UNIFICATION OF λ-CLOSED SETS VIA GENERALIZED TOPOLOGIES

Bishwambhar Roy1,2, Takashi Noiri3

Abstract. In this paper we introduce and study a new type of sets called $(\wedge, \mu\nu)$-closed sets by using the concept of generalized topology introduced by A. Császár.

AMS Mathematics Subject Classification (2010): 54A05, 54D10, 54E55

Key words and phrases: \wedge-set, $(\wedge, \mu\nu)$-closed set, $\mu g\nu$-closed set, $g\wedge\mu$-set

1. Introduction

For the last couple of years, different forms of open sets are being studied. Recently, a significant contribution to the theory of generalized open sets has been presented by A. Császár 10,11,12. Especially, the author defined some basic operators on generalized topological spaces. It is observed that a large number of papers are devoted to the study of generalized open sets like open sets of a topological space, containing the class of open sets and possessing properties more or less similar to those of open sets.

We recall some notions defined in 11. Let X be a non-empty set and let $expX$ denote the power set of X. We call a class $\mu \subseteq expX$ a generalized topology 10, (briefly, GT) if $\emptyset \in \mu$ and unions of elements of μ belong to μ. A set X with a GT μ on it is called a generalized topological space (briefly, GTS) and is denoted by (X, μ). The θ-closure, $cl_\theta(A)$ 23 (resp. δ-closure, $cl_\delta(A)$ 23) of a subset A of a topological space (X, τ) is defined by $\{x \in X : clU \cap A \neq \emptyset \text{ for all } U \in \tau \text{ with } x \in U\}$ (resp. $\{x \in X : A \cap U \neq \emptyset \text{ for all regular open sets } U \text{ containing } x\}$, where a subset A is said to be regular open if $A = int(cl(A))$.

A is said to be δ-closed 23 (resp. θ-closed 23) if $A = cl_\delta A$ (resp. $A = cl_\theta A$) and the complement of a δ-closed set (resp. θ-closed) set is known as a δ-open (resp. θ-open) set. A subset A of a topological space (X, τ) is said to be preopen 21 (resp. semi-open 17, α-open 21, b-open 11) if $A \subseteq int(cl(A))$ (resp. $A \subseteq cl(int(A))$, $A \subseteq int(cl(int(A)))$, $A \subseteq cl(int(A)) \cup int(cl(A)))$. The complement of a semi-open set is called a semi-closed set. The semi-closure 18 of A, denoted by $scl(A)$, is the intersection of all semi-closed sets containing A. A point $x \in X$ is called a semi-θ-cluster point 18 of a set A if $sclU \cap A \neq \emptyset$ for each semi-open set U containing x. The set of all semi-θ-cluster points of A is denoted by $scl_{\theta}A$. If $A = scl_{\theta}A$, then A is known as semi-θ-closed and
the complement of a semi-θ-closed set is called a semi-θ-open set [IL]. We note that for any topological space (X, τ), the collection of all open (resp. preopen, semi-open, δ-open, α-open, b-open, θ-open, semi-θ-open) sets is denoted by τ (resp. $PO(X)$, $SO(X)$, $\delta O(X)$, $\alpha O(X)$, $BO(X)$ or $\gamma O(X)$, $\theta O(X)$, $S\theta O(X)$). Each of these collections is a generalized topology on X.

For a GTS (X, μ), the elements of μ are called μ-open sets and the complements of μ-open sets are called μ-closed sets. For $A \subseteq X$, we denote by $c_\mu(A)$ the intersection of all μ-closed sets containing A, i.e., the smallest μ-closed set containing A; and by $i_\mu(A)$ the union of all μ-open sets contained in A, i.e., the largest μ-open set contained in A (see [II, III]).

