Graphs, Polymorphisms, and Multi-Sorted Structures

Ross Willard

University of Waterloo

NSAC 2013
University of Novi Sad
June 6, 2013

Background

Structure: $\mathbf{A}=\left(A ;\left(R_{i}\right)\right)$.

- Always finite and in a finite relational language.
- $\mathbf{A}^{c}=\mathbf{A}_{A}=\left(\mathbf{A},(\{a\})_{a \in A}\right) ;$ " \mathbf{A} with constants."

Relations definable in \mathbf{A}.

- I.e., definable by a 1st-order logical formula in the language of \mathbf{A}.
- We are interested only in primitive-positive (pp) formulas:

$$
\begin{array}{r}
\varphi(\mathbf{x}) \text { of the form } \quad \exists \mathbf{y}[\bigwedge \text { atomic }(\mathbf{u})] \\
\uparrow \\
\text { vars from } \mathbf{x}, \mathbf{y}
\end{array}
$$

- A relation is ppc-definable in \mathbf{A} if it is definable by a pp-formula with parameters (i.e., in \mathbf{A}^{c}).

Let A, B be finite structures. Assume for simplicity that

$$
\mathbf{B}=(B ; R, S), \quad R \subseteq B^{2}, \quad S \subseteq B^{3} .
$$

Definition

\mathbf{B} is ppc-interpretable in \mathbf{A} if, for some $k \geq 1$, there exist ppc-definable relations $U, E, R^{*}, S^{*} \underline{\underline{\text { of }} \mathbf{A}}$ of arities $k, 2 k, 2 k, 3 k$ such that

- E is an equivalence relation on U.
- $R^{*} \subseteq U^{2}, \quad S^{*} \subseteq U^{3}$.
- R^{*}, S^{*} are invariant under E.
- (U/E; R*/E, $\left.S^{*} / E\right) \cong \mathbf{B}$.

Notation: $\mathbf{B} \leq_{p p c} \mathbf{A}, \quad \mathbf{B} \equiv_{p p c} \mathbf{A}$.

In particular, $\mathbf{A}^{c} \equiv_{p p c} \mathbf{A}$.

In the usual fashion, $\leq_{p p c}$ and $\equiv_{p p c}$ determines a poset:

- $[\mathbf{A}]=\left\{\mathbf{B}: \mathbf{B} \equiv_{p p c} \mathbf{A}\right\}$.
- $[\mathbf{B}] \leq[\mathbf{A}]$ iff $\mathbf{B} \leq p p c \mathbf{A}$.
- $\mathcal{P}_{p p c}=\left(\{\right.$ all finite structures $\left.\} / \equiv_{p p c} ; \leq\right)$.

Constraint Satisfaction Problems

Fix a finite structure \mathbf{A}.

$\operatorname{CSP}\left(\mathbf{A}^{c}\right)$

Input: An =-free, quantifier-free pp-formula $\varphi(\mathbf{x})$ in the language of \mathbf{A}^{c} (i.e., allowing parameters).

Question: Is $\exists \mathbf{x} \varphi(\mathbf{x})$ true in \mathbf{A}^{c} ?

Connection to $\leq_{p p c}$:
Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson 2009) If $\mathbf{B} \leq_{p p c} \mathbf{A}$, then $\operatorname{CSP}\left(\mathbf{B}^{c}\right) \leq_{L} \operatorname{CSP}\left(\mathbf{A}^{c}\right)$.

Corollary

- $\mathcal{J}_{P}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is in $\left.P\right\}$ is an order ideal of $\mathcal{P}_{p p c}$.
- $\mathcal{F}_{N P C}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is NP-complete $\}$ is an order filter.

Corollary

- $\mathcal{J}_{P}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is in $\left.P\right\}$ is an order ideal of $\mathcal{P}_{p p c}$.
- $\mathcal{F}_{N P C}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is NP-complete $\}$ is an order filter.

The CSP Dichotomy Conjecture asserts that this region is empty (if $P \neq N P$).

