Graphs, Polymorphisms, and Multi-Sorted Structures

Ross Willard

University of Waterloo

NSAC 2013 University of Novi Sad June 6, 2013

Background

Structure: $\mathbf{A} = (A; (R_i)).$

- Always finite and in a finite relational language.
- $A^c = A_A = (A, (\{a\})_{a \in A});$ "A with constants."

Relations definable in A.

- I.e., definable by a 1st-order logical formula in the language of A.
- We are interested only in **primitive-positive (pp)** formulas:

$$\varphi(\mathbf{x})$$
 of the form $\exists \mathbf{y}[\land atomic(\mathbf{u})]$
 \uparrow
vars from \mathbf{x}, \mathbf{y}

• A relation is **ppc-definable** in **A** if it is definable by a pp-formula with parameters (i.e., in **A**^c).

Let \mathbf{A}, \mathbf{B} be finite structures. Assume for simplicity that

$$\mathbf{B}=(B;R,S), \qquad R\subseteq B^2, \quad S\subseteq B^3.$$

Definition

B is **ppc-interpretable** in **A** if, for some $k \ge 1$, there exist ppc-definable relations U, E, R^*, S^* of **A** of arities k, 2k, 2k, 3k such that

- E is an equivalence relation on U.
- $R^* \subseteq U^2$, $S^* \subseteq U^3$.
- R^*, S^* are invariant under E.
- $(U/E; R^*/E, S^*/E) \cong \mathbf{B}.$

Notation: $\mathbf{B} \leq_{ppc} \mathbf{A}$, $\mathbf{B} \equiv_{ppc} \mathbf{A}$.

In particular, $\mathbf{A}^{c} \equiv_{ppc} \mathbf{A}$.

In the usual fashion, \leq_{ppc} and \equiv_{ppc} determines a poset:

$$\begin{aligned} & \mathbf{2}_{3SAT} = (\{0,1\}; \, R_{000}, R_{100}, R_{110}, R_{111}) \\ & \text{where } R_{abc} = \{0,1\}^3 \setminus \{abc\} \\ & \mathbf{K}_3 = (\{0,1,2\}; \neq) \end{aligned}$$

Constraint Satisfaction Problems

Fix a finite structure **A**.

 $\operatorname{CSP}(\mathbf{A}^{c})$

Input: An =-free, quantifier-free pp-formula $\varphi(\mathbf{x})$ in the language of \mathbf{A}^c (i.e., allowing parameters).

Question: Is $\exists \mathbf{x} \varphi(\mathbf{x})$ true in \mathbf{A}^c ?

Connection to \leq_{ppc} :

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson 2009) If $\mathbf{B} \leq_{ppc} \mathbf{A}$, then $\operatorname{CSP}(\mathbf{B}^c) \leq_L \operatorname{CSP}(\mathbf{A}^c)$.

- $\mathfrak{I}_P = \{ [\mathbf{A}] : \operatorname{CSP}(\mathbf{A}^c) \text{ is in } P \} \text{ is an order ideal of } \mathfrak{P}_{ppc}.$
- $\mathcal{F}_{NPC} = \{ [A] : CSP(A^c) \text{ is NP-complete} \}$ is an order filter.

- $\mathfrak{I}_P = \{ [\mathbf{A}] : \operatorname{CSP}(\mathbf{A}^c) \text{ is in } P \} \text{ is an order ideal of } \mathfrak{P}_{ppc}.$
- $\mathcal{F}_{NPC} = \{ [A] : CSP(A^c) \text{ is NP-complete} \}$ is an order filter.

- $\mathfrak{I}_P = \{ [\mathbf{A}] : \operatorname{CSP}(\mathbf{A}^c) \text{ is in } P \} \text{ is an order ideal of } \mathfrak{P}_{ppc}.$
- $\mathcal{F}_{NPC} = \{ [\mathbf{A}] : \operatorname{CSP}(\mathbf{A}^c) \text{ is NP-complete} \}$ is an order filter.

The **CSP Dichotomy Conjecture** asserts that this region is empty (if $P \neq NP$).

The Algebraic CSP Dichotomy Conjecture asserts that $\mathcal{I}_{P} = \mathcal{P}_{ppc} \setminus \{[\mathbf{2}_{3SAT}]\}$ (if $P \neq NP$).