It is easy to observe that i_μ and c_μ are idempotent and monotonic, where the operator $\gamma : \exp X \to \exp X$ is said to be idempotent if $A \subseteq X$ implies $\gamma(\gamma(A)) = \gamma(A)$ and monotonic if $A \subseteq B \subseteq X$ implies $\gamma(A) \subseteq \gamma(B)$. It is also well known from [II, I2] that if μ is a GT on X, $x \in X$ and $A \subseteq X$, then $x \in c_\mu(A)$ iff $x \in M \in \mu \Rightarrow M \cap A \neq \emptyset$ and $c_\mu(X \setminus A) = X \setminus i_\mu(A)$.

As the final prerequisites, we wish to recall a few definitions and results from [I3].

Definition 1.1. [I3] Let (X, μ) be a GTS and $A \subseteq X$. Then, the subset $\wedge_\mu(A)$ is defined as follows:

$$\wedge_\mu(A) = \left\{ \bigcap X \{G : A \subseteq G, G \in \mu\} \right\}, \quad \text{if there exists } G \in \mu \text{ such that } A \subseteq G;$$

otherwise.

Proposition 1.2. [I3] Let A, B and $\{B_\alpha : \alpha \in \Omega\}$ be subsets of a GTS (X, μ). Then the following properties hold:

(a) $B \subseteq \wedge_\mu(B)$;
(b) If $A \subseteq B$, then $\wedge_\mu(A) \subseteq \wedge_\mu(B)$;
(c) $\wedge_\mu(\lambda_\alpha(B)) = \wedge_\mu(B)$;
(d) $\wedge_\mu[\bigcup_{\alpha \in \Omega} B_\alpha] = \bigcup_{\alpha \in \Omega} [\wedge_\mu(B_\alpha)]$;
(e) If $A \in \mu$, then $A = \wedge_\mu(A)$;
(f) $\wedge_\mu[\bigcap_{\alpha \in \Omega} B_\alpha] \subseteq \bigcap_{\alpha \in \Omega} [\wedge_\mu(B_\alpha)]$;

Definition 1.3. [I4] In a GTS (X, μ), a subset B is called a \wedge_μ-set if $B = \wedge_\mu(B)$.

Theorem 1.4. [I4] If (X, μ) is a GTS, then the intersection of \wedge_μ-sets is a \wedge_μ-set.

2. $(\wedge, \mu\nu)$-closed sets and associated separation axioms

Definition 2.1. Let μ and ν be two GT’s on X. A subset A of X is said to be $(\wedge, \mu\nu)$-closed if $A = U \cap F$, where U is a \wedge_μ-set and F is a ν-closed set.

The family of all $(\wedge, \mu\nu)$-closed sets of (X, μ, ν) is denoted by $\wedge_{\mu\nu}\mu$.

Remark 2.2. In a topological space (X, τ), if $\mu = \nu = \tau$ (resp. $SO(X)$, $\alpha O(X)$, $\theta O(X)$, $\delta O(X)$, $S\theta O(X)$), then a $(\wedge, \mu\nu)$-closed set reduces to a λ-closed set [2].
Lemma 2.3. Let μ and ν be two GT’s on X, then the following properties are equivalent:

(a) A is $(\wedge, \mu\nu)$-closed;
(b) $A = U \cap c_\nu(A)$, where U is a \bigwedge_μ-set;
(c) $A = \bigwedge_\mu(A) \cap c_\nu(A)$.

Proof. (a) \Rightarrow (b): Let $A = U \cap F$, where U is a \bigwedge_μ-set and F is a ν-closed set of X. Since $A \subseteq F$, we have $c_\nu(A) \subseteq F$. Thus $A \subseteq U \cap c_\nu(A) \subseteq U \cap F = A$.

(b) \Rightarrow (c): Let $A = U \cap c_\nu(A)$, where U is a \bigwedge_μ-set. Since $A \subseteq U$, we have by Proposition 2.6, $\bigwedge_\mu(A) \subseteq \bigwedge_\mu(U) = U$ and hence, $A \subseteq \bigwedge_\mu(A) \cap c_\nu(A) \subseteq U \cap c_\nu(A) = A$. Thus, we obtain $A = \bigwedge_\mu(A) \cap c_\nu(A)$.