Corollary

- $\mathcal{J}_{P}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is in $\left.P\right\}$ is an order ideal of $\mathcal{P}_{p p c}$.
- $\mathcal{F}_{N P C}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is NP-complete $\}$ is an order filter.

The CSP Dichotomy Conjecture asserts that this region is empty (if $P \neq N P$).

The Algebraic CSP Dichotomy Conjecture asserts that $\mathcal{J}_{P}=\mathcal{P}_{p p c} \backslash\left\{\left[\mathbf{2}_{3 S A T}\right]\right\}$ (if $\mathrm{P} \neq \mathrm{NP}$).

Corollary

- $\mathcal{J}_{P}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is in $\left.P\right\}$ is an order ideal of $\mathcal{P}_{p p c}$.
- $\mathcal{F}_{N P C}=\left\{[\mathbf{A}]: \operatorname{CSP}\left(\mathbf{A}^{c}\right)\right.$ is NP-complete $\}$ is an order filter.

The CSP Dichotomy Conjecture asserts that this region is empty (if $P \neq N P$).

The Algebraic CSP Dichotomy Conjecture asserts that $\mathcal{J}_{P}=\mathcal{P}_{p p c} \backslash\left\{\left[\mathbf{2}_{3 S A T}\right]\right\}$ (if $\mathrm{P} \neq \mathrm{NP}$).

Connection to algebra

Fix a finite structure \mathbf{A}.

Definition

A polymorphism of \mathbf{A} is any operation $h: A^{n} \rightarrow A$ which preserves the relations of \mathbf{A} (equivalently, is a homomorphism $h: \mathbf{A}^{n} \rightarrow \mathbf{A}$).
$h: A^{n} \rightarrow A$ is idempotent if it satisfies $h(x, x, \ldots, x)=x \quad \forall x \in A$.
The polymorphism algebra of \mathbf{A} is

$$
\operatorname{PolAlg}(\mathbf{A}):=(A ;\{\text { all polymorphisms of } \mathbf{A}\}) .
$$

The idempotent polymorphism algebra of \mathbf{A} is
$\operatorname{IdPolAlg}(\mathbf{A}):=(A ;\{$ all idempotent polymorphisms of $\mathbf{A}\})$

$$
=\operatorname{PolAlg}\left(\mathbf{A}^{c}\right)
$$

Fix a set Σ of formal identities in operations symbols F, G, H, \ldots.
Assume that $\Sigma \vdash \mathrm{F}(x, x, \ldots, x) \equiv x, \mathrm{G}(x, x, \ldots, x) \equiv x, \ldots$.
(I.e., Σ is idempotent.)

Definition

An algebra $\mathbb{A}=(A ; \mathcal{F})$ satisfies Σ as a Maltsev condition if there exist (term) operations f, g, h, \ldots of \mathbb{A} such that $(A ; f, g, h, \ldots) \models \Sigma$.

Definition

A structure \mathbf{A} admits Σ if $\operatorname{IdPolAlg}(\mathbf{A})$ satisfies Σ as a Maltsev condition.

Fix an idempotent set Σ of identities.
Theorem (Bulatov, Jeavons, Krokhin)
Suppose $\mathbf{B} \leq_{p p c} \mathbf{A}$. If \mathbf{A} admits $\boldsymbol{\Sigma}$, then so does \mathbf{B}.
Hence $\{[\mathbf{A}]: \mathbf{A}$ admits $\Sigma\}$ is an order ideal of $\mathcal{P}_{\text {ppc }}$.

In fact, $\mathbf{A} \equiv{ }_{p p c} \mathbf{B}$ iff \mathbf{A}, \mathbf{B} admit the same (finite) idempotent sets of identities. $\leq_{p p c}$ has a similar characterization.

In this way, $\mathcal{P}_{p p c}$ is "stratified" by idempotent Maltsev conditions arising in universal algebra.

In this way, $\mathcal{P}_{p p c}$ is "stratified" by idempotent Maltsev conditions arising in universal algebra.

In this way, $\mathcal{P}_{p p c}$ is "stratified" by idempotent Maltsev conditions arising in universal algebra.

