ON NEARLY QUASI-EINSTEIN WARPED PRODUCTS

Buddhadev Pal ${ }^{[\square}$ and Arindam Bhattacharyya ${ }^{[\square}$

Abstract

We study nearly quasi-Einstein warped product manifolds for arbitrary dimension $n \geq 3$. In the last section we also give an example of warped product on nearly quasi-Einstein manifold.

AMS Mathematics Subject Classification (2010): 53C25; 53B30; 53C15.
Key words and phrases: Einstein manifold; Quasi-Einstein manifold; Nearly quasi-Einstein manifold; Warped product manifold.

1. Introduction

A Riemannian manifold $\left(M^{n}, g\right),(n>2)$ is Einstein if its Ricci tensor S of type $(0,2)$ is of the form $S=\alpha g$, where α is smooth function, which turns into $S=\frac{r}{n} g, r$ being the scalar curvature of the manifold. Let $\left(M^{n}, g\right),(n>2)$ be a Riemannian manifold and $U_{S}=\left\{x \in M: S \neq \frac{r}{n} g\right.$ at $\left.x\right\}$, then the manifold $\left(M^{n}, g\right)$ is said to be quasi-Einstein manifold [II, [Z] if on $U_{S} \subset M$, we have

$$
\begin{equation*}
S-\alpha g=\beta A \otimes A \tag{1}
\end{equation*}
$$

where A is a 1 -form on U_{S} and α and β some functions on U_{S}. It is clear that the 1 -form A as well as the function β are nonzero at every point on U_{S}. From the above definition, it follows that every Einstein manifold is quasi-Einstein. In particular, every Ricci-flat manifold (e.g., Schwarzchild spacetime) is quasiEinstein. The scalars α, β are known as the associated scalars of the manifold. Also, the 1 -form A is called the associated 1 -form of the manifold defined by $g(X, \rho)=A(X)$ for any vector field X, ρ being a unit vector field, called the generator of the manifold. Such an n-dimensional quasi-Einstein manifold is denoted by $(Q E)_{n}$.

In [3], De and Gazi introduced nearly quasi-Einstein manifold, denoted by $N(Q E)_{n}$ and gave an example of a 4-dimensional Riemannian nearly quasi Einstein manifold, where the Ricci tensor S of type $(0,2)$ which is not identically zero satisfies the condition

$$
\begin{equation*}
S(X, Y)=\lg (X, Y)+m D(X, Y) \tag{2}
\end{equation*}
$$

where l and m are non-zero scalars and D is a non-zero symmetric tensor of type $(0,2)$.

[^0]Also in [3], De and Gazi introduced the notion of a Riemannian manifold (M, g) of a nearly quasi-constant sectional curvature as a Riemannian manifold with the curvature tensor satisfies the condition

$$
\begin{align*}
R(X, Y, Z, W)= & a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+b[g(Y, Z) D(X, W) \tag{3}\\
& -g(X, Z) D(Y, W)+g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

where a, b are scalar functions with $b \neq 0$ and D is nonzero symmetric $(0,2)$ tensor.

Let M be an m-dimensional, $m \geq 3$, Riemannian manifold and $p \in M$. Denote by $K(\pi)$ or $K(u \wedge v)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M$, where $\{u, v\}$ is an orthonormal basis of π. For any n dimensional subspace $L \subseteq T_{p} M, 2 \leq n \leq m$, its scalar curvature $\tau(L)$ is denoted in [4] by $\tau(L)=2 \Sigma_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)$, where $\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ is any orthonormal basis of L [5]. When $L=T_{p} M$, the scalar curvature $\tau(L)$ is just the scalar curvature $\tau(p)$ of M at p.

2. Warped product manifolds

The notion of warped product generalizes that of a surface of revolution. It was introduced in [6] for studying manifolds of negative curvature. Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be two Riemannian manifolds and let f be a positive differentiable function on B. Consider the product manifold $B \times F$ with its projections $\pi: B \times F \rightarrow B$ and $\sigma: B \times F \rightarrow F$. The warped product $B \times_{f} F$ is the manifold $B \times F$ with the Riemannian structure such that $\|X\|^{2}=\left\|\pi^{*}(X)\right\|^{2}+$ $f^{2}(\pi(p))\left\|\sigma^{*}(X)\right\|^{2}$, for any vector field X on M. Thus we have

$$
\begin{equation*}
g=g_{B}+f^{2} g_{F} \tag{4}
\end{equation*}
$$

holds on M. The function f is called the warping function of the warped product [$[8]$.

