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Semidirect products

Suppose A and T are monoids. T is said to act on A by
endomorphisms if for every t ∈ T , there is a map a→ t · a
satisfying:
for all t, t ′ ∈ T and for all a, a′ ∈ A

1 t · (aa′) = (t · a)(t · a′);

2 tt ′ · a = t · (t ′ · a);

3 1 · a = a.
These three axioms are equivalent to the existence of a
homomorphism from T to the monoid of endomorphisms of A.

Ao T = {(a, t) : a ∈ A, t ∈ T}

is the semidirect product with multiplication

(a, t)(a′, t ′) = (a(t · a′), tt ′).
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Semidirect products

Now if
Ao T = {(a, t) : a ∈ A, t ∈ T}

then
A′ = {(a, 1) : a ∈ A}

and
T ′ = {(t · 1, t) : t ∈ T}

are submonoids of Ao T with A ∼= A′ and T ∼= T ′ and

A′T ′ = {(a, t) ∈ A× T : a(t · 1) = a}
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(A,T )-Proper monoids

Let S be a monoid such that S = AT where A,T are submonoids
of S . Suppose T acts on A satisfying

ta = (t · a)t.

Let
E = {t · 1 : t ∈ T}

Suppose the idempotents in E commute. From ta = (t · a)t, we
have

t = (t · 1)t

so that
at = a(t · 1)t.

Now if s ∈ S , then

s = at where a = a(t · 1)
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(A,T )-Proper monoids

Define σA on T by

t σA s ⇔ et = fs for some e, f ∈ 〈E 〉.

Then σA is a congruence. We say that S is (A,T )-proper if for
at, bs ∈ S where a = a(t · 1), b = b(s · 1)

at = bs
⇔ a = b and t σA s

Consequently t σA s implies that (s · 1)t = (t · 1)s.
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(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}
is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.

Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}
is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}
is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}
is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.

Then
U ′ = {(a, t) ∈ U : a(t · 1) = a}

is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}

is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



(A,T )-Proper monoids

Suppose S = AT where A,T are submonoids of S . Suppose T acts
on A satisfying

ta = (t · a)t.
Then T ′ acts on A′ by

(t · 1, t) • (a, 1) = (t · a, 1).

We have

(t · 1, t)(a, 1) =
(
(t · 1, t) • (a, 1)

)
(t · 1, t)

and

E ′ = {(t · 1, t) ∗ (1, 1) : (t · 1, t) ∈ T ′} = {(t · 1, 1) : t ∈ T}

is a set of commuting idempotents.
Then

U ′ = {(a, t) ∈ U : a(t · 1) = a}
is (A′,T ′)-proper.

Rida-E Zenab λ-semidirect products and inductive categories



Covering Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (t · a)t
and E = {t · 1 : t ∈ T} is a commuting set of idempotents. Then

θ : U ′ → S

is an onto morphism such that

θ|A′ : A′ → A

is an isomorphism.
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Embedding Theorem for monoids

Theorem Let S = AT where T acts on A such that ta = (t · a)t
and E = {t · 1 : t ∈ T} is a commuting set of idempotents.
Suppose that S is (A,T )-proper.

There exists a semidirect product

U = Ao T�σA

where A contains a submonoid A′ ≈ A and an embedding

θ : S → U

such that
θ|A : A→ A′ × {1}

is an isomorphism.
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Embedding Theorem for monoids

Idea of construction

Let I = {HE : H ⊆ A}. Then I is subsemigroup of subsets of A
where multiplication is just product of sets and

A = IT�σA = {f : T�σA → I}

T�σA acts on A by

[t] ? f : [u]([t] ? f ) = [ut]f

which is a monoid action by homomorphism. Let

fa : [u]fa = {u′ · a : u′ σA u}E

Then
fa ∈ A and {fa : a ∈ A} ≈ A

θ : S → Ao T�σA is defined by

(at)θ = (fa, [t]) where a = a(t · 1).
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λ-semidirect product

The semidirect product of two inverse semigroups is not inverse in
general.

Bernd Billhardt 1992

Let A and T be inverse semigroups such that T acts on A by
endomorphisms on the left. On

S = Aoλ T = {(a, t) : tt−1 · a = a}

a multiplication is defined by

(a, t)(b, u) =
(
((tu)(tu)−1 · a)(t · b), tu

)
Then S is an inverse semigroup with

(a, t)−1 = (t−1a−1, t−1).

S is called a λ-semidirect product of A and T .
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λ-semidirect product

Billhardt generalized this result to left ample semigroups in 1995
where the first component was a semilattice.

He proved that given a left ample semigroup S and a left ample
congruence ρ on S , satisfying ρ ∩R∗ = ı, S is isomorphic to a
subsemigroup T of Aoλ S�ρ, with A as a semilattice.

M. Branco, G. Gomes and V. Gould (2010) extended this result to
the λ-semidirect product of a semilattice and a left restriction
semigroup.
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Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that
is, semigroups equipped with an additional unary operation, denoted
by +. The identities that define a left restriction semigroup S are:

a+a = a, a+b+ = b+a+, (a+b)+ = a+b+, ab+ = (ab)+a.

We put
E = {a+ : a ∈ S},

then E is a semilattice known as the semilattice of projections of S .