In this way, $\mathcal{P}_{p p c}$ is "stratified" by idempotent Maltsev conditions arising in universal algebra.

Where are you favorite structures (relative to these Maltsev conditions)?

Aims of this talk

My goals of this lecture are to:
(1) Say some things about bipartite graphs and where they fit in the picture.
(2) Argue that multi-sorted structures are not evil.
(3) Give a connection between (1) and (2).

Multi-sorted structures

Multi-sorted structure: $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{n} ;\left(R_{i}\right)\right)$.

- $0,1, \ldots, n$ are the sorts; A_{k} is the universe of sort k.
- Each R_{i} is a sorted relation: e.g., $R_{1} \subseteq A_{2} \times A_{0} \times A_{0}$.
(Sorted) Relations definable in \mathbf{A}.
- Adapt 1st-order logic in the usual way (every variable has a specified sort; an equality relation for each sort).

Multi-sorted structures

Multi-sorted structure: $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{n} ;\left(R_{i}\right)\right)$.

- $0,1, \ldots, n$ are the sorts; A_{k} is the universe of sort k.
- Each R_{i} is a sorted relation: e.g., $R_{1} \subseteq A_{2} \times A_{0} \times A_{0}$.
(Sorted) Relations definable in A.
- Adapt 1st-order logic in the usual way (every variable has a specified sort; an equality relation for each sort).

Ppc-interpretations of one 2-sorted structure in another, i.e., $\mathbf{B} \leq_{p p c} \mathbf{A}$.

- each universe B_{i} of \mathbf{B} is realized as a U_{i} / E_{i} where U_{i}, E_{i} are (sorted) ppc-definable relations of \mathbf{A}.
- each sorted R relation of \mathbf{B} is realized as $R^{*} /$ "the appropriate E_{i} 's."

Example

Let \mathbf{A} be the (1-sorted) structure $\left(A ; E_{0}, E_{1}\right)$ pictured at right, where E_{0}, E_{1} are the indicated equivalence relations on A.

$\mathbf{A}=\left(A ; E_{0}, E_{1}\right)$
$E_{0}=\bigcirc$ blocks
$E_{1}=\bigcirc$ blocks

Example

Let \mathbf{A} be the (1-sorted) structure $\left(A ; E_{0}, E_{1}\right)$ pictured at right, where E_{0}, E_{1} are the indicated equivalence relations on A.

Let $\mathbf{B}=\left(B_{0}, B_{1} ; R\right)$ be the 2-sorted structure pictured below.

$$
\mathbf{B}=\left(B_{0}, B_{1} ; R\right)
$$

$$
R \subseteq B_{0} \times B_{1}
$$

$\mathbf{A}=\left(A ; E_{0}, E_{1}\right)$
$E_{0}=\bigcirc$ blocks
$E_{1}=\bigcirc$ blocks

Claim: $\mathbf{B} \leq_{p p c} \mathbf{A}$.

Example

Let \mathbf{A} be the (1-sorted) structure $\left(A ; E_{0}, E_{1}\right)$ pictured at right, where E_{0}, E_{1} are the indicated equivalence relations on A.

Let $\mathbf{B}=\left(B_{0}, B_{1} ; R\right)$ be the 2-sorted structure pictured below.

$$
\mathbf{B}=\left(B_{0}, B_{1} ; R\right)
$$

$$
R \subseteq B_{0} \times B_{1}
$$

Claim: $\mathbf{B} \leq_{p p c} \mathbf{A}$.
Proof: define $U_{0}=U_{1}=A$ and $(x, y) \in R^{*} \Longleftrightarrow \exists z\left[x E_{0} z \& z E_{1} y\right]$.

Example

Let \mathbf{A} be the (1-sorted) structure $\left(A ; E_{0}, E_{1}\right)$ pictured at right, where E_{0}, E_{1} are the indicated equivalence relations on A.

