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Semidirect products, coverings and embeddings of monoids
@ Introduction to Billhardt's \-semidirect product
@ A-semidirect product of left restriction monoids

@ Inductive categories, A\-semidirect products and restriction
monoids

Rida-E Zenab A-semidirect products and inductive categories



Semidirect products

Rida-E Zenab A-semidirect products and inductive categories



Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:

forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:
forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);

Q@ tt'-a=t-(t'-a)
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:

forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);
Q@ tt'-a=t-(t'-a)

@1l a=a
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:
forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);

Q@ tt'-a=t-(t'-a)

Q1 -a=a
These three axioms are equivalent to the existence of a
homomorphism from T to the monoid of endomorphisms of A.
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:

forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);
Q@ tt'-a=t-(t'-a)

Q1 -a=a
These three axioms are equivalent to the existence of a
homomorphism from T to the monoid of endomorphisms of A.

AxT={(at):acAteT}

is the semidirect product with multiplication
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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t € T, thereisamapa—t-a
satisfying:

forall t,t' € T and for all 3,3’ € A

Q t-(ad) = (t-a)(t-d);
Q@ tt'-a=t-(t'-a)

Q1 -a=a
These three axioms are equivalent to the existence of a
homomorphism from T to the monoid of endomorphisms of A.

AxT={(at):acAteT}
is the semidirect product with multiplication

(a, t)(d,t') = (a(t- &), tt).
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Semidirect products

Now if
AxT={(at):acAtecT}
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Semidirect products

Now if
AxT={(at):acAtecT}

then
A ={(a,1):a€ A}
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Semidirect products

Now if
AxT={(at):acAtecT}
then
A ={(a1):a€ A}
and

T ={(t-1,t):te T}
are submonoids of Ax T with A= A and T2 T’
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Semidirect products

Now if
AxT={(at):acAtecT}
then
A ={(a1):a€ A}
and

T ={(t-1,t):te T}
are submonoids of A x T with A= A" and T = T’ and

AT ={(a,t) e Ax T:a(t-1) = a}
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(A, T)-Proper monoids
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.

Let
E={t-1:teT}
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.

Let
E={t-1:teT}

Suppose the idempotents in E commute.
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.

Let
E={t-1:teT}

Suppose the idempotents in E commute. From ta = (t- a)t, we
have
t=(t-1)t
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.
Let
E={t-1:teT}

Suppose the idempotents in E commute. From ta = (t- a)t, we

have
t=(t-1)t

so that
at = a(t- 1)t.
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(A, T)-Proper monoids

Let S be a monoid such that S = AT where A, T are submonoids
of S. Suppose T acts on A satisfying

ta=(t-a)t.
Let
E={t-1:teT}

Suppose the idempotents in E commute. From ta = (t- a)t, we
have
t=(t-1)t

so that
at = a(t- 1)t.

Now if s € S, then

s =at where a=a(t-1)
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(A, T)-Proper monoids
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(A, T)-Proper monoids

Define 04 on T by

toas < et =fs for some e, f € (E).
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(A, T)-Proper monoids

Define 04 on T by
toas < et =fs for some e, f € (E).

Then o4 is a congruence.
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(A, T)-Proper monoids

Define 04 on T by
toas < et =fs for some e, f € (E).

Then o4 is a congruence. We say that S is (A, T)-proper if for
at,bs € S where a=a(t-1), b= b(s-1)
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(A, T)-Proper monoids

Define 04 on T by
toas < et =fs for some e, f € (E).

Then o4 is a congruence. We say that S is (A, T)-proper if for
at,bs € S where a=a(t-1), b= b(s-1)

at = bs
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(A, T)-Proper monoids

Define 04 on T by
toas < et =fs for some e, f € (E).

Then o4 is a congruence. We say that S is (A, T)-proper if for
at,bs € S where a=a(t-1), b= b(s-1)

at = bs
& a = b andtoas
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(A, T)-Proper monoids

Define 04 on T by
toas < et =fs for some e, f € (E).

Then o4 is a congruence. We say that S is (A, T)-proper if for
at,bs € S where a=a(t-1), b= b(s-1)

at = bs
& a = b andtoas

Consequently t o4 s implies that (s- 1)t = (t-1)s.
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(A, T)-Proper monoids
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(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.
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(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.

Then T’ acts on A’ by
(t-1,t)e(a,1)=(t-a,l1).
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(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.

