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ON FOCAL CURVES IN EUCLIDEAN n-SPACE Rn

Günay Öztürk1 and Kadri Arslan2

Abstract. In this paper we consider the focal curves of the curves in
the Euclidean n-space Rn. First we give some basic results on Darboux
vector of these curves. Later, we prove some results on the order of con-
tact of these curves. Further, we give necessary and sufficient conditions
for a focal curve to become 2-planar. We also show that if the ratios of
the curvatures of a curve γ are constant then the ratios of the curvatures
of the focal curve Cγ are also constant.
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1. Introduction

Let γ = γ(s) : I → Rn be a regular curve in Rn (i.e. ∥γ′∥ is nowhere
zero), where I is interval in R. γ is called a Frenet curve of osculating or-
der r (or generic curve [12]) (r ∈ N0) if γ ′(s), γ ′′(s),...,γ(r)(s) are linearly
independent and γ ′(s), γ ′′(s),...,γ(r+1)(s) are no longer linearly independent
for all s in I [13]. In this case, Im(γ) lies in an r-dimensional Euclidean sub-
space of Rn. To each Frenet curve of rank r there can be associated orthonor-
mal r-frame {t, n1, ..., nr−1} along γ, the Frenet r-frame, and r − 1 functions
κ1, κ2, ..., κr−1:I −→ R, the Frenet curvature, such that

(1.1)


t
′

n
′

1

n
′

2

...

n
′

r−1

 = v


0 κ1 0 ... 0

−κ1 0 κ2 ... 0
0 −κ2 0 ... 0
... κr−1

0 0 ... −κr−1 0




t
n1
n2
...
nr−1


where v is the speed of the curve.

In fact, to obtain t, n1, ..., nr−1 it is sufficient to apply the Gram-Schmidt
orthonormalization process to γ ′(s), γ ′′(s),...,γ(r)(s). Moreover, the functions
κ1, κ2, ..., κr−1 are easily obtained as by-product during this calculation. More
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precisely, t, n1, ..., nr−1 and κ1, κ2, ..., κr−1 are determined by the following for-
mulas [11]:

v1(s) : = γ ′(s) ; t :=
v1(s)

∥v1(s)∥
,

vk(s) : = γ(k)(s)−
k−1∑
i=1

< γ(k)(s), vi(s) >
vi(s)

∥vi(s)∥2
,(1.2)

κk−1(s) : =
∥vk(s)∥

∥vk−1(s)∥ ∥v1(s)∥
,

nk−1 : =
vk(s)

∥vk(s)∥
,

where k ∈ {2, 3, ..., r}. It is natural and convenient to define Frenet curvatures
κr = κr+1 = ... = κn−1 = 0. It is clear that t, n1, ..., nr−1 and κ1, κ2, ..., κr−1

can be defined for any regular curve (not necessarily a Frenet curve) in the
neighborhood of a point s0 for which γ ′(s0), γ

′′(s0),...,γ
(r)(s0) are linearly

independent.
This paper is organized as follows: Section 2 gives some basic concepts of the

Darboux vector of curves in Rn. Section 3 explains some geometric properties
about the order of a contact of curves in Rn. Section 4 tells about the focal
curves in Rn. Further this section provides some basic concepts of these curves.
Some results are also presented in this section.

2. Darboux vector of curves in Rn

Let γ : R → Rn be a unit speed curve. γ is called generic if the derivatives
of γ of order 1, . . . , (n−1) , are linearly independent [12]. When the unit speed
vector γ′(s) = t of a curve γ in the Euclidean space Rn, n > 2, is translated
to an arbitrary fixed point O, the end point of translated vector t, describes
a curve T on the unit sphere Sn−1 ⊂ Rn, called the tangent indicatrix of γ
[15]. A flattening of a curve γ in Rn is a point where the derivatives of γ of
order 1, . . . , (n− 1) , are linearly independent and those of order (1, . . . , n) are
linearly dependent [15]. A point of a curve γ in Rn, n > 2, is called twisting if
the tangent indicatrix of γ has a flattening at the corresponding point [9].

Proposition 2.1. [14] The closed curve γ : S1 → R2k, given by

γ(s) = (cos(s), sin(s), cos(2s), sin(2s), . . . , cos(ks), sin(ks)),

has no twisting.

Proposition 2.2. The number of twistings of a closed curve in R2k+1 is at
least equal to the number of its flattenings [14].