- $\mathfrak{I}_P = \{ [\mathbf{A}] : \operatorname{CSP}(\mathbf{A}^c) \text{ is in } P \} \text{ is an order ideal of } \mathfrak{P}_{ppc}.$
- $\mathcal{F}_{NPC} = \{ [\mathbf{A}] : CSP(\mathbf{A}^c) \text{ is NP-complete} \} \text{ is an order filter.}$

The **CSP Dichotomy Conjecture** asserts that this region is empty (if $P \neq NP$).

The Algebraic CSP Dichotomy Conjecture asserts that $\mathcal{I}_{P} = \mathcal{P}_{ppc} \setminus \{[\mathbf{2}_{3SAT}]\}$ (if $P \neq NP$).

Connection to algebra

Fix a finite structure **A**.

Definition

A **polymorphism** of **A** is any operation $h: A^n \to A$ which preserves the relations of **A** (equivalently, is a homomorphism $h: \mathbf{A}^n \to \mathbf{A}$).

 $h: A^n \to A$ is **idempotent** if it satisfies $h(x, x, ..., x) = x \quad \forall x \in A$.

The polymorphism algebra of A is

 $PolAlg(\mathbf{A}) := (A; \{all polymorphisms of \mathbf{A}\}).$

The idempotent polymorphism algebra of A is

$$\begin{split} \mathrm{IdPolAlg}(\mathbf{A}) &:= (A; \{ \mathsf{all idempotent polymorphisms of } \mathbf{A} \}) \\ &= \mathrm{PolAlg}(\mathbf{A}^c). \end{split}$$

Fix a set Σ of formal identities in operations symbols F, G, H,

Assume that
$$\Sigma dash \mathsf{F}(x,x,\ldots,x) \equiv x$$
, $\mathsf{G}(x,x,\ldots,x) \equiv x,\ldots$.

(I.e., Σ is idempotent.)

Definition

An algebra $\mathbb{A} = (A; \mathcal{F})$ satisfies Σ as a Maltsev condition if there exist (term) operations f, g, h, \ldots of \mathbb{A} such that $(A; f, g, h, \ldots) \models \Sigma$.

Definition

A structure **A** admits Σ if IdPolAlg(**A**) satisfies Σ as a Maltsev condition.

Fix an idempotent set Σ of identities.

Theorem (Bulatov, Jeavons, Krokhin)

Suppose $\mathbf{B} \leq_{ppc} \mathbf{A}$. If \mathbf{A} admits Σ , then so does \mathbf{B} .

Hence $\{[\mathbf{A}] : \mathbf{A} \text{ admits } \Sigma\}$ is an order ideal of \mathcal{P}_{ppc} .

In fact, $\mathbf{A} \equiv_{ppc} \mathbf{B}$ iff \mathbf{A}, \mathbf{B} admit the same (finite) idempotent sets of identities. \leq_{ppc} has a similar characterization.

Where are you favorite structures (relative to these Maltsev conditions)?

Ross Willard (Waterloo)

Graphs, Polymorphisms, Multi-Sorted Struc

My goals of this lecture are to:

- Say some things about **bipartite graphs** and where they fit in the picture.
- **2** Argue that **multi-sorted structures** are not evil.
- Give a connection between (1) and (2).

Multi-sorted structures

Multi-sorted structure: $\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i)).$

- $0, 1, \ldots, n$ are the sorts; A_k is the universe of sort k.
- Each R_i is a sorted relation: e.g., $R_1 \subseteq A_2 \times A_0 \times A_0$.

(Sorted) Relations definable in A.

• Adapt 1st-order logic in the usual way (every variable has a specified sort; an equality relation for each sort).

Multi-sorted structures

Multi-sorted structure: $\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i)).$

- $0, 1, \ldots, n$ are the sorts; A_k is the universe of sort k.
- Each R_i is a sorted relation: e.g., $R_1 \subseteq A_2 \times A_0 \times A_0$.

(Sorted) Relations definable in A.

• Adapt 1st-order logic in the usual way (every variable has a specified sort; an equality relation for each sort).