Let $\mathbf{B}=\left(B_{0}, B_{1} ; R\right)$ be the 2-sorted structure pictured below.

$$
\mathbf{B}=\left(B_{0}, B_{1} ; R\right)
$$

$$
R \subseteq B_{0} \times B_{1}
$$

Claim: $\mathbf{B} \leq_{p p c} \mathbf{A}$.
Proof: define $U_{0}=U_{1}=A$ and $(x, y) \in R^{*} \Longleftrightarrow \exists z\left[x E_{0} z \& z E_{1} y\right]$.
Then $\quad \mathbf{B} \cong\left(A / E_{0}, A / E_{1} ; R^{*} / E_{0} \times E_{1}\right)$.

Example

Let \mathbf{A} be the (1-sorted) structure $\left(A ; E_{0}, E_{1}\right)$ pictured at right, where E_{0}, E_{1} are the indicated equivalence relations on A.

Let $\mathbf{B}=\left(B_{0}, B_{1} ; R\right)$ be the 2-sorted structure pictured below.

$$
\begin{gathered}
\mathbf{B}=\left(B_{0}, B_{1} ; R\right) \\
R \subseteq B_{0} \times B_{1}
\end{gathered}
$$

Claim: $\mathbf{B} \leq_{p p c} \mathbf{A}$.
Proof: define $U_{0}=U_{1}=A$ and $(x, y) \in R^{*} \Longleftrightarrow \exists z\left[x E_{0} z \& z E_{1} y\right]$.
Then $\quad \mathbf{B} \cong\left(A / E_{0}, A / E_{1} ; R^{*} / E_{0} \times E_{1}\right)$.

Just as in the 1 -sorted case, $\leq_{p p c}$ gives a poset:

Just as in the 1 -sorted case, $\leq_{p p c}$ gives a poset:
$\mathcal{P}_{p p c}^{+}=\left(\{\right.$all finite $\underline{\underline{\text { multi-sorted }}}$ structures $\left.\} / \equiv_{p p c} ; \leq\right)$.

$$
\mathcal{P}_{p p c}^{+}=? ? ?
$$

Fact: $\mathcal{P}_{p p c}^{+}=\mathcal{P}_{p p c}$.
l.e., for every multi-sorted \mathbf{B} there exists a 1 -sorted $\mathbf{A} \equiv_{p p c} \mathbf{B}$.

Just as in the 1 -sorted case, $\leq_{p p c}$ gives a poset:

Fact: $\mathcal{P}_{p p c}^{+}=\mathcal{P}_{p p c}$.
l.e., for every multi-sorted \mathbf{B} there exists a 1 -sorted $\mathbf{A} \equiv_{p p c} \mathbf{B}$.

Moral: Multi-sorted structures have no value.

Let's be immoral.
$\operatorname{CSP}\left(\mathbf{A}^{c}\right)$ can be defined for a multi-sorted \mathbf{A}.

- Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to $\leq_{p p c}$ is remains true for multi-sorted \mathbf{A}, \mathbf{B} :
If $\mathbf{B} \leq_{p p c} \mathbf{A}$, then $\operatorname{CSP}\left(\mathbf{B}^{c}\right) \leq_{L} \operatorname{CSP}\left(\mathbf{A}^{c}\right)$

Let's be immoral.
$\operatorname{CSP}\left(\mathbf{A}^{c}\right)$ can be defined for a multi-sorted \mathbf{A}.

- Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to $\leq_{p p c}$ is remains true for multi-sorted \mathbf{A}, \mathbf{B} :

$$
\text { If } \mathbf{B} \leq_{p p c} \mathbf{A} \text {, then } \operatorname{CSP}\left(\mathbf{B}^{c}\right) \leq_{L} \operatorname{CSP}\left(\mathbf{A}^{c}\right)
$$

Polymorphisms of multi-sorted A are more complicated.

