂2β4
∂s2

,

∂ψ1

∂s
= k1

∂β4
∂s

,

∂ψ3

∂s
= ε2k2ψ1

which implies that
∂

∂s

(
1

k1

∂2β4
∂s2

)
= k1

∂β4
∂s

.

Theorem 3.11. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a partially null curve γ with κ3 = 0 in E4
2. Then the following differential

equation holds:

−ε2k2
∂β2
∂s

− ε2k1k2β1 + k22β4 = −ε1
∂2β3
∂s2

− ε1
∂

∂s
(β1k2)− ε2k1ψ2.

Proof. From lemma 3.5, we get

∂

∂s

∂B2

∂t
=

(
−ε1

∂2β3
∂s2

− ε1
∂

∂s
(β1k2)− ε2k1ψ2

)
T

+

(
−ε1k1

(
∂β3
∂s

+ k2β2

)
− ε2

∂ψ2

∂s
+ ψ3ε2k2

)
N

−ε2k2ψ2B1 −
(
∂ψ3

∂s
− k3ψ3

)
B2

On the other hand,

∂

∂t

∂B2

∂s
=

(
−ε2k2

∂β2
∂s

− ε2k1k2β1 + k22β4

)
T − ε2

∂k2
∂t

N

−ε2k2ψ2B1 − ε2k2ψ1B2.

From the equality of the coefficients of T in above equalities, we get

−ε2k2
∂β2
∂s

− ε2k1k2β1 + k22β4 = −ε1
∂2β3
∂s2

− ε1
∂

∂s
(β1k2)− ε2k1ψ2.

Corollary 3.12. In Theorem 3.11, from the equality of the coefficients of N
and B2 respectively, we obtain

−∂k2
∂t

= k1
∂β3
∂s

+ k1k2β2 −
∂ψ2

∂s
+ k2ψ3,

−ε2k2ψ1 = −∂ψ3

∂s
+ k3ψ3.
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3.2. Inextensible flows of pseudo null curves in E4
2

In this section, we consider inextensible flows of pseudo null curves in E4
2.

Since the proofs of the following theorems are similiar to previous proofs, we
omit some of those proofs.

Lemma 3.13. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth flow of a

pseudo null curve γ with κ1 = 1 in E4
2. If the flow is inextensible, then

(3.15)
∂v

∂t
=
∂β1
∂u

− ε1vβ4.

Theorem 3.14. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth flow of a

pseudo null curve γ with κ1 = 1 in E4
2. Then the flow is inextensible if and

only if
∂β1
∂u

= β4vε1.

Proof. Let ∂γ
∂t be inextensible. From (3.2) , we have

(3.16)
∂

∂t
s(u, t) =

∫ u

0

∂v

∂t
du = 0.

Substituting (3.15) in (3.16), we obtain

∂β1
∂u

= β4vε1.

We now restrict ourselves to arc length parametrized curves. That is, v = 1
and the local coordinate u corresponds to the curve arclength s. In this case
we have the following lemma.

Lemma 3.15. Let ∂γ
∂t = β1T + β2N + β3B1 + β4B2 be a smooth inextensible

flow of a pseudo null curve γ with κ1 = 1 in E4
2. Then we have the following

∂T

∂t
=

(
∂β2
∂s

+ β3k3 + β1

)
N+

(
β2k2 +

∂β3
∂s

− ε2k3β4

)
B1+

(
∂β4
∂s

− ε2k2β3

)
B2,

∂N

∂t
= −

(
β3k2 + ε1

∂β4
∂s

)
T + ψ2N + ε2ψ1B1,

∂B1

∂t
=

(
β2k2 +

∂β3
∂s

− β4ε2k3

)
T + ψ3N − ψ1B2,

∂B2

∂t
= −ε1

(
∂β2
∂s

+ β3k3 + β1

)
T − ε2ψ3B1 − ψ2B2

where ψ1 = g(∂N∂t , B1), ψ2 = g(∂N∂t , B2) and ψ3 = g(∂B1

∂t , B2).
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Theorem 3.16. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a pseudo null curve γ with κ1 = 1 in E4
2. Then the following partial

differential equation holds:

(3.17)

(
β3k2 + ε1

∂β4
∂s

)
= ε1

(
∂β4
∂s

− β3ε2k2

)
.