Since $B \times_{f} F$ is a warped product, then we have $\nabla_{X} Z=\nabla_{Z} X=(X \ln f) Z$ for unit vector fields X, Z on B and F, respectively. Hence, we find $K(X \wedge Z)=$ $g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=(1 / f)\left\{\nabla_{X} X_{f}-X^{2} f\right\}$. If we chose a local orthonormal frame $e_{1}, \ldots ., e_{n}$ such that $e_{1}, \ldots ., e_{n_{1}}$ are tangent to B and $e_{n_{1}+1}, \ldots ., e_{n}$ are tangent to F, then we have

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{i=1}^{n} K\left(e_{i} \wedge e_{j}\right) \tag{5}
\end{equation*}
$$

for each $s=n_{1}+1, \ldots, n[7]$. We need the following two lemmas from [7], for later use:

Lemma 2.1. Let $M=B \times{ }_{f} F$ be a warped product, with Riemannian curvature tensor R_{M}. Given field X, Y, Z on B and U, V, W on F, then:
(1) $R_{M}(X, Y) Z=R_{B}(X, Y) Z$,
(2) $R_{M}(V, X) Y=-\left(H^{f}(X, Y) / f\right) V$, where H^{f} is the Hessian of f,
(3) $R_{M}(X, Y) V=R_{M}(V, W) X=0$,
(4) $R_{M}(X, V) W=-(g(V, W) / f) \nabla_{X}(\operatorname{grad} f)$,
(5) $R_{M}(V, W) U=R_{F}(V, W) U+\left(\|\operatorname{grad} f\|^{2} / f^{2}\right)\{g(V, U) W-g(W, U) V\}$.

Lemma 2.2. Let $M=B \times_{f} F$ be a warped product, with Ricci tensor S_{M}. Given fields X, Y on B and V, W on F, then:
(1) $S_{M}(X, Y)=S_{B}(X, Y)-\frac{d}{f} H^{f}(X, Y)$, where $d=\operatorname{dim} F$
(2) $S_{M}(X, V)=0$,
(3) $S_{M}(V, W)=S_{F}(V, W)-g(V, W) f^{\#}, f^{\#}=\frac{\Delta f}{f}+\frac{d-1}{f^{2}}\|\operatorname{grad} f\|^{2}$, where Δf is the Laplacian of f on B.

Moreover, the scalar curvature τ_{M} of the manifold M satisfies the condition

$$
\begin{equation*}
\tau_{M}=\tau_{B}+\frac{\tau_{F}}{f^{2}}-2 d \frac{\Delta f}{f}-d(d-1) \frac{|\nabla f|^{2}}{f^{2}} \tag{6}
\end{equation*}
$$

where τ_{B} and τ_{F} are the scalar curvatures of B and F, respectively.
In [8$]$, Gebarowski studied Einstein warped product manifolds and proved the following three theorems.

Theorem 2.1. Let (M, g) be a warped product $I \times_{f} F, \operatorname{dim} I=1, \operatorname{dim} F=n-1$ $(n \geq 3)$. Then (M, g) is an Einstein manifold if and only if F is Einstein with constant scalar curvature τ_{F} in the case $n=3$ and f is given by one of the following formulae, for any real number b,

$$
f^{2}(t)=\left\{\begin{array}{ll}
\frac{4}{a} K \sinh ^{2} \frac{\sqrt{a}(t+b)}{2}, & a>0 \\
K(t+b)^{2}, & a=0 \\
-\frac{4}{a} K \sin ^{2} \frac{\sqrt{-a}(t+b)}{2}, & a<0
\end{array}\right\}
$$

for $K>0, f^{2}(t)=b \exp (a t) \quad(a \neq 0)$, for $K=0, f^{2}(t)=-\frac{4}{a} K \cosh ^{2} \frac{\sqrt{a}(t+b)}{2}$, $(a>0)$, for $K<0$, where a is the constant appearing after first integration of the equation $q^{\prime \prime} e^{q}+2 K=0$ and $K=\frac{\tau_{F}}{(n-1)(n-2)}$.
Theorem 2.2. Let (M, g) be a warped product $B \times{ }_{f} F$ of a complete connected r-dimensional $(1<r<n)$ Riemannian manifold B and an $(n-r)$-dimensional Riemannian manifold F. If (M, g) is a space of constant sectional curvature $K>0$, then B is a sphere of radius $\frac{1}{\sqrt{K}}$.