Definition (Bulatov, Jeavons 2003)

Let $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{n} ;\left(R_{i}\right)\right)$. An m-ary polymorphism of \mathbf{A} is a tuple $\left(f^{0}, \ldots, f^{n}\right)$ of m-ary operations $f^{k}: A_{k}^{m} \rightarrow A_{k}$ which "jointly preserve" the relations of \mathbf{A}. E.g., if $R_{1} \subseteq A_{1} \times A_{0}$, then

$$
\forall\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right) \in R_{1}, \quad \operatorname{need}\left(f^{1}(\mathbf{a}), f^{0}(\mathbf{b})\right) \in R_{1}
$$

Polymorphism "algebra"

Fix $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{n} ;\left(R_{i}\right)\right)$.
Let $\operatorname{Pol}(\mathbf{A})=\left\{\right.$ all polymorphisms $\vec{f}=\left(f^{0}, f^{1}, \ldots, f^{n}\right)$ of $\left.\mathbf{A}\right\}$.
Define

$$
\begin{aligned}
\mathbb{A}_{0} & =\left(A_{0} ;\left(f^{0}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right. \\
\mathbb{A}_{1} & =\left(A_{1} ;\left(f^{1}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right. \\
& \vdots \\
\mathbb{A}_{n} & =\left(A_{n} ;\left(f^{n}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right.
\end{aligned}
$$

$\mathbb{A}_{0}, \mathbb{A}_{1}, \ldots, \mathbb{A}_{n}$ are (ordinary) algebras with a common language.

Polymorphism "algebra"

Fix $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{n} ;\left(R_{i}\right)\right)$.
Let $\operatorname{Pol}(\mathbf{A})=\left\{\right.$ all polymorphisms $\vec{f}=\left(f^{0}, f^{1}, \ldots, f^{n}\right)$ of $\left.\mathbf{A}\right\}$.
Define

$$
\begin{aligned}
\mathbb{A}_{0} & =\left(A_{0} ;\left(f^{0}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right. \\
\mathbb{A}_{1} & =\left(A_{1} ;\left(f^{1}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right. \\
& \vdots \\
\mathbb{A}_{n} & =\left(A_{n} ;\left(f^{n}: \vec{f} \in \operatorname{Pol}(\mathbf{A})\right)\right.
\end{aligned}
$$

$\mathbb{A}_{0}, \mathbb{A}_{1}, \ldots, \mathbb{A}_{n}$ are (ordinary) algebras with a common language.

Definition (Bulatov, Jeavons 2003)

The polymorphism "algebra" of \mathbf{A} is the tuple $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \ldots, \mathbb{A}_{n}\right)$ of algebras defined above.

Similarly for IdPolAlg(A).

Fix an idempotent set Σ of formal identities.

Definition

Let \mathbf{A} be a multi-sorted structure and $\operatorname{IdPolAlg}(\mathbf{A})=\left(\mathbb{A}_{0}, \ldots, \mathbb{A}_{n}\right)$ its corresponding idempotent polymorphism "algebra."

A admits Σ if $\left\{\mathbb{A}_{0}, \ldots, \mathbb{A}_{n}\right\}$ satisfies Σ as a Maltsev condition.

The characterizations of $\equiv_{p p c}$ and $\leq_{p p c}$ remain true for multi-sorted \mathbf{A}, \mathbf{B}.

- $\mathbf{A} \equiv{ }_{p p c} \mathbf{B}$ iff \mathbf{A}, \mathbf{B} admit the same idempotent sets of identities.
- $\mathbf{B} \leq_{p p c} \mathbf{A}$ iff every such Σ admitted by \mathbf{A} is admitted by \mathbf{B}.

Immoral Moral: Nothing bad will happen if we embrace multi-sorted structures.

Bipartite graphs in $\mathcal{P}_{p p c}$
Question: How "dense" in $\mathcal{P}_{p p c}$ are graphs, digraphs, posets, etc?