Proof. From lemma 3.15, we get

∂
∂s

∂T
∂t = −ε1

(
∂β4

∂s − β3ε2k2

)
T

+
(

∂2β2

∂s2 + ∂β1

∂s + ∂
∂s (β3k3) + k3

(
∂β3

∂s + β2k2 − β4ε2k3

))
N

+
((
β1 +

∂β2

∂s + β3k3

)
k2 +

∂2β3

∂s2 + ∂
∂s (β2k2)

)
B1

−ε2
(

∂
∂s (β4k3) + k3

(
∂β4

∂s − β3ε2k2

))
B1

+
(
−ε2k2

(
∂β3

∂s + β2k2 − β4ε2k3

)
+ ∂2β4

∂s2 − ε2
∂
∂s (β3k2)

)
B2.

On the other hand,

∂

∂t

∂T

∂s
=

∂

∂t
N = −

(
β3k2 + ε1

∂β4
∂s

)
T + ψ2N + ε2ψ1B1.

From the equality of the coefficients of T in above equalities, we get(
β3k2 + ε1

∂β4
∂s

)
= ε1

(
∂β4
∂s

− β3ε2k2

)
.

Corollary 3.17. In Theorem 3.16, from the equality of the coefficients of N,
B1 and B2 respectively, we obtain

ψ2 =
∂2β2
∂s2

+
∂β1
∂s

+
∂

∂s
(β3k3) + k3

∂β3
∂s

+β2k3k2 − ε2k
2
3β4

ε2ψ1 = k2
∂β2
∂s

+ k2β1 + k2k3β3 +
∂2β3
∂s2

+
∂

∂s
(β2k2)

−ε2
∂

∂s
(β4k3)− ε2k3

(
∂β4
∂s

− ε2β3k2

)
0 = −ε2k2

(
∂β3
∂s

+ β2k2 − ε2k3β4

)
+
∂2β4
∂s2

− ε2
∂

∂s
(β3k2)
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Theorem 3.18. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a pseudo null curve γ with κ1 = 1 in E4
2. Then the following partial

differential equation holds:

(3.18) k2
∂β3
∂t

+ k22β2 − ε2k2k3β4 = − ∂

∂s
(β3k2)− ε1

∂2β2
∂s2

.

Proof. From lemma 3.15, we get

∂

∂s

∂N

∂t
= −

(
∂

∂s
(β3k2) + ε1

∂2β2
∂s2

)
T

+

(
ε2k3ψ1 − ε1

∂β4
∂s

− β3k2 +
∂ψ2

∂s

)
N

+

(
ψ2k2 + ε2

∂ψ1

∂s

)
B1 − ψ1k2B2

On the other hand,

∂

∂t

∂N

∂s
= k2

(
∂β3
∂t

+ k2β2 − ε2k3β4

)
T + k2ψ3N +

∂k2
∂t

B1 − k2ψ1B2.

From the equality of the coefficients of T in above equalities, we get

k2
∂β3
∂t

+ k22β2 − ε2k2k3β4 = − ∂

∂s
(β3k2)− ε1

∂2β2
∂s2

.

Corollary 3.19. In Theorem 3.18, from the equality of the coefficients of N
and B1 respectively, we obtain

k2ψ3 = −ε1
∂β4
∂s

− β3k2 +
∂ψ2

∂s
+ ε2k3ψ1,

∂k2
∂t

= ε2
∂ψ1

∂s
+ k2ψ2.