Theorem 2.3. Let (M, g) be a warped product $B \times_{f} F$ of a complete connected n-1-dimensional Riemannian manifold B and an one-dimensional Riemannian manifold F. If (M, g) is an Einstein manifold with scalar curvature $\tau_{M}>0$ and the Hessian of f is proportional to the metric tensor g_{B}, then
(1) $\left(B, g_{B}\right)$ is an $(n-1)$-dimensional sphere of radius $\rho=\left(\frac{\tau_{B}}{(n-1)(n-2)}\right)^{-\frac{1}{2}}$.
(2) (M, g) is a space of constant sectional curvature $K=\frac{\tau_{M}}{n(n-1)}$.

Motivated by the above study by Gebarowski, in the present paper our aim is to generalize Theorems [2.], 2.2 and $\mathbb{2 3}$ for nearly quasi-Einstein manifolds. Also in the last section we give an example of warped product on nearly quasiEinstein manifold.

3. Nearly quasi-Einstein warped products

In this section, we consider nearly quasi-Einstein warped product manifolds and prove some results concerning these type manifolds.

Theorem 3.1. Let (M, g) be a warped product $I \times{ }_{f} F, \operatorname{dim} I=1, \operatorname{dim} F=n-1$ $(n \geq 3)$. If (M, g) is nearly quasi-Einstein manifold with associated scalars l, m, then F is a nearly quasi-Einstein manifold.

Proof. Let us consider $(d t)^{2}$ to be the metric on I. Taking $f=\exp \left\{\frac{q}{2}\right\}$ and making use of Lemma [2.2], we can write

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=-\frac{n-1}{4}\left[2 q^{\prime \prime}+\left(q^{\prime}\right)^{2}\right] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=S_{F}(V, W)-\frac{1}{4} e^{q}\left[2 q^{\prime \prime}+(n-1)\left(q^{\prime}\right)^{2}\right] g_{F}(V, W) \tag{8}
\end{equation*}
$$

for all vector fields V, W on F.
Since M is nearly quasi-Einstein, from (Z) we have

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\lg \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)+m D\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=l g(V, W)+m D(V, W) \tag{10}
\end{equation*}
$$

On the other hand, using (四), the equations (피) and (四) reduce to

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=l+m D\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=l e^{q} g_{F}(V, W)+m D_{F}(V, W) \tag{12}
\end{equation*}
$$

Comparing the right hand side of the equations (■) and ([ШI) we get

$$
\begin{equation*}
l+m D\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=-\frac{n-1}{4}\left[2 q^{\prime \prime}+\left(q^{\prime}\right)^{2}\right] \tag{13}
\end{equation*}
$$

Similarly, comparing the right hand sides of ($\mathbb{\nabla})$ and ([2) we obtain

$$
\begin{equation*}
S_{F}(V, W)=\frac{1}{4} e^{q}\left[2 q^{\prime \prime}+(n-1)\left(q^{\prime}\right)^{2}+4 l\right] g_{F}(V, W)+m D_{F}(V, W) \tag{14}
\end{equation*}
$$

which implies that F is a nearly quasi-Einstein manifold. This completes the proof of the theorem.

Theorem 3.2. Let (M, g) be a warped product $B \times_{f} F$ of a complete connected r-dimensional $(1<r<n)$ Riemannian manifold B and an $(n-r)$-dimensional Riemannian manifold F.

If (M, g) is a space of nearly quasi-constant sectional curvature, the Hessian of f is proportional to the metric tensor g_{B}, then B is a nearly quasi-Einstein manifold.