Then T’ acts on A’ by
(t-1,t)e(a,1)=(t-a,l1).
We have

(t-1,t)(a,1) = ((t-1,t)e(a,1))(t 1,¢)
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(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.

Then T’ acts on A’ by
(t-1,t)e(a,1)=(t-a,l1).
We have

(t-1,t)(a,1) = ((t-1,t)e(a,1))(t 1,¢)

and
E={(t-1,t)«(L,1):(t-L,t) e T} ={(¢t-L,1): t € T}

is a set of commuting idempotents.

Rida-E Zenab A-semidirect products and inductive categories



(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.

Then T’ acts on A’ by
(t-1,t)e(a,1)=(t-a,l1).
We have

(t-1,t)(a,1) = ((t-1,t)e(a,1))(t 1,¢)
and
E'={(t-1,t)*(L,1): (t-1,t) e T} ={(t-1,1): t€ T}

is a set of commuting idempotents.

Then
U ={(at)eU:a(t-1)=a}
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(A, T)-Proper monoids

Suppose S = AT where A, T are submonoids of S. Suppose T acts
on A satisfying
ta=(t-a)t.

Then T’ acts on A’ by
(t-1,t)e(a,1)=(t-a,l1).
We have

(t-1,t)(a,1) = ((t-1,t)e(a,1))(t 1,¢)
and
E'={(t-1,t)*(L,1): (t-1,t) e T} ={(t-1,1): t€ T}

is a set of commuting idempotents.

Then
U ={(at)eU:a(t-1)=a}

is (A, T")-proper.
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Covering Theorem for monoids
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Covering Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (¢t - a)t
and E={t-1:te€ T} is a commuting set of idempotents.
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Covering Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (¢t - a)t
and E={t-1:te€ T} is a commuting set of idempotents. Then

g:U — S

is an onto morphism such that
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Covering Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (¢t - a)t
and E={t-1:te€ T} is a commuting set of idempotents. Then

0:U — S
is an onto morphism such that
HIA’ . A/ — A

is an isomorphism.
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Embedding Theorem for monoids
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Embedding Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (t - a)t
and E={t-1:te T} is a commuting set of idempotents.
Suppose that S is (A, T)-proper.
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Embedding Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (t - a)t
and E={t-1:te T} is a commuting set of idempotents.
Suppose that S is (A, T)-proper.

There exists a semidirect product
U=Ax T/O'A
where A contains a submonoid A’ ~ A and an embedding

0:5S—U
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Embedding Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (t - a)t
and E={t-1:te T} is a commuting set of idempotents.
Suppose that S is (A, T)-proper.

There exists a semidirect product
U=AXT oa
where A contains a submonoid A’ ~ A and an embedding
0:S—U

such that
Ola: A— A x {1}

is an isomorphism.
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Embedding Theorem for monoids

Idea of construction
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}.
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets and

A=IT74={f: T /oo — 1}
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets and

A=IT74={f: T /oo — 1}
T /o4 acts on A by
[t] % f : [u]([t] * f) = [ut]f

which is a monoid action by homomorphism.
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets and

A=I1T794={f: T /o5 — I}
T /o4 acts on A by
[t] % f : [u]([t] * f) = [ut]f
which is a monoid action by homomorphism. Let

fo:[ulffa={v -a:doau}E
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets and

A=I1T794={f: T /o5 — I}
T /o4 acts on A by
[t] % f : [u]([t] * f) = [ut]f
which is a monoid action by homomorphism. Let
fo:[ulffa={v -a:doau}E

Then
e fbe Aand{fb:ac Al = A
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Embedding Theorem for monoids

Idea of construction

Let | = {HE : H C A}. Then [ is subsemigroup of subsets of A
where multiplication is just product of sets and

A=I1T794={f: T /o5 — I}
T /o4 acts on A by
[t] % f : [u]([t] * f) = [ut]f
which is a monoid action by homomorphism. Let
fo:[ulffa={v -a:doau}E

Then
e fbe Aand{fb:ac Al = A

@ 0:5— AxT opis defined by
(at)d = (fa,[t]) where a=a(t-1).
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A-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.
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A-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by
endomorphisms on the left.
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A-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by
endomorphisms on the left. On

S=Ax*T={(at): tt7! a=a}
a multiplication is defined by

(a,t)(b,u) = (((t“u)(tu)*1 -a)(t- b), tu)
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A-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by
endomorphisms on the left. On

S=Ax*T={(at): tt7! a=a}

a multiplication is defined by

(2, ) (b, u) = (((tu)(tu) 2 - a)(¢ - b), tu)
Then S is an inverse semigroup with

(a,t) L =(t7ta 7).
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A-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by
endomorphisms on the left. On

S=Ax*T={(at): tt7! a=a}

a multiplication is defined by

(a, t)(b,u) = (((tu)(tu) ™" - a)(t - b), tu)
Then S is an inverse semigroup with
(a,t) L =(t7ta 7).