Ppc-interpretations of one 2-sorted structure in another, i.e., $\mathbf{B} \leq_{ppc} \mathbf{A}$.

- each universe B_i of **B** is realized as a U_i/E_i where U_i, E_i are (sorted) ppc-definable relations of **A**.
- each sorted R relation of **B** is realized as R^* /"the appropriate E_i 's."

Let **A** be the (1-sorted) structure (A; E_0 , E_1) pictured at right, where E_0 , E_1 are the indicated equivalence relations on A.

Let **A** be the (1-sorted) structure (A; E_0 , E_1) pictured at right, where E_0 , E_1 are the indicated equivalence relations on A.

Let $\mathbf{B} = (B_0, B_1; R)$ be the 2-sorted structure pictured below.

Claim: $\mathbf{B} \leq_{ppc} \mathbf{A}$.

Let **A** be the (1-sorted) structure (A; E_0 , E_1) pictured at right, where E_0 , E_1 are the indicated equivalence relations on A.

Let $\mathbf{B} = (B_0, B_1; R)$ be the 2-sorted structure pictured below.

Claim: $\mathbf{B} \leq_{ppc} \mathbf{A}$.

Proof: define $U_0 = U_1 = A$ and $(x, y) \in R^* \iff \exists z [x E_0 z \& z E_1 y].$

Let **A** be the (1-sorted) structure (A; E_0 , E_1) pictured at right, where E_0 , E_1 are the indicated equivalence relations on A.

Let $\mathbf{B} = (B_0, B_1; R)$ be the 2-sorted structure pictured below.

Claim: $\mathbf{B} \leq_{ppc} \mathbf{A}$.

Proof: define $U_0 = U_1 = A$ and $(x, y) \in R^* \iff \exists z [x E_0 z \& z E_1 y]$. Then $\mathbf{B} \cong (A/E_0, A/E_1; R^*/E_0 \times E_1)$.

Ross Willard (Waterloo)

Let **A** be the (1-sorted) structure (A; E_0 , E_1) pictured at right, where E_0 , E_1 are the indicated equivalence relations on A.

Let $\mathbf{B} = (B_0, B_1; R)$ be the 2-sorted structure pictured below.

Claim: $\mathbf{B} \leq_{ppc} \mathbf{A}$.

Proof: define $U_0 = U_1 = A$ and $(x, y) \in R^* \iff \exists z [x E_0 z \& z E_1 y]$. Then $\mathbf{B} \cong (A/E_0, A/E_1; R^*/E_0 \times E_1)$. Just as in the 1-sorted case, \leq_{ppc} gives a poset:

 $\mathcal{P}_{ppc}^{+} = (\{\text{all finite <u>multi-sorted</u> structures}\} / \equiv_{ppc}; \leq).$

$$\mathcal{P}^+_{ppc} = ???$$

Just as in the 1-sorted case, \leq_{ppc} gives a poset:

 $\mathcal{P}_{ppc}^{+} = (\{\text{all finite <u>multi-sorted</u> structures}\} / \equiv_{ppc}; \leq).$

Fact: $\mathcal{P}_{ppc}^+ = \mathcal{P}_{ppc}$.

I.e., for every multi-sorted **B** there exists a 1-sorted $\mathbf{A} \equiv_{ppc} \mathbf{B}$.

Just as in the 1-sorted case, \leq_{ppc} gives a poset:

 $\mathcal{P}_{ppc}^{+} = (\{\text{all finite <u>multi-sorted</u> structures}\} / \equiv_{ppc}; \leq).$

Fact: $\mathcal{P}_{ppc}^+ = \mathcal{P}_{ppc}$.

I.e., for every multi-sorted **B** there exists a 1-sorted $\mathbf{A} \equiv_{ppc} \mathbf{B}$.

Moral: Multi-sorted structures have no value.

Let's be immoral.

 $CSP(\mathbf{A}^{c})$ can be defined for a multi-sorted \mathbf{A} .

• Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to \leq_{ppc} is remains true for multi-sorted **A**, **B**:

If $\mathbf{B} \leq_{ppc} \mathbf{A}$, then $\operatorname{CSP}(\mathbf{B}^c) \leq_L \operatorname{CSP}(\mathbf{A}^c)$

Let's be immoral.