Theorem 3.20. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a pseudo null curve γ with κ1 = 1 in E4
2. Then the following differential

equation holds:

−2k2k3β3−ε1k3
∂β4
∂s

−k2
∂β2
∂s

−k2β1 =
∂2β3
∂s2

+
∂

∂s
(k2β2)−ε2

∂

∂s
(k3β4)+ε1ψ1.

Proof. From lemma 3.15, we get

∂

∂s

∂B1

∂t
=

(
∂2β3
∂s2

+
∂

∂s
(k2β2)− ε2

∂

∂s
(k3β4) + ε1ψ1

)
T

+

(
∂β3
∂s

+ k2β2 − ε2k3β4 +
∂ψ3

∂s

)
N

+(ψ3k2 + ε2k3ψ1)B1 −
∂ψ1

∂s
B2.
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On the other hand,

∂

∂t

∂B1

∂s
=

(
−2k2k3β3 − ε1k3

∂β4
∂s

− k2
∂β2
∂s

− k2β1

)
T

+

(
∂k3
∂t

+ k3ψ2

)
N + (ε2k3ψ1 + k2ψ3)B1

+

(
−ε2

∂k2
∂t

+ ε2k2ψ2

)
B2.

From the equality of the coefficients of T in above equalities, we get

−2k2k3β3−ε1k3
∂β4
∂s

−k2
∂β2
∂s

−k2β1 =
∂2β3
∂s2

+
∂

∂s
(k2β2)−ε2

∂

∂s
(k3β4)+ε1ψ1.

Corollary 3.21. In Theorem 3.20, from the equality of the coefficients of N
and B2, respectively, we obtain

∂k3
∂t

+ k3ψ2 =
∂β3
∂s

+ k2β2 − ε2k3β4 +
∂ψ3

∂s
,

∂ψ1

∂s
= ε2

∂k2
∂t

− ε2k2ψ2.

Theorem 3.22. Let ∂γ
∂t = β1T +β2N +β3B1 +β4B2 be a smooth inextensible

flow of a pseudo null curve γ with κ1 = 1 in E4
2. Then the following differential

equation holds:

−ε2k3
(
∂β3
∂s

+ k2β2 − ε2k3β4

)
= −ε1

∂2β2
∂s2

− ε1
∂β1
∂s

− ε1
∂

∂s
(k3β3) + ε1ψ2.

Proof. From lemma 3.15, we get

∂

∂s

∂B2

∂t
=

(
−ε1

∂2β2
∂s2

− ε1
∂β1
∂s

− ε1
∂

∂s
(k3β3) + ε1ψ2

)
T

−
(
ε1

(
∂β2
∂s

+ β1 + k3β3

)
+ ε2k3ψ3

)
N

−
(
ε2
∂ψ3

∂s
− ε2k3ψ2

)
B1 −

(
−k2ψ3 +

∂ψ2

∂s

)
B2

On the other hand,

∂

∂t

∂B2

∂s
= −ε2k3

(
∂β3
∂s

+ k2β2 − ε2k3β4

)
T

+

(
−ε1

∂β2
∂s

− ε1β1 − ε1k3β3 − ε2k3ψ3

)
N

+

(
−ε2

∂k3
∂t

− ε1
∂β3
∂s

− ε1k2β2 − k3β4

)
B1

+

(
−ε1

∂β4
∂s

− k2β3 + ε2k3ψ1

)
B2.
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From the equality of the coefficients of T in above equalities, we get

−ε2k3
(
∂β3
∂s

+ k2β2 − ε2k3β4

)
= −ε1

∂2β2
∂s2

− ε1
∂β1
∂s

− ε1
∂

∂s
(k3β3) + ε1ψ2.

Corollary 3.23. In Theorem 3.22, from the equality of the coefficients of B1

and B2, respectively, we obtain

−ε2
∂k3
∂t

− ε1
∂β3
∂s

− ε1k2β2 − k3β4 = −ε2
∂ψ3

∂s
+ ε2k3ψ2,

−ε1
∂β4
∂s

− k2β3 + ε2k3ψ1 = k2ψ3 −
∂ψ2

∂s
.
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