Proof. Assume that M is a space of nearly quasi-constant sectional curvature. Then from equation (3), we can write

$$
\begin{align*}
R(X, Y, Z, W)= & a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+b[g(Y, Z) D(X, W) \tag{15}\\
& -g(X, Z) D(Y, W)+g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

for all vector fields X, Y, Z, W on B.
In view of Lemma $\mathbb{Z . T l}$ and by using (\mathbb{W}) in equation ($\mathbb{5}$) and then after a contraction over X and W (we put $X=W=e_{i}$), we get

$$
\begin{equation*}
S_{B}(Y, Z)=\left[a(r-1)+b D_{B}\left(e_{i}, e_{i}\right)\right] g_{B}(Y, Z)+b r D_{B}(Y, Z), \tag{16}
\end{equation*}
$$

which shows us B is a nearly quasi-Einstein manifold. Contracting from ([6]) over Y and Z, we can write

$$
\begin{equation*}
\tau_{B}=a r(r-1)+2 r b D_{B}\left(e_{i}, e_{i}\right) \tag{17}
\end{equation*}
$$

Since M is a space of nearly quasi-constant sectional curvature, in view of (可) and (W) we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\frac{a r+b r D_{B}\left(e_{i}, e_{i}\right)}{2} \tag{18}
\end{equation*}
$$

On the other hand, since the Hesssian of f is proportional to the metric tensor g_{B}, it can be written as follows

$$
\begin{equation*}
H^{f}(X, Y)=\frac{\Delta f}{r} g_{B}(X, Y) \tag{19}
\end{equation*}
$$

Then by use of ([7) and ($\mathbb{\boxed { V })}$) in ($\mathbb{\square})$ we obtain $H^{f}+K f g_{B}(X, Y)=0$, where $K=\frac{r(3-r) b D_{B}\left(e_{i}, e_{i}\right)-\tau_{B}}{2 r(r-1)}$ holds on B. So by Obata's theorem [9$], B$ is isometric to the sphere of radius $\frac{1}{\sqrt{K}}$ in the $(r+1)$-dimensional Euclidean space. This gives us that B is a nearly quasi-Einstein manifold. Since $b \neq 0$ and also $r \neq 0$, therefore B is a nearly quasi-Einstein manifold of dimension $n \geq 2$.

Theorem 3.3. Let (M, g) be a warped product $B \times{ }_{f} F$ of a complete connected n - 1-dimensional Riemannian manifold B and one-dimensional Riemannian manifold I. If (M, g) is a nearly quasi-Einstein manifold with constant associated scalars l, m and the Hessian of f is proportional to the metric tensor g_{B}, then $\left(B, g_{B}\right)$ is an $(n-1)$-dimensional sphere of radius $\varrho=\frac{n-1}{\sqrt{\tau_{B}+l}}$.

Proof. Assume that M is a warped product manifold. Then by use of Lemma [2.2 we can write

$$
\begin{equation*}
S_{B}(X, Y)=S_{M}(X, Y)+\frac{1}{f} H^{f}(X, Y) \tag{20}
\end{equation*}
$$

for any vector fields X, Y on B. On the other hand, since M is a nearly quasi-Einstein manifold we have

$$
\begin{equation*}
S_{M}(X, Y)=l g(X, Y)+m D(X, Y) \tag{21}
\end{equation*}
$$

In view of (4) and ([J]) the equation (20]) can be written as

$$
\begin{equation*}
S_{B}(X, Y)=l g_{B}(X, Y)+m D_{B}(X, Y)+\frac{1}{f} H^{f}(X, Y) \tag{22}
\end{equation*}
$$

By a contraction from the above equation over X, Y, we find

$$
\begin{equation*}
\tau_{B}=l(n-1)+m D_{B}\left(e_{i}, e_{i}\right)+\frac{\Delta f}{f} \tag{23}
\end{equation*}
$$

On the other hand, we know from the equation ($\left[\mathbb{D I}_{1}\right.$) that

$$
\begin{equation*}
\tau_{M}=\ln +m D_{B}\left(e_{i}, e_{i}\right) \tag{24}
\end{equation*}
$$