Definition 2.3. For a generic curve with osculating order of 2k, the curvatures
are positive, and only the last curvature can vanish at some isolated points (at
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the flattenings). Let γ be a smoothly immersed curve in R2k+1, k ≥ 1 with
curvatures κ1, κ2, ..., κ2k−1, κ2k where κ2k ̸= 0. Denote by

(2.1)

a0 = κ2κ4...κ2k
a1 = κ1

κ2
a0

... ...
aj =

κ2j−1

κ2j
aj−1

ak = κ2k−1

κ2k
ak−1 = κ1κ3...κ2k−1.

The Darboux vector in R2k+1 is defined by

(2.2)
∼
d(s) = a0t+ a1n2 + ...+ akn2k,

where {t = γ ′(s), n1, n2, ..., n2k} is the Frenet Frame of γ [15].

Lemma 2.4. [14]. The derivative of d̃(s) is

(2.3) d̃ ′(s) = a′0t+ a′1n2 + ...+ a′kn2k.

Definition 2.5. (Darboux vertex): The point γ(s0) is called a Darboux vertex

of γ if the first derivative of the Darboux vector d̃(s) vanishes at that point
[14].

Theorem 2.6. [14] Let γ be a smoothly immersed curve in R2k+1 (k ≥ 1),
with κ1, κ2, ..., κ2k for its curvatures. The curve γ has a Darboux vertex at the
point γ(s0) if and only if

(2.4) (
κ2
κ1

)
′
= 0, (

κ4
κ3

)
′
= 0, ..., (

κ2k
κ2k−1

)
′
= 0,

at the point γ(s0).

3. The order of contact of Curves

Definition 3.1. Let M be a d-dimensional submanifold of Rn, considered as
a complete intersection:

M = {x ∈ Rn : g1(x) = . . . = gn−d(x) = 0} .

We say that k is the order of contact of a (regularly parametrized) smooth
curve γ :→ γ(s) ∈ Rn with the submanifold M , or that γ and M have k-point
contact, at a point of intersection γ(s0), if each function g1 ◦γ, . . . , gn−d ◦γ has
a zero of multiplicity at least k at s = s0, and at least one of them has a zero
of multiplicity k at s = s0 [14].

Definition 3.2. The osculating hyperplane of γ at s is the subspace generated
by {t(s), n1(s), n2(s), . . . , nn−1(s)} that passes through γ(s). The unit vector
nn(s) is called binormal vector of γ at s. The normal hyperplane of γ at s is
defined to be the one generated by {n1(s), n2(s), . . . , nn−1(s), nn(s)} passing
through γ(s) [10].
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Remark 3.3. Let γ be a curve in Rn. The order of contact of a curve with its
osculating hyperplane at a flattening is at least n+ 1, whereas at an ordinary
point it is n [15].

Theorem 3.4. [6] Let γ = γ(s) : I → Rn+1 be a unit speed curve given
the Frenet frame field {t(s), n1(s), . . . , nn(s)}. If mi, 1 ≤ i ≤ n + 1 are the
coordinates of centers of the osculating spheres then the following hold;

i) det(m′
2,m

′
3, . . . ,m

′
n+1) = 0 ⇐⇒ γ is a curvature line (or generalized

helix),

ii) det(m′
2,m

′
3, . . . ,m

′
n+1) = 0 ⇐⇒

n∑
i=1

m2
i = constant.

Definition 3.5. Let M be a smooth m-dimensional submanifold in (m + d)-
dimensional Euclidean space Rm+d. For p ∈ M and a non-zero vector X in
TpM , we define the (d + 1)-dimensional affine subspace E(p,X) of Rm+d by
E(p,X) = p + span(X,T⊥

p M). In a neighborhood of p, the intersection M ∩
E(p,X) is a regular curve γ : (−ε, ε) −→ M . We suppose the parameter
s ∈ (−ε, ε) is a multiple of the arc-length such that γ(0) = p and γ ′(s) = X.
Each choice of X ∈ Tp(M) yields a different curve which is called the normal
section of M at p in the direction of X ([1], [4]).

For each normal section γ if γ ′(s0), γ
′′(s0),...,γ

(d)(s0) are linearly indepen-
dent and γ ′(s0), γ

′′(s0),...,γ
(d+1)(s0) are not linearly independent, then M is

said to have d-planar normal sections (d < m).

