ON NEARLY QUASI-EINSTEIN WARPED PRODUCTS

Buddhadev Pal1 and Arindam Bhattacharyya2

Abstract. We study nearly quasi-Einstein warped product manifolds for arbitrary dimension $n \geq 3$. In the last section we also give an example of warped product on nearly quasi-Einstein manifold.

AMS Mathematics Subject Classification (2010): 53C25; 53B30; 53C15.

Key words and phrases: Einstein manifold; Quasi-Einstein manifold; Nearly quasi-Einstein manifold; Warped product manifold.

1. Introduction

A Riemannian manifold (M^n, g), $(n > 2)$ is Einstein if its Ricci tensor S of type $(0,2)$ is of the form $S = \alpha g$, where α is smooth function, which turns into $S = \frac{r}{n} g$, r being the scalar curvature of the manifold. Let (M^n, g), $(n > 2)$ be a Riemannian manifold and $U_S = \{ x \in M : S \neq \frac{r}{n} g \text{ at } x \}$, then the manifold (M^n, g) is said to be quasi-Einstein manifold \cite{1,2} if on $U_S \subset M$, we have

\begin{equation}
S - \alpha g = \beta A \otimes A,
\end{equation}

where A is a 1-form on U_S and α and β some functions on U_S. It is clear that the 1-form A as well as the function β are nonzero at every point on U_S. From the above definition, it follows that every Einstein manifold is quasi-Einstein. In particular, every Ricci-flat manifold (e.g., Schwarzschild spacetime) is quasi-Einstein. The scalars α, β are known as the associated scalars of the manifold. Also, the 1-form A is called the associated 1-form of the manifold defined by $g(X, \rho) = A(X)$ for any vector field X, ρ being a unit vector field, called the generator of the manifold. Such an n-dimensional quasi-Einstein manifold is denoted by $(QE)_n$.

In \cite{3}, De and Gazi introduced nearly quasi-Einstein manifold, denoted by $N(QE)_n$ and gave an example of a 4-dimensional Riemannian nearly quasi Einstein manifold, where the Ricci tensor S of type $(0,2)$ which is not identically zero satisfies the condition

\begin{equation}
S(X,Y) = l g(X,Y) + m D(X,Y),
\end{equation}

where l and m are non-zero scalars and D is a non-zero symmetric tensor of type $(0,2)$.

1Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi - 221 005, India. e-mail: pal.buddha@gmail.com

2Department of Mathematics, Jadavpur University, Kolkata 700032, e-mail: bhattachar1968@yahoo.co.in
Also in [2], De and Gazi introduced the notion of a Riemannian manifold \((M, g)\) of a nearly quasi-constant sectional curvature as a Riemannian manifold with the curvature tensor satisfies the condition

\[
R(X, Y, Z, W) = a[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + b[g(Y, Z)D(X, W)
- g(X, Z)D(Y, W) + g(X, W)D(Y, Z) - g(Y, W)D(X, Z)],
\]

where \(a, b\) are scalar functions with \(b \neq 0\) and \(D\) is nonzero symmetric \((0,2)\) tensor.

Let \(M\) be an \(m\)-dimensional, \(m \geq 3\), Riemannian manifold and \(p \in M\). Denote by \(K(\pi)\) or \(K(u \wedge v)\) the sectional curvature of \(M\) associated with a plane section \(\pi \subset T_p M\), where \(\{u, v\}\) is an orthonormal basis of \(\pi\). For any \(n\)-dimensional subspace \(L \subseteq T_p M\), \(2 \leq n \leq m\), its scalar curvature \(\tau(L)\) is denoted in [4] by \(\tau(L) = 2\Sigma_{1 \leq i < j \leq n} K(e_i \wedge e_j)\), where \(\{e_1, e_2, ..., e_n\}\) is any orthonormal basis of \(L\) [2]. When \(L = T_p M\), the scalar curvature \(\tau(L)\) is just the scalar curvature \(\tau(p)\) of \(M\) at \(p\).

\section{Warped product manifolds}

The notion of warped product generalizes that of a surface of revolution. It was introduced in [3] for studying manifolds of negative curvature. Let \((B, g_B)\) and \((F, g_F)\) be two Riemannian manifolds and let \(f\) be a positive differentiable function on \(B\). Consider the product manifold \(B \times F\) with its projections \(\pi : B \times F \to B\) and \(\sigma : B \times F \to F\). The warped product \(B \times_f F\) is the manifold \(B \times F\) with the Riemannian structure such that \(||X||^2 = ||\pi^*(X)||^2 + f^2(\pi(p))||\sigma^*(X)||^2\), for any vector field \(X\) on \(M\). Thus we have

\[
g = g_B + f^2 g_F
\]

holds on \(M\). The function \(f\) is called the warping function of the warped product [5].

