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A NOTE ON DISTRIBUTIONAL SEMI-RIEMANNIAN
GEOMETRY1
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Abstract. We discuss some basic concepts of semi-Riemannian geome-
try in low-regularity situations. In particular, we compare the settings of
(linear) distributional geometry in the sense of L. Schwartz and nonlinear
distributional geometry in the sense of J.F. Colombeau.
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1. Introduction

In this note we discuss some foundational concepts of semi-Riemannian geo-
metry in case of low regularity. While semi-Riemannian geometry is usually
formulated for C∞-metrics, most of the results still hold true in case the metric
is locally C1,1, i.e., its first derivatives being locally Lipschitz continuous: Indeed,
this condition guarantees (local) unique solvability of the geodesic equation
and implies locally uniform boundedness of the curvature. In particular, the
Riemann tensor can be interpreted as a distribution.

However, there is a strong motivation from physics to lower the regularity
assumptions on the metric. In particular, in the context of weakly singular
space-times in general relativity such as thin shells of matter or radiation, cosmic
strings, impulsive pp-waves, and shell crossing singularities, one has to deal with
Lorentz metrics of regularity below C1,1.

In this contribution we will mainly be concerned with the following two issues
(1) Defining the Levi-Civita connection of a metric of low regularity, and
(2) Defining the curvature from a connection or metric of low regularity,
in the context of two different mathematical frameworks, namely
(A) distributional geometry, i.e., the setting of tensor distributions in the sense
of classical Schwartzian distribution theory, and
(B) nonlinear distributional geometry in the sense of Colombeau.

Approach (A) was pursued in [18, 7, 19] and more recently in [16], building
on global accounts to distribution theory, e.g. provided in [3], while approach
(B) is due to [15] and is based on global analysis ([4, 14]) in (special) Colombeau
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algebras ([5]). Applications of (B) in general relativity can, e.g. be found in [1,
2, 13, 8], and an overview of applications of (A) and (B) in relativity is provided
by [21].

While this contribution does not provide any new mathematics, we collect
the respective results for both settings (A) and (B) and present them in parallel,
allowing for a direct comparison. Finally, we present results on the compatibility
of (A) and (B), recently obtained in [22].

In some more detail, the plan of this paper is as follows. After collecting
the necessary prerequisites to make our presentation self-contained in Sec. 2, in
Sec. 3 we define the notions of semi-Riemannian metrics and linear connections
for each of the above frameworks (A) and (B). In Sec. 4 we deal with issue (1)
and provide a version of the fundamental lemma of semi-Riemannian geometry
for each of our settings, while in Sec. 5 we discuss issue (2), again for each
of the frameworks (A) and (B). Finally, in Sec. 6 we answer the question of
compatibility of the two approaches in the affirmative. Our main references for
approaches (A) and (B) will be [7, 16] and [15, 22], respectively.

2. Linear and nonlinear distributional geometry

We recall that distributions on a smooth (paracompact, Hausdorff) manifold
M of dimension n are defined to be linear, continuous (w.r.t. the usual (LF)-
topology) functionals on the space of compactly supported n-forms, D′(M) =
(Ωn

c (M))′. We will denote the action of a distribution on a test n-form by 〈v, ω〉.
Distributional tensor fields and more generally distributional sections of vector
bundles can also be defined as elements of the dual space of appropriate spaces
of sections. But for our purpose it will be sufficient (see, however, [9]) to view
them as tensor fields with distributional coefficients, or as C∞(M)-multilinear
maps of vector fields and one-forms to scalar distributions, i.e., we denote with
r, s the tensor character

(1) D′rs(M) = D′(M)⊗C∞(M) T r
s (M) ∼= LC∞(M)

(
Ω1(M)r, X(M)s;D′(M)

)
.

Here T r
s (M) denotes the space of (smooth) (r, s)-tensor fields, and we have

set T 1
0 (M) = X(M) and T 0

1 (M) = Ω1(M). There is a well-developed theory
of tensor distributions ([3, 18, 17, 19]), which parallels the smooth case but
suffers from the natural limitations of distribution theory. In particular, in all
multilinear operations only one factor may be distributional, while all others
have to be smooth. For a pedagogical account we refer to [10, Ch. 3.1].