(c) \Rightarrow (a): We know that $c_\nu(A)$ is a ν-closed set and by Proposition 2.6(c), we have $\bigwedge_\mu(A)$ is a \bigwedge_μ-set. Thus by (c), we have $A = \bigwedge_\mu(A) \cap c_\nu(A)$ and hence A is a $(\wedge, \mu\nu)$-closed set. \qed

Remark 2.4. Every \bigwedge_μ-set is $(\wedge, \mu\nu)$-closed and every ν-closed set is $(\wedge, \mu\nu)$-closed.

Example 2.5. Let $X = \{a, b, c\}$, $\mu = \emptyset, \{a\}, \{a, b\}$ and $\nu = \emptyset, \{b\}, \{a, b\}$. Then, μ and ν are two GT’s on X. It is easy to see that $\{a, c\}$ is a $(\wedge, \mu\nu)$-closed set but it is not a \bigwedge_μ-set and $\{a, b\}$ is a $(\wedge, \mu\nu)$-closed set but it is not a ν-closed set.

Proposition 2.6. Let μ and ν be two GT’s on a set X. Then $\bigwedge_{\mu\nu}$ is closed under arbitrary intersections.

Proof. Suppose that $\{A_\alpha : \alpha \in I\}$ is a family of $(\wedge, \mu\nu)$-closed subsets of X. Then, for each $\alpha \in I$ there exist a \bigwedge_μ-set U_α and a ν-closed F_α such that $A_\alpha = U_\alpha \cap F_\alpha$. Hence we have $\bigcap_{\alpha \in I} A_\alpha = \bigcap_{\alpha \in I} (U_\alpha \cap F_\alpha) = \bigcap_{\alpha \in I} U_\alpha \cap \bigcap_{\alpha \in I} F_\alpha$.

We note that $\bigcap_{\alpha \in I} U_\alpha$ is a \bigwedge_μ-set (by Theorem 2.3) and $\bigcap_{\alpha \in I} F_\alpha$ is ν-closed. Thus by Definition 2.4, it follows that $\bigcap_{\alpha \in I} A_\alpha$ is a $(\wedge, \mu\nu)$-closed set. \qed

Example 2.7. Let $X = \{a, b, c\}$. Consider two GT’s on X as $\mu = \emptyset, \{a\}, \{a, b\}$ and $\nu = \emptyset, \{a, b\}$. It is easy to see that $\{a\}$ and $\{c\}$ are two $(\wedge, \mu\nu)$-closed subsets of X but their union $\{a, c\}$ is not a $(\wedge, \mu\nu)$-closed set.

Definition 2.8. Let μ and ν be two GT’s on X. Then a subset A of X is said to be generalized $\mu\nu$-closed (briefly, $\mu\nu g$-closed) if $c_\nu(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \mu$.

Unification of λ-closed sets via generalized topologies

53
Observation 2.9. Let μ and ν be two GT’s on X and A, B be two subsets of X.

(i) If A is ν-closed, then A is $\mu \nu g$-closed.
(ii) If A is $\mu \nu g$-closed and μ-open, then A is ν-closed.
(iii) If A is $\mu \nu g$-closed and $A \subseteq B \subseteq c_\nu(A)$, then B is $\mu \nu g$-closed.
(iv) A is $\mu \nu g$-closed if and only if $c_\nu(A) \subseteq \bigwedge_\mu(A)$.

Proof. The proofs of (i), (ii) and (iii) are straightforward, and we shall only prove (iv). Let A be a $\mu \nu g$-closed set and U be any μ-open set such that $A \subseteq U$. Then $c_\nu(A) \subseteq U$ and hence we obtain $c_\nu(A) \subseteq \bigwedge_\mu(A)$.