 $\operatorname{CSP}(\mathbf{A}^c)$ can be defined for a multi-sorted \mathbf{A} .

• Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to \leq_{ppc} is remains true for multi-sorted **A**, **B**:

If
$$\mathbf{B} \leq_{ppc} \mathbf{A}$$
, then $\operatorname{CSP}(\mathbf{B}^c) \leq_L \operatorname{CSP}(\mathbf{A}^c)$

Polymorphisms of multi-sorted A are more complicated.

Definition (Bulatov, Jeavons 2003)

Let $\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i))$. An *m*-ary polymorphism of \mathbf{A} is a tuple (f^0, \dots, f^n) of *m*-ary operations $f^k : A_k^m \to A_k$ which "jointly preserve" the relations of \mathbf{A} . E.g., if $R_1 \subseteq A_1 \times A_0$, then

 $\forall (a_1, b_1), \dots, (a_m, b_m) \in R_1$, need $(f^1(\mathbf{a}), f^0(\mathbf{b})) \in R_1$.

Polymorphism "algebra"

Fix
$$\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i))$$
.
Let $Pol(\mathbf{A}) = \{all \text{ polymorphisms } \vec{f} = (f^0, f^1, \dots, f^n) \text{ of } \mathbf{A}\}.$
Define

$$\begin{array}{rcl} \mathbb{A}_0 &=& (A_0; \, (f^0: \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\ \mathbb{A}_1 &=& (A_1; \, (f^1: \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\ &\vdots \\ \mathbb{A}_n &=& (A_n; \, (f^n: \vec{f} \in \operatorname{Pol}(\mathbf{A})). \end{array}$$

 $\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_n$ are (ordinary) algebras with a common language.

Polymorphism "algebra"

Fix
$$\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i))$$
.
Let $Pol(\mathbf{A}) = \{all \text{ polymorphisms } \vec{f} = (f^0, f^1, \dots, f^n) \text{ of } \mathbf{A}\}.$
Define

$$\begin{array}{rcl} \mathbb{A}_0 &=& (A_0; \, (f^0: \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\ \mathbb{A}_1 &=& (A_1; \, (f^1: \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\ &\vdots \\ \mathbb{A}_n &=& (A_n; \, (f^n: \vec{f} \in \operatorname{Pol}(\mathbf{A})). \end{array}$$

 $\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_n$ are (ordinary) algebras with a common language.

Definition (Bulatov, Jeavons 2003)

The **polymorphism "algebra"** of **A** is the tuple $(\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_n)$ of algebras defined above.

Similarly for $IdPolAlg(\mathbf{A})$.

Fix an idempotent set $\boldsymbol{\Sigma}$ of formal identities.

Definition

Let **A** be a multi-sorted structure and $\operatorname{IdPolAlg}(\mathbf{A}) = (\mathbb{A}_0, \dots, \mathbb{A}_n)$ its corresponding idempotent polymorphism "algebra."

A admits Σ if $\{\mathbb{A}_0, \ldots, \mathbb{A}_n\}$ satisfies Σ as a Maltsev condition.

The characterizations of \equiv_{ppc} and \leq_{ppc} remain true for multi-sorted **A**, **B**.

A ≡_{ppc} B iff A, B admit the same idempotent sets of identities.
B ≤_{ppc} A iff every such Σ admitted by A is admitted by B.

Immoral Moral: Nothing bad will happen if we embrace multi-sorted structures.

Bipartite graphs in \mathcal{P}_{ppc}

Question: How "dense" in \mathcal{P}_{ppc} are graphs, digraphs, posets, etc?

Bipartite graphs in \mathcal{P}_{ppc}

Question: How "dense" in \mathcal{P}_{ppc} are graphs, digraphs, posets, etc?

Theorem (Kazda (2011))

Let D be a finite digraph. If D admits the Maltsev identities

$$\mathsf{P}(x,x,y) \equiv y \equiv \mathsf{P}(y,x,x)$$

for 2-permutability, then D admits the majority (or 3-NU) identities

$$\mathsf{M}(x,x,y) \equiv \mathsf{M}(x,y,x) \equiv \mathsf{M}(y,x,x) \equiv x.$$

Bipartite graphs in \mathcal{P}_{ppc}

Question: How "dense" in \mathcal{P}_{ppc} are graphs, digraphs, posets, etc?

