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ON NEARLY QUASI-EINSTEIN WARPED
PRODUCTS

Buddhadev Pal1 and Arindam Bhattacharyya2

Abstract. We study nearly quasi-Einstein warped product manifolds
for arbitrary dimension n ≥ 3. In the last section we also give an example
of warped product on nearly quasi-Einstein manifold.
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1. Introduction

A Riemannian manifold (Mn, g), (n > 2) is Einstein if its Ricci tensor S of
type (0,2) is of the form S = αg, where α is smooth function, which turns into
S = r

ng, r being the scalar curvature of the manifold. Let (Mn, g), (n > 2) be
a Riemannian manifold and US = {x ∈ M : S ̸= r

ng at x}, then the manifold
(Mn, g) is said to be quasi-Einstein manifold [1, 2] if on US ⊂ M , we have

(1) S − αg = βA⊗A,

where A is a 1-form on US and α and β some functions on US . It is clear that
the 1-form A as well as the function β are nonzero at every point on US . From
the above definition, it follows that every Einstein manifold is quasi-Einstein.
In particular, every Ricci-flat manifold (e.g., Schwarzchild spacetime) is quasi-
Einstein.The scalars α, β are known as the associated scalars of the manifold.
Also, the 1-form A is called the associated 1-form of the manifold defined by
g(X, ρ) = A(X) for any vector field X, ρ being a unit vector field, called the
generator of the manifold. Such an n-dimensional quasi-Einstein manifold is
denoted by (QE)n.

In [3], De and Gazi introduced nearly quasi-Einstein manifold, denoted
by N(QE)n and gave an example of a 4-dimensional Riemannian nearly quasi
Einstein manifold, where the Ricci tensor S of type (0,2) which is not identically
zero satisfies the condition

(2) S(X,Y ) = lg(X,Y ) +mD(X,Y ),

where l and m are non-zero scalars and D is a non-zero symmetric tensor of
type (0,2).
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Also in [3], De and Gazi introduced the notion of a Riemannian manifold
(M, g) of a nearly quasi-constant sectional curvature as a Riemannian manifold
with the curvature tensor satisfies the condition
(3)
R(X,Y, Z,W ) =a[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )] + b[g(Y,Z)D(X,W )

− g(X,Z)D(Y,W ) + g(X,W )D(Y,Z)− g(Y,W )D(X,Z)],

where a, b are scalar functions with b ̸= 0 and D is nonzero symmetric (0,2)
tensor.

Let M be an m-dimensional, m ≥ 3, Riemannian manifold and p ∈ M .
Denote by K(π) or K(u ∧ v) the sectional curvature of M associated with a
plane section π ⊂ TpM , where {u, v} is an orthonormal basis of π. For any n-
dimensional subspace L ⊆ TpM , 2≤ n ≤ m, its scalar curvature τ(L) is denoted
in [4] by τ(L) = 2Σ1≤i<j≤nK(ei ∧ ej), where {e1, e2, ...en} is any orthonormal
basis of L [5]. When L = TpM , the scalar curvature τ(L) is just the scalar
curvature τ(p) of M at p.

2. Warped product manifolds

The notion of warped product generalizes that of a surface of revolution. It
was introduced in [6] for studying manifolds of negative curvature. Let (B, gB)
and (F, gF ) be two Riemannian manifolds and let f be a positive differentiable
function on B. Consider the product manifold B × F with its projections
π : B × F → B and σ : B × F → F . The warped product B ×f F is the
manifold B×F with the Riemannian structure such that ||X||2 = ||π∗(X)||2+
f2(π(p))||σ∗(X)||2, for any vector field X on M . Thus we have

(4) g = gB + f2gF

holds on M . The function f is called the warping function of the warped
product [8].

Since B×f F is a warped product, then we have ∇XZ = ∇ZX = (Xlnf)Z
for unit vector fieldsX, Z on B and F , respectively. Hence, we findK(X∧Z) =
g(∇Z∇XX−∇X∇ZX,Z) = (1/f){∇XXf−X2f}. If we chose a local orthonor-
mal frame e1, ...., en such that e1, ...., en1 are tangent to B and en1+1, ...., en are
tangent to F , then we have

(5)
∆f

f
=

n∑
i=1

K(ei ∧ ej),

for each s = n1 + 1, ...., n [7]. We need the following two lemmas from [7], for
later use:

Lemma 2.1. Let M = B×fF be a warped product, with Riemannian curvature
tensor RM . Given field X, Y , Z on B and U , V , W on F , then:

(1) RM (X,Y )Z = RB(X,Y )Z,
(2) RM (V,X)Y = −(Hf (X,Y )/f)V , where Hf is the Hessian of f ,



On nearly quasi-Einstein warped products 47

(3) RM (X,Y )V = RM (V,W )X = 0,
(4) RM (X,V )W = −(g(V,W )/f)∇X(grad f),
(5) RM (V,W )U = RF (V,W )U+ (||grad f ||2 / f2){g(V,U)W −g(W,U)V }.