Conversely, suppose that $c_\nu(A) \subseteq \bigwedge_\mu(A)$ and $A \subseteq U \in \mu$. Then $c_\nu(A) \subseteq \bigwedge_\mu(A) \subseteq U$. This shows that A is $\mu \nu g$-closed.

Example 2.10. Let $\mu = \{\varnothing, \{a\}, \{a, b\}, \{b, c\}, X\}$ and $\nu = \{\varnothing, \{a\}, \{a, c\}\}$ be two GT’s on a set $X = \{a, b, c\}$. Then it is easy to see that $\{c\}$ is a $\mu \nu g$-closed set which is not a ν-closed set. Also, $\{b\}$ is a ν-closed set which is not a μ-open set.

Proposition 2.11. Let μ and ν be two GT’s on a set X. Then a subset A of X is ν-closed if and only if A is $\mu \nu g$-closed and $(\bigwedge, \mu \nu)$-closed.

Proof. One part follows from Observation 2.9(i) and Remark 2.9. Conversely, let A be a $\mu \nu g$-closed as well as a $(\bigwedge, \mu \nu)$-closed set. Then by Observation 2.9(iv), $c_\nu(A) \subseteq \bigwedge_\mu(A)$. Thus by hypothesis and Lemma 2.9, $A = \bigwedge_\mu(A) \cap c_\nu(A) = c_\nu(A)$. So A is a ν-closed set.

Definition 2.12. Let μ and ν be two GT’s on a set X. Then (X, μ, ν) is said to be

(i) $\mu \nu T_0$ if for any two distinct points $x, y \in X$, there exists a μ-open set U of X containing x but not y or a ν-open set V of X containing y but not x.
(ii) $\mu \nu T_{1/2}$ if every singleton $\{x\}$ is either ν-open or μ-closed.

Theorem 2.13. Let μ and ν be two GT’s on a set X. Then (X, μ, ν) is $\mu \nu T_0$ if and only if for each $x \in X$, the singleton $\{x\}$ is $(\bigwedge, \mu \nu)$-closed.

Proof. Suppose that (X, μ, ν) be $\mu \nu T_0$. For each $x \in X$, we have $\{x\} \subseteq \bigwedge_\mu(\{x\}) \cap c_\nu(\{x\})$. Let $y \neq x$. Then there exists a μ-open set U of X containing x but not y or a ν-open set V of X containing y but not x. In the first case, $y \notin \bigwedge_\mu(\{x\})$ and we have $y \notin \bigwedge_\mu(\{x\}) \cap c_\nu(\{x\})$. In the second case, $y \notin c_\nu(\{x\})$ and we have $y \notin \bigwedge_\mu(\{x\}) \cap c_\nu(\{x\})$. Thus $\bigwedge_\mu(\{x\}) \cap c_\nu(\{x\}) \subseteq \{x\}$. Hence we have $\bigwedge_\mu(\{x\}) \cap c_\nu(\{x\}) = \{x\}$. Hence by Lemma 2.9, $\{x\}$ is a $(\bigwedge, \mu \nu)$-closed set.

Conversely, suppose that (X, μ, ν) is not $\mu \nu T_0$. Thus there exist distinct points $x, y \in X$ such that (i) $y \in U$ for every μ-open set U containing x and (ii) $x \in V$ for every ν-open set V containing y. Thus by (i) and (ii), $y \in \bigwedge_\mu(\{x\})$ and $y \in c_\nu(\{x\})$, respectively. Then by Lemma 2.9, $y \in \bigwedge_\mu(\{x\}) \cap c_\nu(\{x\}) = \{x\}$. This contradicts the fact that $x \neq y$.