Since \(B \times_f F\) is a warped product, then we have \(\nabla_X Z = \nabla_Z X = (Xlnf)Z\) for unit vector fields \(X, Z\) on \(B\) and \(F\), respectively. Hence, we find \(K(X \wedge Z) = g(\nabla_Z \nabla_X X - \nabla_X \nabla_Z X, Z) = (1/f)\{\nabla_X X_f - X^2 f\}\). If we chose a local orthonormal frame \(e_1, ..., e_n\) such that \(e_1, ..., e_{n_1}\) are tangent to \(B\) and \(e_{n_1+1}, ..., e_n\) are tangent to \(F\), then we have

\[
\frac{\Delta f}{f} = \sum_{i=1}^{n} K(e_i \wedge e_j),
\]

for each \(s = n_1 + 1, ..., n\) [3]. We need the following two lemmas from [4], for later use:

\textbf{Lemma 2.1.} Let \(M = B \times_f F\) be a warped product, with Riemannian curvature tensor \(R_M\). Given field \(X, Y, Z\) on \(B\) and \(U, V, W\) on \(F\), then:

1. \(R_M(X, Y)Z = R_B(X, Y)Z\),
2. \(R_M(V, X)Y = -(H^f(X, Y)/f)V\), where \(H^f\) is the Hessian of \(f\),
constant scalar curvature

\[X \]

Einstein manifold. Also in the last section we give an example of warped product on nearly quasi-Einstein warped products to generalize Theorems 2.2.

Theorem 2.2.

Let \(M = B \times_f F \) be a warped product, with Ricci tensor \(S_M \).

Given fields \(X, Y \) on \(B \) and \(V, W \) on \(F \), then:

1. \(S_M(X, Y) = S_B(X, Y) - \frac{d}{f^2} H^f(X, Y) \), where \(d = \dim F \)

2. \(S_M(X, V) = 0 \)

3. \(S_M(V, W) = S_F(V, W) - g(V, W) f^# \), \(f^# = \frac{\Delta f}{f} + \frac{d-1}{f^2} \| \grad f \|^2 \), where \(\Delta f \) is the Laplacian of \(f \) on \(B \).

Moreover, the scalar curvature \(\tau_M \) of the manifold \(M \) satisfies the condition

\[\tau_M = \tau_B + \frac{\tau_F}{f^2} - 2d \frac{\Delta f}{f} - d(d-1) \frac{\| \grad f \|^2}{f^2}, \]

where \(\tau_B \) and \(\tau_F \) are the scalar curvatures of \(B \) and \(F \), respectively.

In [8], Gebarowski studied Einstein warped product manifolds and proved the following three theorems.

Theorem 2.1.

Let \((M, g) \) be a warped product \(I \times_f F \), \(\dim I = 1 \), \(\dim F = n-1 \) \((n \geq 3)\). Then \((M, g) \) is an Einstein manifold if and only if \(F \) is Einstein with constant scalar curvature \(\tau_F \) in the case \(n = 3 \) and \(f \) is given by one of the following formulae, for any real number \(b \),

\[f^2(t) = \begin{cases} \frac{4}{a} K \sinh^2 \frac{\sqrt{a}(t+b)}{2} , & a > 0 \\ K(t + b)^2 , & a = 0 \\ -\frac{4}{a} K \sin^2 \frac{\sqrt{a}(t+b)}{2} , & a < 0 \end{cases} \]

for \(K > 0 \), \(f^2(t) = b \exp(at) \ (a \neq 0) \), for \(K = 0 \), \(f^2(t) = -\frac{4}{a} K \cosh^2 \frac{\sqrt{a}(t+b)}{2} \), \((a > 0)\), for \(K < 0 \), where \(a \) is the constant appearing after first integration of the equation \(q^{''} e^q + 2K = 0 \) and \(K = \frac{\tau_F}{(n-1)(n-2)} \).

Theorem 2.2.

Let \((M, g) \) be a warped product \(B \times_f F \) of a complete connected \(r \)-dimensional \((1 < r < n)\) Riemannian manifold \(B \) and an \((n-r)\)-dimensional Riemannian manifold \(F \). If \((M, g) \) is a space of constant sectional curvature \(K > 0 \), then \(B \) is a sphere of radius \(\frac{1}{\sqrt{K}} \).

Theorem 2.3.

Let \((M, g) \) be a warped product \(B \times_f F \) of a complete connected \(n-1 \)-dimensional Riemannian manifold \(B \) and an one-dimensional Riemannian manifold \(F \). If \((M, g) \) is an Einstein manifold with scalar curvature \(\tau_M > 0 \) and the Hessian of \(f \) is proportional to the metric tensor \(g_B \), then

1. \((B, g_B)\) is an \((n-1)\)-dimensional sphere of radius \(\rho = \left(\frac{\tau_B}{(n-1)(n-2)}\right)^{-\frac{1}{2}} \).