Lemma 2.2. Let M = B ×f F be a warped product, with Ricci tensor SM .
Given fields X, Y on B and V , W on F , then:

(1) SM (X,Y ) = SB(X,Y )− d
fH

f (X,Y ), where d = dimF

(2) SM (X,V ) = 0,
(3) SM (V,W ) = SF (V,W )− g(V,W )f#, f# = ∆f

f + d−1
f2 ||grad f ||2, where

∆f is the Laplacian of f on B.

Moreover, the scalar curvature τM of the manifold M satisfies the condition

(6) τM = τB +
τF
f2

− 2d
∆f

f
− d(d− 1)

|∇f |2

f2
,

where τB and τF are the scalar curvatures of B and F , respectively.
In [8], Gebarowski studied Einstein warped product manifolds and proved

the following three theorems.

Theorem 2.1. Let (M, g) be a warped product I×fF , dim I = 1, dimF = n−1
(n ≥ 3). Then (M, g) is an Einstein manifold if and only if F is Einstein with
constant scalar curvature τF in the case n = 3 and f is given by one of the
following formulae, for any real number b,

f2(t) =


4
aK sinh2

√
a(t+b)
2 , a > 0

K(t+ b)2, a = 0

− 4
aK sin2

√
−a(t+b)

2 , a < 0


for K > 0, f2(t) = b exp(at) (a ̸= 0), for K = 0, f2(t) = − 4

aK cosh2
√
a(t+b)
2 ,

(a > 0), for K < 0, where a is the constant appearing after first integration of
the equation q

′′
eq + 2K = 0 and K = τF

(n−1)(n−2) .

Theorem 2.2. Let (M, g) be a warped product B×f F of a complete connected
r-dimensional (1 < r < n) Riemannian manifold B and an (n−r)-dimensional
Riemannian manifold F . If (M, g) is a space of constant sectional curvature
K > 0, then B is a sphere of radius 1√

K
.

Theorem 2.3. Let (M, g) be a warped product B ×f F of a complete con-
nected n − 1-dimensional Riemannian manifold B and an one-dimensional
Riemannian manifold F . If (M, g) is an Einstein manifold with scalar cur-
vature τM > 0 and the Hessian of f is proportional to the metric tensor gB,
then

(1) (B, gB) is an (n− 1)-dimensional sphere of radius ρ = ( τB
(n−1)(n−2) )

− 1
2 .

(2) (M, g) is a space of constant sectional curvature K = τM
n(n−1) .

Motivated by the above study by Gebarowski, in the present paper our aim
is to generalize Theorems 2.1, 2.2 and 2.3 for nearly quasi-Einstein manifolds.
Also in the last section we give an example of warped product on nearly quasi-
Einstein manifold.
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3. Nearly quasi-Einstein warped products

In this section, we consider nearly quasi-Einstein warped product manifolds
and prove some results concerning these type manifolds.

Theorem 3.1. Let (M, g) be a warped product I×fF , dim I = 1, dimF = n−1
(n ≥ 3). If (M, g) is nearly quasi-Einstein manifold with associated scalars l,m,
then F is a nearly quasi-Einstein manifold.

Proof. Let us consider (dt)2 to be the metric on I. Taking f = exp{ q
2} and

making use of Lemma 2.2, we can write

(7) SM (
∂

∂t
,
∂

∂t
) = −n− 1

4
[2q

′′
+ (q

′
)2]

and

(8) SM (V,W ) = SF (V,W )− 1

4
eq[2q

′′
+ (n− 1)(q

′
)2]gF (V,W ),

for all vector fields V,W on F .
Since M is nearly quasi-Einstein, from (2) we have

(9) SM (
∂

∂t
,
∂

∂t
) = lg(

∂

∂t
,
∂

∂t
) +mD(

∂

∂t
,
∂

∂t
),

and

(10) SM (V,W ) = lg(V,W ) +mD(V,W ).

On the other hand, using (5), the equations (9) and (10) reduce to

(11) SM (
∂

∂t
,
∂

∂t
) = l +mD(

∂

∂t
,
∂

∂t
)

and

(12) SM (V,W ) = leqgF (V,W ) +mDF (V,W ).

Comparing the right hand side of the equations (7) and (11) we get

(13) l +mD(
∂

∂t
,
∂

∂t
) = −n− 1

4
[2q

′′
+ (q

′
)2].

Similarly, comparing the right hand sides of (8) and (12) we obtain

(14) SF (V,W ) =
1

4
eq[2q

′′
+ (n− 1)(q

′
)2 + 4l]gF (V,W ) +mDF (V,W ).

which implies that F is a nearly quasi-Einstein manifold. This completes the
proof of the theorem.
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Theorem 3.2. Let (M, g) be a warped product B×f F of a complete connected
r-dimensional (1 < r < n) Riemannian manifold B and an (n−r)-dimensional
Riemannian manifold F .