Theorem 2.14. Let μ and ν be two GT’s on a set X. Then the following statements are equivalent:
Proof. (a) ⇒ (b): Let \((X, \mu, \nu)\) be \(\mu\nu\)-closed. Suppose that there exists a \(\mu\nu\)-closed set \(A\) of \(X\) which is not \(\nu\)-closed. So, there exists \(x \in c_\nu(A) \setminus A\). If \(\{x\}\) is \(\nu\)-open, then \(x \in A\), which is a contradiction. In the case \(\{x\}\) is \(\mu\)-closed, we have \(x \in X \setminus \{x\}\) and so \(A \subseteq X \setminus \{x\} \in \mu\). So, by \(\mu\nu\)-closedness of \(A\), \(c_\nu(A) \subseteq X \setminus \{x\}\), which is a contradiction.

(b) ⇒ (a): Suppose that \(\{x\}\) is not \(\mu\)-closed. If \(X\) is not \(\mu\)-open, then we have nothing to show. If \(X \in \mu\), then the only \(\mu\)-open set containing \(X \setminus \{x\}\) is \(X\). Thus \(c_\nu(X \setminus \{x\}) \subseteq X\) and hence \(X \setminus \{x\}\) is \(\mu\nu\)-closed. Thus, by (b), \(X \setminus \{x\}\) is \(\nu\)-closed. So \(\{x\}\) is \(\nu\)-open. Therefore, \((X, \mu, \nu)\) is \(\mu\nu\)-closed.

(a) ⇒ (c): Suppose that \((X, \mu, \nu)\) is \(\mu\nu\)-closed and \(A \subseteq X\). Then, for each \(x \in X\), \(\{x\}\) is \(\nu\)-open or \(\mu\)-closed. Let \(B_\nu = \cap\{X \setminus \{x\} : x \in X \setminus A, \{x\}\) is \(\nu\)-open\} and \(C_\mu = \cap\{X \setminus \{x\} : x \in X \setminus A, \{x\}\) is \(\mu\)-closed\}. Then, \(B_\nu\) is \(\nu\)-closed, \(C_\mu\) is a \(\Lambda_\mu\)-set and \(A = B_\nu \cap C_\mu\). Therefore, \(A\) is \((\Lambda, \mu\nu)\)-closed.

(c) ⇒ (a): Suppose that \(A\) is a \(\mu\nu\)-closed subset of \(X\). Then, by the hypothesis, \(A\) is \((\Lambda, \mu\nu)\)-closed. Thus, by Proposition \(\mathbf{[3]}\), \(A\) is \(\nu\)-closed. Therefore, \((X, \mu, \nu)\) is \(\mu\nu\)-closed \((\text{by } (a) \iff (b))\).

3. \(g \Lambda_{\mu\nu}\) - sets

Definition 3.1. Let \(\mu\) and \(\nu\) be two GT’s on a set \(X\). Then a subset \(A\) of \(X\) is called a \(g \Lambda_{\mu\nu}\)-set if \(\Lambda_\mu(A) \subseteq F\) whenever \(A \subseteq F\) and \(F\) is a \(\nu\)-closed set.

The family of all \(g \Lambda_{\mu\nu}\)-sets is denoted by \(g \Lambda_{\mu\nu}\). The complement of a \(g \Lambda_{\mu\nu}\)-set is called \(g \Lambda_{\mu\nu}^c\)-set.

Remark 3.2. Let \((X, \tau)\) be a topological space. If \(\mu = \nu = \tau\) (resp. \(\text{SO}(X), \text{PO}(X), \text{BO}(X), \delta\text{O}(X)\)) then a \(g \Lambda_{\mu\nu}\)-set is a generalized \(\Lambda\)-set [19] (resp. generalized \(\Lambda\)-set [3], generalized pre-\(\Lambda\)-set [15], \(g \Lambda_{\delta}\)-set [15], \(g \Lambda_{\theta}\)-set [1]).

Proposition 3.3. Let \(\mu\) and \(\nu\) be two GT’s on a set \(X\) and \(A\) and \(B\) be two subsets of \(X\), then the following properties hold:

(a) If \(A\) is a \(\Lambda_\mu\)-set, then \(A\) is a \(g \Lambda_{\mu\nu}\)-set.