Definition 3.6. Let γ = γ(s) : I → Rn be a regular unit speed curve in Rn.
If γ is of osculating order (n − 1) at the point p = γ(s0) then p is called a
flattening point of γ [15].

We prove the following result.

Proposition 3.7. LetM be a smooth m-dimensional submanifold in Euclidean
space Rm+d. If M has pointwise d−planar normal sections at the point γ(0) =
p, then each point p is a flattening point of γ.

Proof. Let γ be a normal section of the submanifold M ⊂ Rm+d. Then the
normal section is also a curve in (d+ 1)−dimensional affine subspace E(p,X)
of Rm+d . If M has pointwise d−planar normal sections at point γ(0) = p then
γ has osculating order d. So by previous definition p is a flattening point of
order d.

Definition 3.8. Let M be a Riemannian manifold and ∇ a Riemannian
connection onM . For the curve α : ] −ε, ε[ ⊂ R →M onM if ∇α′(s)α

′(s) = 0
then α is said to be a geodesic on M . For each tangent vector field X of χ(M),
if α(0) = p and α′(0) = Xp then α is a geodesic of M with respect to (p,Xp)
[3].

Definition 3.9. The geodesic γu and the normal section βu at (p, u) are said

to be in contact of order k if γ
(i)
u and β

(i)
u denote the ith derivatives of γu and

βu with respect to their arclength functions. A submanifold M in a Euclidean
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space is said to be in contact of order k if, for each p ∈ M and u ∈ UpM , the
geodesic γu and the normal section βu at (p, u) are in contact of order k.

If the submanifold M is in contact of order k for every natural number k,
the contact number C#(M) of M is defined to be ∞. That is;

γ′u(0) = β′
u(0)

...

γ(k)u (0) = β(k)
u (0).

Otherwise, the contact number C#(M) is defined to be the largest natural
number k such that M is in contact of order k and but not of order k + 1 [2].

Example 3.10. Let ψj :M → Rmj , (j = 1, . . . , r) be an isometric immersion
with geodesic normal sections. For any real numbers c1, c2, . . . , cr with c21 +
c22 + . . .+ c2r = 1, the diagonal immersion,

(c1ψ1, . . . , crψr) :M → Rm1+···+mr : p→ (c1ψ1(p), . . . , crψr(p))

satisfies C#(M) = ∞ [2].

The following theorems are proved.

Theorem 3.11. [2] All submanifolds M in Rn with geodesic normal sections
satisfy C#(M) = ∞.

Theorem 3.12. [2] For each M ⊂ Rn+k, the contact number of M is at least
2.

We have the following result.

Proposition 3.13. Let M be a smooth m-dimensional submanifold in Rm+d

and γ be the normal section of M . If the contact number C#(M) of M at point
p is ∞ then γ has a Darboux vertex at that point.

Proof. If C#(M) = ∞ then by Theorem 3.11, M has geodesic normal sections.
Further, in [5] M is helical submanifold and γ is a helical normal section. So
the Frenet curvatures of γ are constant. Thus by Theorem 2.6, γ (0) = p is a
Darboux vertex of γ.

4. The Focal Curve of A Curve

The focal set or caustic of a submanifold of positive codimension in Eu-
clidean space Rn+1 (for instance, of a curve in R3) is defined as the envelope
of the family of normal lines to the submanifold.

The hyperplane normal to γ at a point is the union of all lines normal to γ
at that point. The envelope of all hyperplanes normal to γ is thus a component
of the focal set that we call the main component (the other component is the
curve γ itself, but we will not consider it) [13].
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Definition 4.1. Given a generic curve γ : R → Rn+1, let F : Rn+1 × R → R
be the (n+ 1)-parameter family of real functions given by

F (q, θ) =
1

2
∥q − γ(θ)∥2 .

The caustic of the family F is given by the set{
q ∈ Rn+1 : ∃θ ∈ R : F ′

q(θ) = 0 and F ′′
q (θ) = 0

}
.

[13].

Proposition 4.2. [13] The caustic of the family F (q, θ) = 1
2 ∥q − γ(θ)∥2 coin-

cides with the focal set of the curve γ : R → Rn+1.

Definition 4.3. The center of the osculating hypersphere of γ at a point lies
in the hyperplane normal to the γ at that point. So we can write

Cγ = γ + c1n1 + c2n2 + · · ·+ cnnn,

which is called focal curve of γ, where c1, c2, . . . , cn are smooth functions of the
parameter of the curve γ. We call the function ci the i

th focal curvature of γ.
Moreover, the function c1 never vanishes and c1 = 1

κ1
[13].