2. \((M, g)\) is a space of constant sectional curvature \(K = \frac{\tau_M}{n(n-1)} \).

Motivated by the above study by Gebarowski, in the present paper our aim is to generalize Theorems 2.1, 2.2 and 2.3 for nearly quasi-Einstein manifolds. Also in the last section we give an example of warped product on nearly quasi-Einstein manifold.
3. Nearly quasi-Einstein warped products

In this section, we consider nearly quasi-Einstein warped product manifolds and prove some results concerning these type manifolds.

Theorem 3.1. Let \((M, g)\) be a warped product \(I \times_f F\), \(\dim I = 1\), \(\dim F = n - 1\) \((n \geq 3)\). If \((M, g)\) is nearly quasi-Einstein manifold with associated scalars \(l, m\), then \(F\) is a nearly quasi-Einstein manifold.

Proof. Let us consider \((dt)^2\) to be the metric on \(I\). Taking \(f = \exp\{\frac{q}{2}\}\) and making use of Lemma 2.2, we can write

\[
S_M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = -\frac{n-1}{4}[2q'' + (q')^2]
\]

and

\[
S_M(V, W) = S_F(V, W) - \frac{1}{4}e^q[2q'' + (n-1)(q')^2]g_F(V, W),
\]

for all vector fields \(V, W\) on \(F\).

Since \(M\) is nearly quasi-Einstein, from (2) we have

\[
S_M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = lg\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) + mD\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right),
\]

and

\[
S_M(V, W) = lg(V, W) + mD(V, W).
\]

On the other hand, using (3), the equations (7) and (11) reduce to

\[
S_M\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = l + mD\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)
\]

and

\[
S_M(V, W) = le^q g_F(V, W) + mD_F(V, W).
\]

Comparing the right hand side of the equations (11) and (14) we get

\[
l + mD\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = -\frac{n-1}{4}[2q'' + (q')^2].
\]

Similarly, comparing the right hand sides of (8) and (12) we obtain

\[
S_F(V, W) = \frac{1}{4}e^q[2q'' + (n-1)(q')^2 + 4l]g_F(V, W) + mD_F(V, W).
\]

which implies that \(F\) is a nearly quasi-Einstein manifold. This completes the proof of the theorem. \(\square\)
Theorem 3.2. Let \((M, g)\) be a warped product \(B \times_f F\) of a complete connected \(r\)-dimensional \((1 < r < n)\) Riemannian manifold \(B\) and an \((n-r)\)-dimensional Riemannian manifold \(F\).

If \((M, g)\) is a space of nearly quasi-constant sectional curvature, the Hessian of \(f\) is proportional to the metric tensor \(g_B\), then \(B\) is a nearly quasi-Einstein manifold.

Proof. Assume that \(M\) is a space of nearly quasi-constant sectional curvature. Then from equation (3), we can write

\[
R(X, Y, Z, W) = a[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + b[g(Y, Z)D(X, W) - g(X, Z)D(Y, W) + g(X, W)D(Y, Z) - g(Y, W)D(X, Z)],
\]

for all vector fields \(X, Y, Z, W\) on \(B\).

In view of Lemma 2.1 and by using (4) in equation (15) and then after a contraction over \(X\) and \(W\) (we put \(X = W = e_i\)), we get

\[
S_B(Y, Z) = [a(r - 1) + bD_B(e_i, e_i)]g_B(Y, Z) + brD_B(Y, Z),
\]

which shows us \(B\) is a nearly quasi-Einstein manifold. Contracting from (16) over \(Y\) and \(Z\), we can write

\[
\tau_B = ar(r - 1) + 2rbD_B(e_i, e_i).
\]

Since \(M\) is a space of nearly quasi-constant sectional curvature, in view of (3) and (15) we get

\[
\Delta f = \frac{ar + brD_B(e_i, e_i)}{2}.
\]

On the other hand, since the Hessian of \(f\) is proportional to the metric tensor \(g_B\), it can be written as follows

\[
H^f(X, Y) = \frac{\Delta f}{r}g_B(X, Y).
\]

Then by use of (17) and (18) in (19) we obtain \(H^f + Kf g_B(X, Y) = 0\), where \(K = \frac{r(3-r)bD_B(e_i, e_i) - \tau_B}{2r(r-1)}\) holds on \(B\). So by Obata’s theorem [14], \(B\) is isometric to the sphere of radius \(\frac{1}{\sqrt{K}}\) in the \((r+1)\)-dimensional Euclidean space. This gives us that \(B\) is a nearly quasi-Einstein manifold. Since \(b \neq 0\) and also \(r \neq 0\), therefore \(B\) is a nearly quasi-Einstein manifold of dimension \(n \geq 2\).