One way to deal with products is to restrict oneself to subspaces of D′. We
will, in particular, be interested in Sobolev spaces. For m ∈ N0 and 1 ≤ p ≤
∞ we denote by Wm,p

loc (M) the space of distributions whose derivatives up to
order m locally belong to Lp. Recall that Wm,p

loc (M) is a Fréchet space with its
topology induced by the semi-norms ‖u ◦ϕ−1

α ‖W m,p(V ), where (Uα, ϕα) denotes
the charts of an atlas for M , V denotes any open, relatively compact subset of
ϕα(Uα), and ‖f‖p

W m,p(V ) =
∑

α≤m

∫
V
|∂αf |p. Moreover, we write

(Wm,p
loc )r

s(M) = Wm,p
loc (M)⊗C∞(M) T r

s (M)
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for the spaces of Wm,p
loc -tensor fields. In case p = 2 we use the usual convention

and set Hm
loc = Wm,2

loc , and in case m = 0 we obtain the usual local Lebesgue
spaces which we denote by Lp

loc.
In nonlinear distributional geometry ([10, Ch. 3]) in the sense of J.F. Colom-

beau ([5]) one replaces the vector space D′(M) by the algebra of generalised
functions G(M) to overcome the problem of multiplication of distributions. In-
deed, in the light of Schwartz’ impossibility result ([20]), this setting provides
a minimal framework within which tensor fields may be subjected to nonlin-
ear operations, while maintaining consistency with smooth and distributional
geometry: tensor products of smooth tensor fields are preserved as well as Lie
derivatives of distributional ones. The basic idea of the construction is smooth-
ing of distributions (via convolution) and the use of asymptotic estimates in
terms of a regularisation parameter: these are employed in a quotient con-
struction which, in particular, provides consistency with the product of smooth
functions.

The (special) Colombeau algebra of generalised functions on M is defined
as the quotient

G(M) := EM (M)/N (M)

of moderate nets of smooth functions modulo negligible ones, where the respec-
tive notions are defined by (P denoting linear differential operators on M)

EM (M) := {(uε)ε ∈ C∞(M) : ∀K ⊂⊂ M ∀P ∃N : sup
p∈K

|Puε(p)| = O(ε−N )}

N (M) := {(uε)ε ∈ C∞(M) : ∀K ⊂⊂ M ∀P ∀m : sup
p∈K

|Puε(p)| = O(εm)}.

Elements of G(M) are denoted by u = [(uε)ε] = (uε)ε + N (M). With com-
ponentwise operations, G( ) is a fine sheaf of differential algebras where the
derivations are Lie derivatives with respect to smooth vector fields defined by
LXu := [(LXuε)ε], also denoted by X(u).

The G(M)-module Gr
s (M) of generalised tensor fields can be defined along

the same lines using analogous asymptotic estimates. However, for our purpose
it will suffice to set

Gr
s (M) := G(M)⊗C∞(M) T r

s (M)
∼= LC∞(M)(Ω1(M)r, X(M)s;G(M)) ∼= LG(M)(G0

1(M)r,G1
0(M)s;G(M)).

Note that in contrast to classical distributions (c.f. (1)), generalised tensor fields
map generalised (and not merely smooth) fields and forms to generalised func-
tions. It is precisely this property that allows one to raise and lower indices
with the help of a generalised metric (see Sec. 3 below), just as in the smooth
case.

Smooth functions are embedded into G(M) simply by the “constant” em-
bedding σ, i.e., σ(f) := [(f)ε]. In case M ⊆ Rn open, compactly supported
distributions are embedded into G via convolution with a mollifier ρ ∈ S(Rn)
with unit integral satisfying

∫
ρ(x)xαdx = 0 for all |α| ≥ 1; more precisely
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setting ρε(x) = (1/εn)ρ(x/ε), we define ι(w) := [(w ∗ ρε)ε]. In case supp(w) is
not compact, one uses a sheaf-theoretical construction which can be lifted to
an arbitrary manifold using a partition of unity subordinate to the charts of
some atlas ([10, Thm. 3.2.10]). From the explicit formula, it is clear that the
embedding commutes with differentiation. It is, however, not canonical since it
depends on the mollifier as well as the partition of unity. (A canonical embed-
ding of distributions is provided by the so-called full version of the construction
(see [11, 12]), however, at the price of a technical machinery, which we have
chosen to avoid here.)