Proposition 4.4. [15] The focal curvatures of γ, parametrized by arc length
s, satisfy the following ”scalar Frenet equations” for cn ̸= 0 :

1
c′1
c′2
c′3
...

c′n−2

c′n−1

c′n − (R2
n)

′

2cn


=



0 κ1 0 · · · 0 0 0
−κ1 0 κ2 · · · 0 0 0

0 −κ2 0
. . .

0 0 −κ3
. . .

...
...

...
...

0 κn−1 0
−κn−1 0

0 0 · · · 0 −κn 0





0
c1
c2
c3
...

cn−2

cn−1

cn


Remark 4.5. If the curve is spherical then the last component of the left hand
side vector is just cn [15].

Proposition 4.6. [8] The spherical curve in R4 is parametrized by

α(s) = m− R

κ1
n1(s) +R

κ′1
κ21κ2

n2(s) +
R

κ3

(
κ′1
κ21κ2

)′
κ2
κ1
n3(s)

where m is the center and R is the radius of the sphere.

We prove the following result.

Theorem 4.7. Let γ be a normal section of M and Cγ is the generalized evolute
of γ. Then the velocity vector of Cγ is proportional with the last Frenet vector
of γ.
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Theorem 4.8. Let γ be a normal section of M and Cγ is the generalized
evolute of γ. If C ′

γ = 0 then Rn is constant and the curve γ is spherical.

Proof. Let Cγ be the generalized evolute of the normal section curve γ. If
C ′

γ(s) = 0 then from the previous theorem (cn−1κn + c′n) = 0. So, from the
Remark 4.5, the normal section γ is spherical.

Remark 4.9. Let Cγ be the generalized evolute of γ. We say that s0 is a vertex
of γ if

∥∥C ′
γ(s0)

∥∥ = 0. A vertex of a curve in Rn+1 is a point at which the curve
has at least (n+ 3)−point contact with its hypersurface.

We prove the following result.

Theorem 4.10. Cγ is 2-planar if and only if
i) κn−1 = 0, or
ii) κn = 0, or
iii) C ′

γ = 0 that is γ is a spherical curve and point p is vertex of γ.

Proof. Let us denote A = cn−1κn + c′n. Differentiating Cγ we get

C
′

γ = Ann

C
′′

γ = A
′
nn −Aκnnn−1

C
′′′

γ = (A
′′
−Aκ2n︸ ︷︷ ︸
B

)nn + (−2A
′
κn −Aκ

′

n︸ ︷︷ ︸
C

)nn−1 +Aκnκn−1︸ ︷︷ ︸
D

nn−2.

If Cγ is 2-planar then C
′

γ , C
′′

γ and C
′′′

γ are linearly dependent. So we get∣∣∣∣∣∣
A 0 0

A
′ −Aκn 0
B C D

∣∣∣∣∣∣ = D(−A2κn) = A3κ2nκn−1 = 0,

which completes the proof.

Proposition 4.11. [4] Let M be pointwise planar normal sections and each
normal section at p has one of its vertices then M has parallel second funda-
mental form.

Proposition 4.12. [15] The curvatures of a generic curve γ : I ⊂ R → Rn+1,
parametrized by arc length, may be obtained in terms of the focal curvatures of
γ by the formula:

κi =
c1c

′
1 + c2c

′
2 + · · ·+ ci−1c

′
i−1

ci−1ci
, for i ≥ 2.

Remark 4.13. For a generic curve, the functions ci or ci−1 can vanish at isolated
points. At these points the function c1c

′
1 + c2c

′
2 + · · ·+ ci−1c

′
i−1 also vanishes,

and the corresponding value of the function κi may be obtained by l’Hospital
rule. Denote by Rl the radius of the osculating l-sphere. Obviously R2

l =

c21 + c22 + . . .+ c2l . In particular, R2
l = ∥Cγ − γ∥2 [15].
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Theorem 4.14. [15] The radius Rl of the osculating l-sphere of a generic
curve, parametrized by arc length, in the Euclidean space Rn+1, n > 1, is
critical if and only if

a) c2 = 0, for l = 1;
b) either cl = 0 or cl+1 = 0, for 1 < l < n;
c) either cn = 0 or c′n + cn−1κn = 0, for l = n.