S is called a A\-semidirect product of A and T.
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A-semidirect product
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A-semidirect product

Billhardt generalized this result to left ample semigroups in 1995
where the first component was a semilattice.
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A-semidirect product

Billhardt generalized this result to left ample semigroups in 1995
where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample
congruence p on S, satisfying p N R* =1, S is isomorphic to a
subsemigroup T of Ax* S /p, with A as a semilattice.
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A-semidirect product

Billhardt generalized this result to left ample semigroups in 1995
where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample
congruence p on S, satisfying p N R* =1, S is isomorphic to a
subsemigroup T of Ax* S /p, with A as a semilattice.

M. Branco, G. Gomes and V. Gould (2010) extended this result to
the A-semidirect product of a semilattice and a left restriction
semigroup.
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Restriction semigroups
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Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that
is, semigroups equipped with an additional unary operation, denoted
by *.
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Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that
is, semigroups equipped with an additional unary operation, denoted
by *. The identities that define a left restriction semigroup S are:

ata=aath" =btat, (aTh)" =a"h", ab™ = (ab)*a.
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Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that
is, semigroups equipped with an additional unary operation, denoted
by *. The identities that define a left restriction semigroup S are:

ata=aath" =btat, (aTh)" =a"h", ab™ = (ab)*a.

We put
E={at:acS},

then E is a semilattice known as the semilattice of projections of S.
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Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that

is, semigroups equipped with an additional unary operation, denoted

by *. The identities that define a left restriction semigroup S are:
ata=aath" =btat, (aTh)" =a"h", ab™ = (ab)*a.

We put
E={at:acS},

then E is a semilattice known as the semilattice of projections of S.

Dually right restriction semigroups form a variety of unary
semigroups. In this case the unary operation is denoted by *.
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A-semidirect product of left restriction semigroups
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A-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup).
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A-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup). Put

Ax AT ={(a,t) e Ax T: t".a=a}.
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A-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup). Put

Ax AT ={(a,t) e Ax T: t".a=a}.

Then A x* T is left restriction with semilattice of projections
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A-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup). Put

Ax AT ={(a,t) e Ax T: t".a=a}.
Then A x* T is left restriction with semilattice of projections

F={(a",t"):tt-a=a}.
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A-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup). Put

Ax AT ={(a,t) e Ax T: t".a=a}.
Then A x* T is left restriction with semilattice of projections
F={(a",t"):tt-a=a}.

Multiplication in A x* T is defined by the rule:

(a, t)(b,u) = (((tu)+~a)(t-b),tu>
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.

e E, is central in A.
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
e E, is central in A.

@ Covering Theorem similar to the monoid case
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
e E, is central in A.

@ Covering Theorem similar to the monoid case

Embeddings
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
e E, is central in A.

@ Covering Theorem similar to the monoid case
Embeddings

In left restriction case
| ={UCA:E U= U,a"b=b"a Va,bc U}

is left restriction
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
e E, is central in A.

@ Covering Theorem similar to the monoid case
Embeddings

In left restriction case
| ={UCA:E U= U,a"b=b"a Va,bc U}

is left restriction and
A= [T/
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Coverings and embeddings in the A-semidirect product of

left restriction monoids

Coverings

@ We define S is (A, T)-proper similar to the monoid case.
e E, is central in A.