(b) If \(A\) is a \(g \Lambda_{\mu\nu}\)-set and \(\nu\)-closed, then \(A\) is a \(\Lambda_\mu\)-set.

(c) If \(A\) is a \(g \Lambda_{\mu\nu}\)-set and \(A \subseteq B \subseteq \Lambda_\mu(A)\), then \(B\) is a \(g \Lambda_{\mu\nu}\)-set.

Proof. (a) Suppose that \(A\) is a \(\Lambda_\mu\)-set and \(A \subseteq F\), where \(F\) is a \(\nu\)-closed set. Then \(\Lambda_\mu(A) = A \subseteq F\). Thus \(A\) is a \(g \Lambda_{\mu\nu}\)-set.

(b) Let \(A\) be a \(g \Lambda_{\mu\nu}\)-set and \(\nu\)-closed. Then \(\Lambda_\mu(A) \subseteq A\). Thus, by Proposition \(\mathbf{[3]}(a)\), \(\Lambda_\mu(A) = A\) i.e., \(A\) is a \(\Lambda_\mu\)-set.

(c) Let \(B \subseteq F\), where \(F\) is a \(\nu\)-closed set. Then, \(A \subseteq F\) and \(A\) is a \(g \Lambda_{\mu\nu}\)-set. Therefore, \(\Lambda_\mu(A) \subseteq F\). Now, by Proposition \(\mathbf{[3]}\) we have, \(\Lambda_\mu(A) \subseteq \)
\[\bigwedge_\mu(B) \subseteq \bigwedge_\mu(\bigwedge_\mu(A)) = \bigwedge_\mu(A). \] Thus \(\bigwedge_\mu(A) = \bigwedge_\mu(B) \) and hence \(\bigwedge_\mu(B) \subseteq F \).

Therefore, \(B \) is a \(g_\bigwedge_\mu \)-set.

Example 3.4. Let \(X = \{a, b, c\} \), \(\mu = \{\emptyset, \{a, b\}\} \) and \(\nu = \{\emptyset, \{c\}, \{a, c\}\} \). Then \(\mu \) and \(\nu \) are two GT’s on \(X \). It is easy to check that \(\{a\} \) is a \(g_\bigwedge_\mu \)-set which is not a \(\bigwedge_\mu \)-set. We also note that \(\{a, b\} \) and \(\{b, c\} \) are two \(g_\bigwedge_\mu \)-sets but their intersection \(\{b\} \) is not a \(g_\bigwedge_\mu \)-set.

Proposition 3.5. Let \(\mu \) and \(\nu \) be two GT’s on a set \(X \). Then a subset \(A \) is a \(g_\bigwedge_\mu \)-set if and only if \(\bigwedge_\mu(A) \cap U = \emptyset \) whenever \(A \cap U = \emptyset \) and \(U \in \nu \).

Proof. Suppose that \(A \) is a \(g_\bigwedge_\mu \)-set. Let \(A \cap U = \emptyset \) and \(U \in \nu \). Then \(A \subseteq X \setminus U \) and \(X \setminus U \) is \(\nu \)-closed. Therefore, \(\bigwedge_\mu(A) \subseteq X \setminus U \) and hence \(\bigwedge_\mu(A) \cap U = \emptyset \).

Conversely, let \(A \subseteq F \) and \(F \) be \(\nu \)-closed. Then \(A \cap (X \setminus F) = \emptyset \) and \(X \setminus F \in \nu \). So, by the hypothesis we have \(\bigwedge_\mu(A) \cap (X \setminus F) = \emptyset \) and hence \(\bigwedge_\mu(A) \subseteq F \). This shows that \(A \) is a \(g_\bigwedge_\mu \)-set. \(\square \)

Proposition 3.6. Let \(\mu \) and \(\nu \) be two GT’s on a set \(X \). Then a subset \(A \) of \(X \) is a \(g_\bigwedge_\mu \)-set if and only if \(\bigwedge_\mu(A) \subseteq c_\nu(A) \).