By use of (2Z]) in (2.3) we get $\tau_{B}=\tau_{M}-l+\frac{\Delta f}{f}$. In view of Lemma 2.2 we also know that

$$
\begin{equation*}
-\frac{\tau_{M}}{n}=\frac{\Delta f}{f} \tag{25}
\end{equation*}
$$

The last two equations give us $\tau_{B}=\frac{n-1}{n} \tau_{M}-l$. On the other hand, since the Hessian of f is proportional to the metric tensor g_{B}, it can be written as follows $H^{f}(X, Y)=\frac{\Delta f}{n-1} g_{B}(X, Y)$. As the consequence of the equation (Z.5) we have $\frac{\Delta f}{n-1}=-\frac{1}{n(n-1)} \tau_{M} f$, which implies that

$$
H^{f}(X, Y)+\frac{\tau_{B}+l}{(n-1)^{2}} f g_{B}(X, Y)=0
$$

So, B is isometric to the $(n-1)$-dimensional sphere of radius $\frac{n-1}{\sqrt{\tau_{B}+l}}$. Hence the Theorem is proved.

4. Example of warped product on nearly quasi-Einstein manifold

In [3], De and Gazi established the 4-dimensional example of nearly quasiEinstein manifold. Let $\left(M_{4}, g\right)$ be a Riemannian manifold endowed with the metric given by

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(d x^{4}\right)^{2}+\left(x^{4}\right)^{\frac{4}{3}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]
$$

where $i, j=1,2,3,4$ and $x^{1}, x^{2}, x^{3}, x^{4}$ are the standard coordinates of M_{4}. Then they have shown that it is nearly quasi-Einstein manifold with nonzero and nonconstant scalar curvature.

To define warped product on $N(Q E)_{4}$, we consider the warping function $f: \mathbf{R} \longrightarrow(0, \infty)$ by $f\left(x^{4}\right)=\sqrt{\left(x^{4}\right)^{\frac{4}{3}}}$, here we observe that $f=\sqrt{\left(x^{4}\right)^{\frac{4}{3}}}>0$ and is a smooth function. The line element defined on $\mathbf{R} \times \mathbf{R}^{3}$ which is of the form $I \times_{f} F$, where $I=\mathbf{R}$ is the base and $F=\mathbf{R}^{3}$ is the fibre.

Therefore the metric $d s_{M}^{2}=d s_{B}^{2}+f^{2} d s_{F}^{2}$ that is

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(d x^{4}\right)^{2}+\left(x^{4}\right)^{\frac{4}{3}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]
$$

is the example of Riemannian warped product on $N(Q E)_{4}$.

Acknowledgement

The authors wish to express their sincere thanks and gratitude to the referee for his valuable suggestions towards the improvement of the paper.

References

[1] Chaki, M.C., Maity, R.K., On quasi-Einstein manifolds. Publications Mathematicae Debrecen 57 (2000), 297-306.
[2] Glogowska, M., On quasi-Einstein certan type hypersurfaces. Journal of Geometry and Physics 58, 5(2008), 599-614.
[3] De, U.C., Gazi, A.K., On nealy quasi Einstein manifolds. Novi Sad J. Math. 38(2) (2008), 115-121.
[4] Chen, B.Y., Dillen, F., Verstraelen, L., Vrancken, L., Characterizations of Riemannian space forms, Einstein spaces and conformally flat spaces. Proc. Amer. Math. Soc. 128(2) (2000), 589-598.
[5] Singer, I.M., Thorpe, J.A., The curvature of 4-dimensional Einstein spaces, Global Analysis: Princeton University Press 1969, 355-365.
[6] Bishop, R.L., O'Neill, B., Manifolds of negativve curvature. Trans. Amer. Math. Soc. 145 (1969), 1-49.
[7] O'Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics. Inc., New York: Academic Press 1983.
[8] Gebarowski, A., On Einstein warped products. Tensor (N.S.) 52 (1993), 204-207.
[9] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14(3) (1962), 333-340.

Received by the editors August 5, 2014

[^0]: ${ }^{1}$ Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India. e-mail: pal.buddha@gmail.com
 ${ }^{2}$ Department of Mathematics, Jadavpur University, Kolkata 700032, e-mail: bhattachar1968@yahoo.co.in