@ Covering Theorem similar to the monoid case
Embeddings

In left restriction case
| ={UCA:E U= U,a"b=b"a Va,bc U}

is left restriction and
A= [T/

Then 6:S — Ax* T /o4 is an embedding.
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Theorem

Let A and T be restriction semigroups. Suppose T acts on A on
the left and right by morphisms preserving (-, +, *) such that for
all t € T and for all a € A, the following compatibility conditions
holds:
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Theorem

Let A and T be restriction semigroups. Suppose T acts on A on
the left and right by morphisms preserving (-, +, *) such that for

all t € T and for all a € A, the following compatibility conditions
holds:

(t-a)ot = aot* = t*-a
t-(aot) = aott = tt.a
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Theorem

Let A and T be restriction semigroups. Suppose T acts on A on
the left and right by morphisms preserving (-, +, *) such that for
all t € T and for all a € A, the following compatibility conditions
holds:

(t-a)ot = aot* = t*-a

t-(aot) = aotht = tT.a
Then

Ax*T ={(a,t)€SxT:t"-a=a}.

is a restriction semigroup
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Theorem

Let A and T be restriction semigroups. Suppose T acts on A on
the left and right by morphisms preserving (-, +, *) such that for
all t € T and for all a € A, the following compatibility conditions
holds:

(t-a)ot = aot* = t*-a

t-(aot) = aotht = tT.a
Then

Ax*T ={(a,t)€SxT:t"-a=a}.

is a restriction semigroup with semilattice of projections

F={(a"t"):t"-at =aT}.
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The + and * are defined by

(a,t)t = (a*,t") and (a,t)* = (a*ot,t*)
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The + and * are defined by
(a,t)t = (a*,t") and (a,t)* = (a*ot,t*)

and multiplication is defined by:

(a, t)(b,u) = <((tu)+-a)(t-b),tu>
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl I x-yifand only if r(x) = d(y)
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

Rida-E Zenab A-semidirect products and inductive categories



Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonlyif 3 (x-y)-zandif I x-(y-2),
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonly if 3 (x-y)-zandif 3 x-(y-z), then

x-(y-z)=(xy) z
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonly if 3 (x-y)-zandif 3 x-(y-z), then

x-(y-z)=(xy) z

C3 3d(x)-x and d(x) - x = x
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonly if 3 (x-y)-zandif 3 x-(y-z), then

x-(y-z)=(xy) z

C3 3d(x)-x and d(x) - x = x and 3 x - r(x) and x - r(x) = x.

Let £ ={d(x) : x € C}.
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonly if 3 (x-y)-zandif 3 x-(y-z), then

x-(y-z)=(xy) z

C3 3d(x)-x and d(x) - x = x and 3 x - r(x) and x - r(x) = x.

Let £ = {d(x) : x € C}. It follows from the axioms that
E = {r(x): x € C} and C is a small category in standard sense
with set of identities E and set of objects identified with E.
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Let C = (C,-,d,r), where - is a partial binary operation on C and
d,r: C — C such that

Cl 3 x -y if and only if r(x) = d(y) and then

d(x-y) = d(x) and r(x-y) = r(y)

C2 3x-(y-z)ifandonly if 3 (x-y)-zandif 3 x-(y-z), then

x-(y-z)=(xy) z

C3 3d(x)-x and d(x) - x = x and 3 x - r(x) and x - r(x) = x.

Let £ = {d(x) : x € C}. It follows from the axioms that

E = {r(x): x € C} and C is a small category in standard sense
with set of identities £ and set of objects identified with E. Thus
d(x) is domain of x and r(x) is range of x.
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Inductive categories
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Inductive categories

Let C be a category with set of identities E.
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) < r(y) and d(x) < d(y);
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) < r(y) and d(x) < d(y);

(IC2) ifx<yand X' <y’ Ix-x"andTy-y then x-x' < y-y;
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) <r(y) and d(x) < d(y);
(IC2) ifx<yand X' <y’ Ix-x"andTy-y then x-x' < y-y;
(IC3) if e < d(x) then 3 unique (e|x) € C such that

(e|[x) < x and d(elx) =¢;
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) <r(y) and d(x) < d(y);
(IC2) ifx<yand X' <y’ Ix-x"andTy-y then x-x' < y-y;
(IC3) if e < d(x) then 3 unique (e|x) € C such that

(e|[x) < x and d(elx) =¢;

(IC4) if e < r(x) then 3 unique (x|e) € C such that

(x|]e) < x and r(x|e) =e;
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) <r(y) and d(x) < d(y);
(IC2) ifx<yand X' <y’ Ix-x"andTy-y then x-x' < y-y;
(IC3) if e < d(x) then 3 unique (e|x) € C such that

(e|[x) < x and d(elx) =¢;

(IC4) if e < r(x) then 3 unique (x|e) € C such that

(x|]e) < x and r(x|e) =e;