Dually right restriction semigroups form a variety of unary
semigroups. In this case the unary operation is denoted by ∗.
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λ-semidirect product of left restriction semigroups

Theorem Let A and T be left restriction semigroups and suppose
that T acts on A by endomorphisms (as a left restriction
semigroup). Put

Aoλ T = {(a, t) ∈ A× T : t+ · a = a}.

Then Aoλ T is left restriction with semilattice of projections

F = {(a+, t+) : t+ · a = a}.

Multiplication in Aoλ T is defined by the rule:

(a, t)(b, u) =

((
(tu)+ · a

)(
t · b

)
, tu
)
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Coverings and embeddings in the λ-semidirect product of
left restriction monoids

Coverings

We define S is (A,T )-proper similar to the monoid case.

EA is central in A.

Covering Theorem similar to the monoid case

Embeddings

In left restriction case

I = {U ⊆ A : EAU = U, a+b = b+a ∀a, b ∈ U}

is left restriction and
A = IT�σA

Then θ : S → Aoλ T�σA is an embedding.
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Two sided case

Theorem

Let A and T be restriction semigroups. Suppose T acts on A on
the left and right by morphisms preserving (·, +, ∗) such that for
all t ∈ T and for all a ∈ A, the following compatibility conditions
holds:

(t · a) ◦ t = a ◦ t∗ = t∗ · a
t · (a ◦ t) = a ◦ t+ = t+ · a.

Then
Aoλ T = {(a, t) ∈ S × T : t+ · a = a}.

is a restriction semigroup with semilattice of projections

F = {(a+, t+) : t+ · a+ = a+}.
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Two sided case

The + and ∗ are defined by

(a, t)+ = (a+, t+) and (a, t)∗ = (a∗ ◦ t, t∗)

and multiplication is defined by:

(a, t)(b, u) =

((
(tu)+ · a

)(
t · b

)
, tu
)
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Categories

Let C = (C , ·,d, r), where · is a partial binary operation on C and
d, r : C → C such that

C1 ∃ x · y if and only if r(x) = d(y) and then

d(x · y) = d(x) and r(x · y) = r(y);

C2 ∃ x · (y · z) if and only if ∃ (x · y) · z and if ∃ x · (y · z), then

x · (y · z) = (x · y) · z ;

C3 ∃ d(x) · x and d(x) · x = x and ∃ x · r(x) and x · r(x) = x .

Let E = {d(x) : x ∈ C}. It follows from the axioms that
E = {r(x) : x ∈ C} and C is a small category in standard sense
with set of identities E and set of objects identified with E . Thus
d(x) is domain of x and r(x) is range of x .
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Inductive categories

Let C be a category with set of identities E . Let ≤ be a partial
order on C such that for all e ∈ E , x , y ∈ C

(IC1) if x ≤ y then r(x) ≤ r(y) and d(x) ≤ d(y);

(IC2) if x ≤ y and x ′ ≤ y ′, ∃ x · x ′ and ∃ y · y ′, then x · x ′ ≤ y · y ′;

(IC3) if e ≤ d(x) then ∃ unique (e|x) ∈ C such that

(e|x) ≤ x and d(e|x) = e;

(IC4) if e ≤ r(x) then ∃ unique (x |e) ∈ C such that

(x |e) ≤ x and r(x |e) = e;

(IC5) (E ,≤) is a meet semilattice.
We then say that (C , ·,d, r,≤) is an inductive category.
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Inductive categories and λ-semidirect products

Theorem Let A and T be restriction semigroups and suppose that
T acts on A on the left and right by morphisms preserving (·, +, ∗)
such that for all t ∈ T and for all a ∈ S , the following compatibility
conditions hold:

(t · a) ◦ t = a ◦ t∗ = t∗ · a
t · (a ◦ t) = a ◦ t+ = t+ · a.

Let
V = Aoλ T = {(a, t) ∈ A× T : t+ · a = a}.

Then V is an inductive category with set of local identities

F = {(a+, t+) : t+ · a+ = a+}.

where
d(a, t) = (a+, t+), r(a, t) = (a∗ ◦ t, t∗)
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Inductive categories and λ-semidirect products

The partial binary operation on V is defined by the rule

(a, t) · (b, u) =

{
(a(t · b), tu) if r(a, t) = d(b, u)
undefined otherwise

where (a, t), (b, u) ∈ V .

The partial order ≤ on V is defined by

(a, t) ≤ (b, u) if and only if a ≤ t+ · b , t ≤ u.

Also for (a, t) ∈ V and (x · e, x) ∈ E , the restriction and
co-restriction are defined as:(

(x · e, x)|(a, t)
)

= (x · ea, xt)(
(a, t)|(x · e, x)

)
=

(
((tx)+ · a)(t · (x · e)), tx

)
.
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Inductive categories and λ-semidirect products

Theorem

Let (V , ·,d, r,≤) be the inductive category as defined in
above Theorem. Let (a, t), (b, u) ∈ V and define ⊗ by the rule

(a, t)⊗ (b, u) =
(
(a, t)|r(a, t) ∧ d(b, u)

)(
r(a, t) ∧ d(b, u)|(b, u)

)
.

Then ⊗ coincides with λ-semidirect product

(a, t)(b, u) =

((
(tu)+ · a

)(
t · b

)
, tu
)
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