Corollary 4.15. [15] If the lth focal curvature cl vanishes at a point, then Rl

and Rl−1 are critical at that point.

Definition 4.16. We define a generalized helix as a curve γ : R → Rn such
that its tangent vector forms a constant angle with a given direction v at Rn

[9].

Proposition 4.17. [9] A curve γ : R → Rn is a generalized helix if and only
if the function det(γ

′′
(s), γ

′′′
(s), . . . , γ(n+1)(s)) is identically zero, where γ(i)

represents the ith derivative of γ with respect to its arc length.

Definition 4.18. The point s0 is a flattening of γ if the contact of γ with the
osculating hyperplane at s0 is of order at least n [9].

Proposition 4.19. [9] A point s0 is a flattening of γ if and only if

det(γ
′
(s0), γ

′′
(s0), . . . , γ

(n)(s0)) = 0,

where γ(i) represents the ith derivative of γ with respect to its arc length.

Definition 4.20. A conformal flattening or vertex of γ is a point at which γ
has contact of order at least n+ 1 with its osculating hypersphere [9].

Definition 4.21. A twisting of γ : R → Rn is a flattening of its tangent
indicatrix γT : R → Sn−1. It follows that if γ is parametrized by its arc length
s, then s0 is a twisting of γ if and only if det(γ

′′
(s0), γ

′′′
(s0), . . . , γ

(n+1)(s0)) = 0
[9].

We shall see now that the twistings of γ can also be characterized as points
at which it has higher order of contact with some generalized helix [9].

Proposition 4.22. [9] Given a curve γ(s) parametrized by arc length in Rn,
there exists for each point γ(s0) = p of this curve some generalized helix γp(s)
whose contact with γ at p is of order at least n. Moreover, if s0 is a flattening
point of γT then we have that γp has order of contact at least n+1 with γ at p.

Theorem 4.23. [13] Let γ : s→ γ(s) ∈ Rn+1 be a good curve without its flat-
tenings. Write κ1, κ2, ..., κn for its Euclidean curvatures and {t, n1, n2, ..., nn}
for its Frenet Frame. For each non-vertex γ(s) of γ, write ε(s) for the sign of
(c′n + cn−1κn)(s) and δk(s) for the sign of (−1)kε(s)κn(s), k = 1, . . . , n. For
any non-vertex of γ the following holds:

a) The Frenet frame {T,N1, N2, ..., Nn} of Cγ at Cγ(s) is well-defined and
its vectors are given by T = εnn, Nk = δknn−k, for k = 1, . . . , n − 1, and
Nn = ±t. The sign in ±t is chosen in order to obtain a positive basis.
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b) The Euclidean curvatures K1,K2, ...,Kn of the parametrized focal curve
of γ. Cγ : s→ Cγ(s), are related to those of γ by:

K1

|κn|
=

K2

κn−1
= · · · = |Kn|

κ1
=

1

|c′n + cn−1κn|
,

the sign of Kn is equal to δn times the sign chosen in ±t.
That is the Frenet matrix of Cγ at Cγ(s) is

1

|c′n + cn−1κn|



0 |κn| 0 · · · 0 0 0
− |κn| 0 κn−1 · · · 0 0 0

0 −κn−1 0
. . .

0 0 −κn−2
. . .

...
...

...
...

0 κ2 0
−κ2 0 ∓δnκ1

0 0 · · · 0 ±δnκ1 0


.

We have the following result.

Theorem 4.24. Let γ : s→ γ(s) ∈ Rn+1 be a good curve without its flattenings
and Cγ be its focal curve. If the ratios of the curvatures of γ are constant then
the ratios of the curvatures of Cγ are also constant.

Proof. Let κ1, κ2, ..., κn and K1,K2, ...,Kn be Euclidean curvatures of γ and
its focal curve Cγ respectively. Then from Theorem 4.23, we get

K1

K2
=

|κn|
κn−1

=
1

|c′n + cn−1κn|
K3

K4
=

κn−1

κn−2

...
Kn−1

|Kn|
=

κ2
κ1
.

Further, if κ2k

κ2k−1
= const. , then K2k−1

K2k
= const. for 1 ≤ k ≤ n

2 , our theorem is

thus proved.

For more details on curves of Rn with constant curvature ratios (ccr-curves)
see also [7].

References

[1] Arslan, K., West, A., Non spherical submanifolds with 2-planar normal sections.
Bull. London. Math. Soc. 28 (1996), 88-92.
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