Proof. Suppose that \(A \) is a \(g_\bigwedge_\mu \)-set and \(x \not\in c_\nu(A) \). Then there exists a \(\nu \)-open set \(U \) containing \(x \) such that \(A \cap U = \emptyset \). Thus by Proposition 3.4, \(\bigwedge_\mu(A) \cap U = \emptyset \) (as \(A \) is a \(g_\bigwedge_\mu \)-set). Hence \(x \not\in \bigwedge_\mu(A) \) and so we obtain \(\bigwedge_\mu(A) \subseteq c_\nu(A) \).

Conversely, suppose that \(\bigwedge_\mu(A) \subseteq c_\nu(A) \) and \(A \subseteq F \), where \(F \) is \(\nu \)-closed. Then \(\bigwedge_\mu(A) \subseteq c_\nu(A) \subseteq F \) and thus \(A \) is a \(g_\bigwedge_\mu \)-set. \(\square \)

Proposition 3.7. Let \(\mu \) and \(\nu \) be two GT’s on a set \(X \). If \(A_\alpha \in g_\bigwedge_\mu \) for each \(\alpha \in I \), then \(\bigcup_{\alpha \in I} A_\alpha \in g_\bigwedge_\mu \).

Proof. Let \(\bigcup_{\alpha \in I} A_\alpha \subseteq F \) and \(F \) be \(\nu \)-closed. Then \(A_\alpha \subseteq F \) and hence \(\bigwedge_\mu(A_\alpha) \subseteq F \) for each \(\alpha \in I \), since \(A_\alpha \) is a \(g_\bigwedge_\mu \)-set. Thus by Proposition 3.4, we have \(\bigwedge_\mu(\bigcup_{\alpha \in I} A_\alpha) = \bigcup_{\alpha \in I} \bigwedge_\mu(A_\alpha) \subseteq F \). This shows that \(\bigcup_{\alpha \in I} A_\alpha \in g_\bigwedge_\mu \). \(\square \)

Proposition 3.8. Let \(\mu \) and \(\nu \) be two GT’s on a set \(X \) and \(A \) be a \(g_\bigwedge_\mu \)-set of \(X \). Then, for every \(\nu \)-closed set \(F \) such that \((X \setminus \bigwedge_\mu(A)) \cup A \subseteq F \), \(F = X \) holds.

Proof. Let \(A \) be a \(g_\bigwedge_\mu \)-set and \(F \) a \(\nu \)-closed set such that \((X \setminus \bigwedge_\mu(A)) \cup A \subseteq F \). Since \(A \subseteq F \), \(\bigwedge_\mu(A) \subseteq F \) and \(X = (X \setminus \bigwedge_\mu(A)) \cup \bigwedge_\mu(A) \subseteq F \). Therefore, we have \(X = F \). \(\square \)

Proposition 3.9. Let \(\mu \) and \(\nu \) be two GT’s on a set \(X \) and \(A \) a \(g_\bigwedge_\mu \)-set of \(X \). Then, \((X \setminus \bigwedge_\mu(A)) \cup A \) is \(\nu \)-closed if and only if \(A \) is a \(\bigwedge_\mu \)-set.

Proof. By Proposition 3.8, \((X \setminus \bigwedge_\mu(A)) \cup A = X \). Thus, \(\bigwedge_\mu(A) \cap (X \setminus A) = \emptyset \) i.e., \(\bigwedge_\mu(A) \subseteq A \). Thus by Proposition 3.4(a), \(\bigwedge_\mu(A) = A \) i.e., \(A \) is a \(\bigwedge_\mu \)-set.