The interplay between generalised functions and distributions is most con-
veniently formalised in terms of the notion of association. We call a distribu-
tion v ∈ D′(M) associated with u ∈ G(M) and write u ≈ v if, for all com-
pactly supported n-forms ω and one (hence any) representative (uε)ε, we have
limε→0

∫
M

uεω = 〈w,ω〉.

3. Semi-Riemannian metrics and connections

Here we discuss Semi-Riemannian metrics and linear connections in the dis-
tributional and the generalised setting. To begin with following Marsden ([18,
Def. 10.6]), we define:

Definition 3.1. A distributional (0, 2)-tensor field g ∈ D′02(M) is called a
distributional metric if it is symmetric and nondegenerate in the sense that
g(X,Y ) = 0 for all Y ∈ X(M) implies X = 0 ∈ X(M).

Observe that due to its non-locality this condition of nondegeneracy is rather
weak. For example, the classically singular line element ds2 = x2 dx2 is nonde-
generate in the above sense. Therefore it is appropriate to additionally ask for
Parker’s condition ([19]), demanding that g is nondegenerate in the usual sense
of its singular support, see also the discussion in [22, Sec. 3].

By the above natural limitations of distribution theory it is not possible to
insert D′-vector fields into g, hence it does not induce a map D′10 → D′01 and
cannot be used to pull indices of distributional tensor fields. Moreover, the map
induced by g : X(M) 3 X 7→ X[ := g(X, .) ∈ D′01(M) is injective, but clearly
not surjective, and, in general, there is no way to define the inverse metric. Also,
the notions like the index or geodesics of a distributional metric are not (easily)
defined.

Let us now turn to the generalised setting. Following [15, Def. 3.4] we define
in this case (omitting some technicalities concerning the index).

Definition 3.2. A symmetric section g ∈ G0
2(M) is called a generalised semi-

Riemannian metric if detg is invertible in the generalised sense, i.e., for any
representative (det(gε))ε of detg we have

∀K ⊂⊂ M ∃m ∈ N : inf
p∈K

| det(gε)(p)| ≥ εm.
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This notion of nondegeneracy can be characterised pointwise (using gener-
alised points, see [15, Sec. 2]) and the following characterisation of generalised
metrics captures the intuitive idea of a generalised metric as a net of classi-
cal metrics approaching a singular limit: g is a generalised metric iff on every
relatively compact open subset V ⊆ M there exists a representative (gε)ε of
g such that, for fixed ε, gε is a classical metric and its determinant, detg, is
invertible in the generalised sense. The latter condition basically means that
the determinant is not too singular.

A generalised metric induces a G(M)-linear isomorphism from G1
0(M) to

G0
1(M). The inverse of this isomorphism gives a well-defined element of G2

0(M),
the inverse metric, which we denote by g−1, with representative

(
g−1

ε

)
ε

([15,
Props. 3.6, 3.9]).

Next we turn to connections. To fix notations we recall that, classically, a
connection is a map∇ : X(M)×X(M) → X(M) satisfying (X, X ′, Y, Y ′ ∈ X(M),
f ∈ C∞(M))

(∇1) ∇fX+X′Y = f∇XY +∇X′Y

(∇2) ∇X(fY + Y ′) = f∇XY + X(f)Y +∇XY ′.

We now define.
Definition 3.3.

(i) A distributional connection ([18, p. 358]3,[16, Def. 3.1]) is a map ∇ :
X(M) × X(M) → D′10(M) satisfying (∇1), (∇2) for all X, X ′, Y, Y ′ ∈ X,
f ∈ C∞.