(IC5) (E, <) is a meet semilattice.
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Inductive categories

Let C be a category with set of identities E. Let < be a partial
order on C such that forall e € E, x,y € C

(IC1) if x <y then r(x) <r(y) and d(x) < d(y);
(IC2) ifx<yand X' <y’ Ix-x"andTy-y then x-x' < y-y;
(IC3) if e < d(x) then 3 unique (e|x) € C such that

(e|[x) < x and d(elx) =¢;

(IC4) if e < r(x) then 3 unique (x|e) € C such that

(x|]e) < x and r(x|e) =e;

(IC5) (E, <) is a meet semilattice.
We then say that (C, -, d,r, <) is an inductive category.
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Inductive categories and A\-semidirect products
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Inductive categories and A\-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (-, +, *)
such that for all t € T and for all a € S, the following compatibility
conditions hold:
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Inductive categories and A\-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (-, +, *)
such that for all t € T and for all a € S, the following compatibility
conditions hold:

(t-a)ot = aot* = t'-a
t-(aot) = aott = tt.a
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Inductive categories and A\-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (-, +, *)
such that for all t € T and for all a € S, the following compatibility
conditions hold:

(t-a)ot = aot* = t'-a
t-(aot) = aott = tt.a

Let
V=Ax*T={(a,t) e Ax T: t"-a=a}.
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Inductive categories and A\-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (-, +, *)
such that for all t € T and for all a € S, the following compatibility
conditions hold:

(t-a)ot = aot* = t'-a

t-(aot) = aott = tt.a

Let
V=Ax*T={(a,t) e Ax T: t"-a=a}.

Then V is an inductive category with set of local identities

F={(a"th):t"-at =a"}.
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Inductive categories and A\-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (-, +, *)
such that for all t € T and for all a € S, the following compatibility
conditions hold:

(t-a)ot = aot* = t'-a

t-(aot) = aott = tt.a
Let

V=Ax*T={(a,t) e Ax T: t"-a=a}.

Then V is an inductive category with set of local identities
F={(a"th):t"-at =a"}.

where
d(a,t) = (a",t"), r(a, t)=(a*ot,t¥)
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Inductive categories and A\-semidirect products

The partial binary operation on V is defined by the rule

(a(t - b), tu) if r(a,t) = d(b, u)

undefined otherwise

(a,t) - (byu) = {

where (a, t), (b,u) € V.
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Inductive categories and A\-semidirect products

The partial binary operation on V is defined by the rule

(a(t - b), tu) if r(a,t) = d(b, u)

undefined otherwise

(a,t) - (byu) = {

where (a, t), (b, u) € V. The partial order < on V is defined by

(a,t) < (b,u) ifandonlyif a<t™-b, t<u.
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Inductive categories and A\-semidirect products

The partial binary operation on V is defined by the rule

(a.) - (b.u) = (a(t ~-b), tu) if r.(a, t) = d(b, u)
undefined otherwise
where (a, t), (b, u) € V. The partial order < on V is defined by
(a,t) < (b,u) ifandonlyif a<t™-b, t<u.

Also for (a,t) € V and (x - e,x) € E, the restriction and
co-restriction are defined as:

((x-e,x)|(a,t)) = (x-ea,xt)

((a, t)[(x-e,x)) = (((tx)T-a)(t-(x-e)),tx).
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Inductive categories and A\-semidirect products

Theorem
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Inductive categories and A\-semidirect products

Theorem Let (V,-,d,r, <) be the inductive category as defined in
above Theorem. Let (a,t), (b, u) € V and define @ by the rule
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Inductive categories and A\-semidirect products

Theorem Let (V,-,d,r, <) be the inductive category as defined in
above Theorem. Let (a,t), (b, u) € V and define @ by the rule

(a,t) @ (b, u) = ((a,t)|r(a, t) A d(b, u)) (r(a, t) Ad(b, u)|(b, u)).
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Inductive categories and A\-semidirect products

Theorem Let (V,-,d,r, <) be the inductive category as defined in
above Theorem. Let (a,t), (b, u) € V and define @ by the rule

(a,t) @ (b, u) = ((a,t)|r(a, t) A d(b, u)) (r(a, t) Ad(b, u)|(b, u)).

Then ® coincides with A-semidirect product

(a, t)(b,u) = (((tu)+~a)(t-b),tu>
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