Conversely, if \(A \) is a \(\bigwedge_\mu \)-set, then \(A = \bigwedge_\mu(A) \). So \((X \setminus \bigwedge_\mu(A)) \cup A = (X \setminus A) \cup A = X \) which is \(\nu \)-closed. \(\square \)
Proposition 3.10. Let μ and ν be two GT's on a set X. Then, for each $x \in X$,
(a) $\{x\}$ is either ν-open or $X \setminus \{x\}$ is a $g \bigwedge_{\mu \nu}$-set in X;
(b) $\{x\}$ is either a ν-open set or a $g \bigwedge^*_{\mu \nu}$-set in X.

Proof. (a) Suppose that $\{x\}$ is not ν-open. Then, the only ν-closed set F containing $X \setminus \{x\}$ is X. Thus, $\bigwedge_\mu(X \setminus \{x\}) \subseteq F = X$ and hence $X \setminus \{x\}$ is a $g \bigwedge_{\mu \nu}$-set.

(b) Follows from (a) and Definition 3.11.

Theorem 3.11. Let μ and ν be two GT's on a set X. Then (X, μ, ν) is $\mu \nu$-$T_{1/2}$ if and only if every $g \bigwedge_{\mu \nu}$-set is a \bigwedge_μ-set.

Proof. Let (X, μ, ν) be $\mu \nu$-$T_{1/2}$. Suppose that there exists a $g \bigwedge_{\mu \nu}$-set A in X which is not a \bigwedge_μ-set. Then, there exists $x \in \bigwedge_\mu(A)$ such that $x \notin A$. Now since (X, μ, ν) is $\mu \nu$-$T_{1/2}$, $\{x\}$ is either ν-open or μ-closed. If $\{x\}$ is ν-open, then $A \subseteq X \setminus \{x\}$, where $X \setminus \{x\}$ is ν-closed. Since A is a $g \bigwedge_{\mu \nu}$-set, $\bigwedge_\mu(A) \subseteq X \setminus \{x\}$, and this is a contradiction. On the other hand, if $\{x\}$ is μ-closed then $A \subseteq X \setminus \{x\}$, where $X \setminus \{x\}$ is μ-open. Thus by Proposition 3.11, $\bigwedge_\mu(A) \subseteq \bigwedge_\mu(X \setminus \{x\}) = X \setminus \{x\}$. This is again a contradiction. Thus, every $g \bigwedge_{\mu \nu}$-set is a \bigwedge_μ-set.

Conversely, assume that every $g \bigwedge_{\mu \nu}$-set is a \bigwedge_μ-set. Suppose that (X, μ, ν) is not $\mu \nu$-$T_{1/2}$. Then by Theorem 3.11, there exists a $\mu \nu g$-closed set A which is not ν-closed. Since A is not ν-closed, there exists a point $x \in c_\nu(A)$ such that $x \notin A$. Thus, by Proposition 3.10, the singleton $\{x\}$ is either ν-open or $X \setminus \{x\}$ is a $g \bigwedge_{\mu \nu}$-set.

Case - 1: $\{x\}$ is ν-open: Then, since $x \in c_\nu(A)$, $x \in A$. This is a contradiction.

Case - 2: $X \setminus \{x\}$ is a $g \bigwedge_{\mu \nu}$-set: $\{x\}$ is either μ-closed or not μ-closed. If $\{x\}$ is not μ-closed, $X \setminus \{x\}$ is not μ-open and hence $\bigwedge_\mu(X \setminus \{x\}) = X$. Therefore, $X \setminus \{x\}$ is not a \bigwedge_μ-set, which is a contradiction. If $\{x\}$ is μ-closed, then $A \subseteq X \setminus \{x\} \in \mu$ and A is $\mu \nu g$-closed. Hence, $c_\nu(A) \subseteq X \setminus \{x\}$ (by Definition 2.8). Thus, $x \notin c_\nu(A)$, which is a contradiction.

\begin{thebibliography}{9}
\end{thebibliography}

Maki, H., Generalized \wedge-sets and the associated closure operator. The special issue in commemoration of Prof. Kazusada IKEDA’s retirement, 1986, 139-146.

Received by the editors November 4, 2011