(ii) A generalised connection ([15, Def. 5.1]) is a map ∇ : G1
0(M)×G1

0(M) →
G1

0(M) satisfying (∇1), (∇2) for all X, X ′, Y, Y ′ ∈ G1
0 , f ∈ G.

Both versions extend to the full smooth resp. generalised tensor algebra by
using the Leibniz rule and defining ∇Xu := X(u) for scalars. Also, in both
cases the standard coordinate formulae hold.

4. Versions of the fundamental lemma

In this section we discuss the question in which sense a distributional resp.
generalised metric defines a Levi-Civita connection. Recall that the Levi-Civita
connection ∇ of a smooth metric g is classically given as the unique connection
which is metric and torsion free, i.e., satisfies

(∇3) ∇g = 0
(
⇐⇒ X

(
g(V, W )

)
= g(∇XV, W ) + g(V,∇XW )

)

(∇4) T (X, Y ) := ∇XY −∇Y X − [X, Y ] = 0,

and is characterised by the Koszul formula

2g(∇XY, Z) = X
(
g(Y,Z)

)
+ Y

(
g(Z, X)

)− Z
(
g(X, Y )

)

−g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]) =: F (X,Y, Z).
3Note, however, the typo in the very definition.
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Observe that in the distributional framework (∇3) cannot be formulated: a
distributional connection can only act on smooth tensor fields but not on the
distributional metric and likewise, in the terms on the r.h.s. of the condition
equivalent to (∇3) the distributional metric cannot act on the distributional
vector fields ∇XV and ∇XW .

One way to circumvent this obstacle is (following [16, Sec. 4]) to primarily use
the Koszul formula. Observe that its r.h.s. F (X, Y, Z) is defined for an arbitrary
distributional metric and X, Y, Z ∈ X(M), and the standard calculation shows
that Z 7→ F (X, Y, Z) is C∞(M)-linear. Hence

∇[
XY : Z 7→ 1

2
F (X, Y, Z)

defines a distributional one-form. But recall that we cannot use the metric to
turn it into a distributional vector field, as is done in the smooth case. On the
other hand, it is readily shown that ∇[ satisfies the properties (X, Y, Z ∈ X(M))

(∇3)[ ∇[
XY −∇[

Y X − [X, Y ][ = 0
(∇4)[ X

(
g(Y, Z)

)−∇[
XY (Z)−∇[

XZ(Y ) = 0,

which lead LeFloch and Mardare to define.

Definition 4.1. The distributional Levi-Civita connection of a distributional
metric g is defined as the mapping ∇[ : X(M)× X(M) → D′01(M) given by

∇[
XY (Z) :=

1
2

F (X,Y, Z).

Note, however, that ∇[ is not a distributional connection in the sense of
definition 3.3(i): only if g possesses additional regularity we may set ∇XY :=
g−1(∇[

XY, .), which implies (∇3) and (∇4). This, of course, holds true if g is
smooth but also if the conditions

(2) ∇[
XY ∈ (L2

loc)
0
1(M) and g−1 ∈ (L∞loc)

0
2(M)

hold: we then have that ∇XY ∈ (L2
loc)

1
0(M) ⊆ D′10(M).

Turning now to the generalised setting, we observe that we may follow the
classical proof of the fundamental lemma and use the properties of the inverse
of the generalised metric to obtain (cf. [15, Thm. 5.2]).

Theorem 4.1. For any generalised metric g ∈ G0
2(M) there exists a unique

generalised connection ∇ that is metric and torsion free, i.e., satisfies (∇3) and
(∇4) for all X,Y, Z ∈ G1

0(M). It is called the generalised Levi-Civita connection
of g and is characterised by the Koszul formula.