If (M, g) is a space of nearly quasi-constant sectional curvature, the Hessian
of f is proportional to the metric tensor gB, then B is a nearly quasi-Einstein
manifold.

Proof. Assume that M is a space of nearly quasi-constant sectional curvature.
Then from equation (3), we can write
(15)
R(X,Y, Z,W ) =a[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + b[g(Y, Z)D(X,W )

− g(X,Z)D(Y,W ) + g(X,W )D(Y, Z)− g(Y,W )D(X,Z)],

for all vector fields X,Y, Z,W on B.
In view of Lemma 2.1 and by using (4) in equation (15) and then after a

contraction over X and W (we put X = W = ei), we get

(16) SB(Y,Z) =[a(r − 1) + bDB(ei, ei)]gB(Y, Z) + brDB(Y, Z),

which shows us B is a nearly quasi-Einstein manifold. Contracting from (16)
over Y and Z, we can write

(17) τB = ar(r − 1) + 2rbDB(ei, ei).

Since M is a space of nearly quasi-constant sectional curvature, in view of (5)
and (15) we get

(18)
∆f

f
=

ar + brDB(ei, ei)

2
.

On the other hand, since the Hesssian of f is proportional to the metric tensor
gB , it can be written as follows

(19) Hf (X,Y ) =
∆f

r
gB(X,Y ).

Then by use of (17) and (18) in (19) we obtain Hf + KfgB(X,Y ) = 0,

where K = r(3−r)bDB(ei,ei)−τB
2r(r−1) holds on B. So by Obata’s theorem [9], B is

isometric to the sphere of radius 1√
K

in the (r+1)-dimensional Euclidean space.

This gives us that B is a nearly quasi-Einstein manifold. Since b ̸= 0 and also
r ̸= 0, therefore B is a nearly quasi-Einstein manifold of dimension n ≥ 2.

Theorem 3.3. Let (M, g) be a warped product B×f F of a complete connected
n − 1-dimensional Riemannian manifold B and one-dimensional Riemannian
manifold I. If (M, g) is a nearly quasi-Einstein manifold with constant associ-
ated scalars l,m and the Hessian of f is proportional to the metric tensor gB,
then (B, gB) is an (n− 1)-dimensional sphere of radius ϱ = n−1√

τB+l
.
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Proof. Assume that M is a warped product manifold. Then by use of Lemma
2.2 we can write

(20) SB(X,Y ) = SM (X,Y ) +
1

f
Hf (X,Y )

for any vector fields X, Y on B. On the other hand, since M is a nearly
quasi-Einstein manifold we have

(21) SM (X,Y ) = lg(X,Y ) +mD(X,Y ).

In view of (4) and (21) the equation (20) can be written as

(22) SB(X,Y ) =lgB(X,Y ) +mDB(X,Y ) +
1

f
Hf (X,Y ).

By a contraction from the above equation over X, Y , we find

(23) τB = l(n− 1) +mDB(ei, ei) +
∆f

f
.

On the other hand, we know from the equation (21) that

(24) τM = ln+mDB(ei, ei).

By use of (24) in (23) we get τB = τM − l+ ∆f
f . In view of Lemma 2.2 we also

know that

(25) − τM
n

=
∆f

f
.

The last two equations give us τB = n−1
n τM − l. On the other hand, since the

Hessian of f is proportional to the metric tensor gB , it can be written as follows
Hf (X,Y ) = ∆f

n−1gB(X,Y ). As the consequence of the equation (25) we have
∆f
n−1 = − 1

n(n−1)τMf , which implies that

Hf (X,Y ) +
τB + l

(n− 1)2
fgB(X,Y ) = 0.

So, B is isometric to the (n − 1)-dimensional sphere of radius n−1√
τB+l

. Hence

the Theorem is proved.

4. Example of warped product on nearly quasi-Einstein
manifold

In [3], De and Gazi established the 4-dimensional example of nearly quasi-
Einstein manifold. Let (M4, g) be a Riemannian manifold endowed with the
metric given by

ds2 = gijdx
idxj = (dx4)2 + (x4)

4
3 [(dx1)2 + (dx2)2 + (dx3)2]
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where i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the standard coordinates of M4.
Then they have shown that it is nearly quasi-Einstein manifold with nonzero
and nonconstant scalar curvature.

To define warped product on N(QE)4, we consider the warping function

f : R −→ (0,∞) by f(x4) =

√
(x4)

4
3 , here we observe that f =

√
(x4)

4
3 > 0

and is a smooth function. The line element defined on R×R3 which is of the
form I ×f F , where I = R is the base and F = R3 is the fibre.

Therefore the metric ds2M = ds2B + f2ds2F that is

ds2 = gijdx
idxj = (dx4)2 + (x4)

4
3 [(dx1)2 + (dx2)2 + (dx3)2],

is the example of Riemannian warped product on N(QE)4.
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