Theorem 3.3. Let \((M, g)\) be a warped product \(B \times_f F\) of a complete connected \(n - 1\)-dimensional Riemannian manifold \(B\) and one-dimensional Riemannian manifold \(I\). If \((M, g)\) is a nearly quasi-Einstein manifold with constant associated scalars \(l, m\) and the Hessian of \(f\) is proportional to the metric tensor \(g_B\), then \((B, g_B)\) is an \((n - 1)\)-dimensional sphere of radius \(\rho = \frac{n-1}{\sqrt{\tau_B + 1}}\).
Proof. Assume that M is a warped product manifold. Then by use of Lemma 2.2 we can write

\begin{equation}
S_B(X,Y) = S_M(X,Y) + \frac{1}{f}H^f(X,Y)
\end{equation}

for any vector fields X, Y on B. On the other hand, since M is a nearly quasi-Einstein manifold we have

\begin{equation}
S_M(X,Y) = \ln g(X,Y) + mD(X,Y).
\end{equation}

In view of (21) the equation (20) can be written as

\begin{equation}
S_B(X,Y) = \ln g_B(X,Y) + mD_B(X,Y) + \frac{1}{f}H^f(X,Y).
\end{equation}

By a contraction from the above equation over X, Y, we find

\begin{equation}
\tau_B = l(n - 1) + mD_B(e_i, e_i) + \frac{\Delta f}{f}.
\end{equation}

On the other hand, we know from the equation (21) that

\begin{equation}
\tau_M = \ln + mD_B(e_i, e_i).
\end{equation}

By use of (24) in (23) we get $\tau_B = \tau_M - l + \frac{\Delta f}{f}$. In view of Lemma 2.2 we also know that

\begin{equation}
-\frac{\tau_M}{n} = \frac{\Delta f}{f}.
\end{equation}

The last two equations give us $\tau_B = \frac{n-1}{n} \tau_M - l$. On the other hand, since the Hessian of f is proportional to the metric tensor g_B, it can be written as follows

\begin{equation}
H^f(X,Y) = \frac{n-1}{n} g_B(X,Y).\end{equation}

As the consequence of the equation (25) we have

\begin{equation}
\frac{\Delta f}{n-1} = - \frac{1}{n(n-1)} \tau_M f,\end{equation}

which implies that

\begin{equation}
H^f(X,Y) + \frac{\tau_B + l}{(n-1)^2} g_B(X,Y) = 0.
\end{equation}

So, B is isometric to the $(n - 1)$-dimensional sphere of radius $\frac{n-1}{\sqrt{\tau_B + l}}$. Hence the Theorem is proved. \hfill \Box

4. Example of warped product on nearly quasi-Einstein manifold

In [3], De and Gazi established the 4-dimensional example of nearly quasi-Einstein manifold. Let (M_4, g) be a Riemannian manifold endowed with the metric given by

\[
\begin{aligned}
ds^2 = g_{ij}dx^i dx^j = (dx^4)^2 + \frac{4}{3}[(dx^1)^2 + (dx^2)^2 + (dx^3)^2]
\end{aligned}
\]
On nearly quasi-Einstein warped products

where \(i, j = 1, 2, 3, 4 \) and \(x^1, x^2, x^3, x^4 \) are the standard coordinates of \(M_4 \). Then they have shown that it is nearly quasi-Einstein manifold with nonzero and nonconstant scalar curvature.

To define warped product on \(N(QE)_4 \), we consider the warping function \(f : \mathbb{R} \to (0, \infty) \) by \(f(x^4) = \sqrt{(x^4)^\frac{4}{3}} \), here we observe that \(f = \sqrt{(x^4)^\frac{4}{3}} > 0 \) and is a smooth function. The line element defined on \(\mathbb{R} \times \mathbb{R}^3 \) which is of the form \(I \times_f F \), where \(I = \mathbb{R} \) is the base and \(F = \mathbb{R}^3 \) is the fibre.

Therefore the metric \(ds^2_M = ds^2_B + f^2 ds^2_F \) that is

\[
ds^2 = g_{ij}dx^idx^j = (dx^4)^2 + (x^4)^\frac{4}{3}[(dx^1)^2 + (dx^2)^2 + (dx^3)^2],\]

is the example of Riemannian warped product on \(N(QE)_4 \).

Acknowledgement

The authors wish to express their sincere thanks and gratitude to the referee for his valuable suggestions towards the improvement of the paper.

References

Received by the editors August 5, 2014