5. Curvature

Again we start by recalling the standard formula to fix our notation. In the
smooth setting, the Riemann tensor is given by (X, Y, Z ∈ X(M))

(3) Riem(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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Beginning with the distributional case, we immediately observe that the terms
involving second derivatives cannot be defined: ∇X does not act on a general
∇Y Z ∈ D′10. To answer the question for which restricted class of distributional
connections we can define the curvature we consider (following [16, Sec. 3.2])
distributional connections which take values in a subspace of the distributional
vector fields,

∇ : X(M)× X(M) → A(M) ⊆ D′10(M),

where A(M) is to be chosen in such a way that ∇ can be extended to it, i.e.,

∇ : X(M)×A(M) → D′10(M) via ∇XY (Θ) := X
(
Y (Θ)

)−∇XΘ(Y ),

where X ∈ X, Y ∈ A, and Θ ∈ Ω1. Now the term X(Y (Θ)) ∈ D′10, and the
obvious choice to make the action of ∇XΘ ∈ A(M) on Y ∈ A(M) well-defined
is to set A(M) = (L2

loc)
1
0(M). Indeed, then ∇XΘ(Y ) ∈ (L1

loc)
1
0(M) can be

interpreted as a distributional vector field and we may define.

Definition 5.1.

(i) A distributional connection ∇ is called an L2
loc-connection if ∇XY ∈

(L2
loc)

1
0(M) for all X,Y ∈ X(M).

(ii) The distributional Riemann tensor Riem of an L2
loc-connection is defined

by the usual formula (3).

Note that for any L2
loc-connection also the Ricci tensor and the scalar cur-

vature can be defined.
We now turn to the question of assigning a curvature to a distributional

metric. Guided by the above consideration we aim at an L2
loc-Levi-Civita con-

nection. By (2) we see that a sufficient condition is g ∈ (H1
loc ∩ L∞loc)

0
2(M) and

| detg| ≥ C > 0 almost everywhere on compact sets. In fact, the latter con-
dition together with the L∞loc-bound on g implies local boundedness of g−1 by
the cofactor formula. Hereby we have essentially rediscovered the key-notion
of R. Geroch and J. Traschen’s paper [7] (however, see [16] and [22] for the
nondegeneracy condition) and may define.

Definition 5.2. We call a distributional metric g ∈ (H1
loc ∩ L∞loc)

0
2(M) gt-

regular if it is a semi-Riemannian metric (of fixed index) almost everywhere. A
gt-regular metric is called nondegenerate if its determinant is locally uniformly
bounded away from zero, i.e.,

∀K ⊂⊂ M ∃C : | detg(x)| ≥ C > 0 almost everywhere on K.

Observe that H1
loc ∩ L∞loc(M) is an algebra and that the invertible elements

are precisely those which are locally uniformly bounded away from zero. In
particular, the inverse of a nondegenerate gt-regular metric is again gt-regular
and nondegenerate in the sense that det(g−1) is locally uniformly bounded away
from zero. Also note the similarity of this notion of nondegeneracy with the
nondegeneracy condition employed for generalised metrics in Definition 3.2.
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Moreover, observe that by (2) the distributional Levi-Civita connection of
a nondegenerate gt-regular metric really is a distributional connection in the
sense of Definition 3.3(i). Finally, our above discussion indicates how to prove
the folowing result which was first obtained in [7] by analysing local coordinate
expressions and rederived in [16] in a coordinate invariant way.

Theorem 5.1. For a nondegenerate gt-regular metric the Riemann and Ricci
tensor and the scalar curvature are defined as distributions.

Summing up Definition 5.2 provides sufficient conditions on a distributional
metric that allow to perform the most basic operations of semi-Riemannian ge-
ometry. On the other hand, the question of necessity is hard to tackle in a precise
sense, but there are strong indications that we have indeed found the most gen-
eral “reasonable” distributional framework providing the geometric foundations
of general relativity. First of all, the Bianchi identities, which provide conserva-
tion of energy, cannot be formulated in the gt-setting. Moreover, the following
consideration is essential when modelling singular scenarios in relativity: since
a distributional metric does not directly make sense as a physical model we have
to interpret it as an idealisation obtained as the limit of some approximating se-
quence of “physically realistic” metrics. It is now vital to have at hand a notion
of convergence for these sequences that also implies convergence of the respec-
tive curvature quantities. While such stability properties have been derived for
gt-regular metrics (see also Section 6 below) it is known that such results are
not available for a slightly wider class of metrics considered in [6].