Theorem (Kazda (2011))

Let D be a finite digraph. If D admits the Maltsev identities

$$\mathsf{P}(x,x,y) \equiv y \equiv \mathsf{P}(y,x,x)$$

for 2-permutability, then D admits the majority (or 3-NU) identities

$$\mathsf{M}(x,x,y) \equiv \mathsf{M}(x,y,x) \equiv \mathsf{M}(y,x,x) \equiv x.$$

Theorem (Maróti, Zádori (2012))

Let **P** be a reflexive digraph (e.g., a poset). If **P** admits identities for congruence modularity, then **P** admits the k-ary **near unanimity** (NU) identities for some $k \ge 3$.

Theorem (Bulín, Delić, Jackson, Niven (?))

For every finite structure **A** there is a directed graph $\mathcal{D}(\mathbf{A})$ such that

- $\operatorname{CSP}(\mathcal{D}(\mathbf{A})) \equiv_L \operatorname{CSP}(\mathbf{A}).$
- **2** $\mathbf{A} \leq_{ppc} \mathcal{D}(\mathbf{A}).$

③ The "Kazda gap" is essentially all that separates $\mathcal{D}(\mathbf{A})$ from \mathbf{A} .

Some things we know.

• (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If **G** is bipartite with girth \geq 6, then [**G**] \equiv_{ppc} [2_{3SAT}].

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If **G** is bipartite with girth \geq 6, then [**G**] \equiv_{ppc} [2_{3SAT}].
- Trees and complete bipartite graphs admit the majority identities and hence are low in \mathcal{P}_{ppc} .

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If **G** is bipartite with girth \geq 6, then [**G**] \equiv_{ppc} [2_{3SAT}].
- Trees and complete bipartite graphs admit the majority identities and hence are low in \mathcal{P}_{ppc} .
- (Kazda) Bipartite graphs suffer the "Kazda gap."

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If **G** is bipartite with girth \geq 6, then [**G**] \equiv_{ppc} [2_{3SAT}].
- Trees and complete bipartite graphs admit the majority identities and hence are low in \mathcal{P}_{ppc} .
- (Kazda) Bipartite graphs suffer the "Kazda gap."
- (Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite graphs admitting the k-NU identities, k ≥ 3.

Some things we know.

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If **G** is bipartite with girth \geq 6, then [**G**] \equiv_{ppc} [2_{3SAT}].
- Trees and complete bipartite graphs admit the majority identities and hence are low in \mathcal{P}_{ppc} .
- (Kazda) Bipartite graphs suffer the "Kazda gap."
- (Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite graphs admitting the k-NU identities, k ≥ 3.

A new gap (W)

If **G** is bipartite and admits the **Hagemann-Mitschke** identities for 5-permutability, then **G** admits an NU polymorphism of some arity.

Ross Willard (Waterloo)

Definition:

Lemma (W)

Let $\boldsymbol{\Sigma}$ be an idempotent set of identities such that

- Every identity in Σ mentions at most two variables;
- **2** The 2-element connected graph admits Σ .

Lemma (W)

Let $\boldsymbol{\Sigma}$ be an idempotent set of identities such that

- Every identity in Σ mentions at most two variables;
- **2** The 2-element connected graph admits Σ .

Let **G** be a connected bipartite graph and let \vec{G} and G^{\sharp} be the corresponding strongly bipartite and 2-sorted digraphs respectively.

If any of **G**, $\vec{\mathbf{G}}$ or \mathbf{G}^{\sharp} admit Σ , then all admit Σ .

Lemma (W)

Let $\boldsymbol{\Sigma}$ be an idempotent set of identities such that

- Every identity in Σ mentions at most two variables;
- **2** The 2-element connected graph admits Σ .

Let **G** be a connected bipartite graph and let \vec{G} and G^{\sharp} be the corresponding strongly bipartite and 2-sorted digraphs respectively.

If any of **G**, $\vec{\mathbf{G}}$ or \mathbf{G}^{\sharp} admit Σ , then all admit Σ .