On the other hand, already in [7, Thm. 1] it was observed that the gt-setting
only allows for a limited range of applications: The support of the Riemann
tensor of a nondegenerate gt-regular metric can only be concentrated to a sub-
manifold of codimension of at most one. Hence thin shells of matter can be
described in the gt-setting while cosmic strings, and point particles cannot be
covered. This fact provides a strong motivation for a “generalised curvature
framework” whose basis we recall now.

Again, due to the fact that the generalised framework allows to proceed
componentwise we may define without any obstacle (see [15, Def. 6.1]).

Definition 5.3. Let g ∈ G0
2(M) be a generalised metric, then the Riemann and

Ricci tensors as well as the generalised scalar curvature are defined by the usual
formulae.

Moreover, we have the following basic consistency with the smooth theory:
If one (hence any) representative gε of a generalised metric g converges locally
uniformly together with its derivatives up to order 2 to a vacuum solution of Ein-
stein’s equations (which then necessarily is a C2-metric), then the Ricci tensor
of g is associated to 0. For details see [15, Sec. 6].

6. Compatibility

So far we have described the distributional and the generalised setting in
parallel. A major question, however, is the compatibility between these frame-
works, which we are going to discuss now: Given a nondegenerate gt-regular
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metric g, we have at our hands two ways to compute its curvature. The first
one is to proceed within the gt-setting to compute Riem[g] ∈ D′13(M), while
the second one consist of embedding g into G0

2(M) and to calculate the curva-
ture Riem[ι(g)] ∈ G1

3(M) of the smoothed metric ι(g) within the generalised
framework. Naturally, the question arises of whether these two procedures lead
to the same result. A more precise formulation of this question is whether the
generalised curvature tensor Riem[ι(g)] of the embedded metric is associated to
the distributional curvature tensor Riem[g] of the original metric, i.e., whether
the folowing diagram commutes.

H1
loc ∩ L∞loc 3 g ι−−−−→ [ι(g)] ∈ G

gt-setting
y

yG-setting

Riem[g] ≈←−−−− Riem[ι(g)]

Since we are only interested in convergence results, it suffices to work locally:
denote by gij the local components of g and write gε

ij for their smoothings, i.e.,
gε

ij = gij ∗ ρε, where ρ is a mollifier as in Sec. 2, and denote the resulting metric
by gε. Now the question of compatibility may be rephrased as a question of
stability: does the convergence of gε → g ∈ H1

loc ∩ Lp
loc for all p < ∞, which

follows from the standard properties of convolution, imply the D′-convergence
of the curvature?

Indeed, in [7] and in [16], several stability results have been provided. For
our purpose it will be sufficient to recall the following one4.

Theorem 6.1. ([16, Thm. 4.6(2)]) If a sequence of nondegenerate gt-regular
metrics converges in H1

loc and the sequence of its inverses convergences in L∞loc,
then their distributional Riemann and Ricci tensors converge in distributions.

We now see that this result is not strong enough for our purpose. Indeed
([22, Prop. 4.8]) the inverse g−1

ε again converges in H1
loc ∩ Lp

loc for all p < ∞,
which falls short of implying the assumptions of the theorem. A positive answer
to our question is, however, provided by [22, Thm. 5.1] under an additional
assumption (called stability) which guarantees that the smoothing gε of g ob-
tained via convolution with mollifiers from as suitable class (called admissible)
indeed provides a generalised metric in the sense of Definition 3.2 (see [22, Sec.
4] for details). An analogous statement is provided for the Ricci tensor and
the scalar curvature ([22, Cor. 5.2]), so that we may give the following precise
statement.

Theorem 6.2. Let g be a nondegenerate, stable (see [22, Def. 4.5]), gt-regular
metric and gε be a smoothing of g obtained via convolution with an admissible
(see [22, Lem. 4.3]) mollifier. Then we have

Riem[gε] ≈ Riem[g], Ric[gε] ≈ Ric[g], and R[gε] ≈ R[g].

4But see the discussion at the end of Sec. 5 in [22].
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