Proof: $\mathbf{G}^{\sharp} \leq_{ppc} \mathbf{\vec{G}} \leq_{ppc} \mathbf{G}$. A recipe shows \mathbf{G}^{\sharp} admits $\Sigma \Rightarrow \mathbf{G}$ admits Σ .

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

Ross Willard (Waterloo)

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

Ross Willard (Waterloo)

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

Ross Willard (Waterloo)

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}(\mathcal{B}(\mathbf{A})^c) \equiv_P \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

Ross Willard (Waterloo)

Question: How close are **A** and $\mathcal{B}(\mathbf{A})$ in \mathcal{P}_{ppc} ?

Theorem (Payne, W)

Given a finite structure A, let $\mathcal{B}(A)$ be the associated bipartite graph.

• $\mathbf{A} \leq_{ppc} \mathcal{B}(\mathbf{A}).$

Question: How close are **A** and $\mathcal{B}(\mathbf{A})$ in \mathcal{P}_{ppc} ?

Theorem (Payne, W)

Given a finite structure A, let $\mathcal{B}(A)$ be the associated bipartite graph.

- **1** $\mathbf{A} \leq_{ppc} \mathcal{B}(\mathbf{A}).$
- For each of the six order ideals J of P_{ppc} associated with omitting types, if one of A, B(A) belongs to J, then so does the other.

Question: How close are **A** and $\mathcal{B}(\mathbf{A})$ in \mathcal{P}_{ppc} ?

Theorem (Payne, W)

Given a finite structure A, let $\mathcal{B}(A)$ be the associated bipartite graph.

- **1** $\mathbf{A} \leq_{ppc} \mathcal{B}(\mathbf{A}).$
- For each of the six order ideals J of P_{ppc} associated with omitting types, if one of A, B(A) belongs to J, then so does the other.
- **③** $\mathcal{B}(\mathbf{A})$ never admits the Gumm identities for CM.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.
Let $\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R)$.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.
Let $\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R)$.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}.$$

Let
$$\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R).$$

Let **X**["] be the induced 4-sorted structure with universes A_0, A_1, A, R .

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.
Let $\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R)$.

Let **X**["] be the induced 4-sorted structure with universes A_0, A_1, A, R .

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.
Let $\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R)$.
Let \mathbf{X}'' be the induced 4-sorted structure with universes A_0, A_1, A, R .
Then $\mathbf{A} \equiv_{ppc} \mathbf{X}'' \leq_{ppc} \mathbf{X}' \leq_{ppc} \mathbf{X} = \mathcal{B}(\mathbf{A})^{\sharp} \leq_{ppc} \mathcal{B}(\mathbf{A})$.

Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.
Let $\mathbf{X}' = (\mathbf{X} \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R)$.
Let \mathbf{X}'' be the induced 4-sorted structure with universes A_0, A_1, A, R .
Then $\mathbf{A} \equiv_{ppc} \mathbf{X}'' \leq_{ppc} \mathbf{X}' \leq_{ppc} \mathbf{X} = \mathcal{B}(\mathbf{A})^{\sharp} \leq_{ppc} \mathcal{B}(\mathbf{A})$.
Show \mathbf{X}'' admits $\Sigma(n) \Rightarrow \mathbf{X}$ admits $\Sigma(n+4)$, for relevant Σ .

Problems

- Are A and B(A) "essentially the same" modulo the 5-perm ⇒ NU and Kazda gaps?
- **2** Find a better map $\mathbf{A} \mapsto \mathcal{B}'(\mathbf{A})$ à la BDJN.
- § Prove or disprove: $CM \Rightarrow NU$ for bipartite graphs.
- Solution For each "omitting-types" order ideal J of P_{ppc}, characterize the bipartite graphs in J.

Problems

- Are A and B(A) "essentially the same" modulo the 5-perm ⇒ NU and Kazda gaps?
- **2** Find a better map $\mathbf{A} \mapsto \mathcal{B}'(\mathbf{A})$ à la BDJN.
- § Prove or disprove: $CM \Rightarrow NU$ for bipartite graphs.
- Solution For each "omitting-types" order ideal J of P_{ppc}, characterize the bipartite graphs in J.

Hvala!