Bipartite graphs in $\mathcal{P}_{p p c}$
Question: How "dense" in $\mathcal{P}_{p p c}$ are graphs, digraphs, posets, etc?
Theorem (Kazda (2011))
Let \mathbf{D} be a finite digraph. If \mathbf{D} admits the Maltsev identities

$$
\mathrm{P}(x, x, y) \equiv y \equiv \mathrm{P}(y, x, x)
$$

for 2-permutability, then \mathbf{D} admits the majority (or 3-NU) identities

$$
\mathrm{M}(x, x, y) \equiv \mathrm{M}(x, y, x) \equiv \mathrm{M}(y, x, x) \equiv x
$$

Bipartite graphs in $\mathcal{P}_{p p c}$
Question: How "dense" in $\mathcal{P}_{p p c}$ are graphs, digraphs, posets, etc?
Theorem (Kazda (2011))
Let \mathbf{D} be a finite digraph. If \mathbf{D} admits the Maltsev identities

$$
\mathrm{P}(x, x, y) \equiv y \equiv \mathrm{P}(y, x, x)
$$

for 2-permutability, then \mathbf{D} admits the majority (or 3-NU) identities

$$
\mathrm{M}(x, x, y) \equiv \mathrm{M}(x, y, x) \equiv \mathrm{M}(y, x, x) \equiv x
$$

Theorem (Maróti, Zádori (2012))

Let \mathbf{P} be a reflexive digraph (e.g., a poset). If \mathbf{P} admits identities for congruence modularity, then \mathbf{P} admits the k-ary near unanimity (NU) identities for some $k \geq 3$.

Theorem (Bulín, Delić, Jackson, Niven (?))

For every finite structure \mathbf{A} there is a directed graph $\mathcal{D}(\mathbf{A})$ such that
(1) $\operatorname{CSP}(\mathcal{D}(\mathbf{A})) \equiv{ }_{\llcorner } \operatorname{CSP}(\mathbf{A})$.
(1) $\mathbf{A} \leq_{p p c} \mathcal{D}(\mathbf{A})$.

- The "Kazda gap" is essentially all that separates $\mathcal{D}(\mathbf{A})$ from \mathbf{A}.

What about (symmetric, irreflexive) graphs?

Some things we know.

What about (symmetric, irreflexive) graphs?

Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.

What about (symmetric, irreflexive) graphs?

Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- (Using Rival) If \mathbf{G} is bipartite with girth ≥ 6, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.

What about (symmetric, irreflexive) graphs?

Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- (Using Rival) If \mathbf{G} is bipartite with girth ≥ 6, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- Trees and complete bipartite graphs admit the majority identities and hence are low in $\mathcal{P}_{p p c}$.

What about (symmetric, irreflexive) graphs?
Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- (Using Rival) If \mathbf{G} is bipartite with girth ≥ 6, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- Trees and complete bipartite graphs admit the majority identities and hence are low in $\mathcal{P}_{p p c}$.
- (Kazda) Bipartite graphs suffer the "Kazda gap."

What about (symmetric, irreflexive) graphs?

Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- (Using Rival) If \mathbf{G} is bipartite with girth ≥ 6, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- Trees and complete bipartite graphs admit the majority identities and hence are low in $\mathcal{P}_{p p c}$.
- (Kazda) Bipartite graphs suffer the "Kazda gap."
- (Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite graphs admitting the k-NU identities, $k \geq 3$.

What about (symmetric, irreflexive) graphs?
Some things we know.

- (Bulatov) If \mathbf{G} is a non-bipartite graph, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- (Using Rival) If \mathbf{G} is bipartite with girth ≥ 6, then $[\mathbf{G}] \equiv_{p p c}\left[\mathbf{2}_{3 S A T}\right]$.
- Trees and complete bipartite graphs admit the majority identities and hence are low in $\mathcal{P}_{p p c}$.
- (Kazda) Bipartite graphs suffer the "Kazda gap."
- (Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite graphs admitting the k-NU identities, $k \geq 3$.

A new gap (W)

If \mathbf{G} is bipartite and admits the Hagemann-Mitschke identities for 5-permutability, then \mathbf{G} admits an NU polymorphism of some arity.

Useful tool: reduction to 2-sorted structures.

Definition:

Useful tool: reduction to 2-sorted structures.

Definition:

Lemma (W)
Let Σ be an idempotent set of identities such that
(1) Every identity in Σ mentions at most two variables;
(2) The 2-element connected graph admits Σ.

Useful tool: reduction to 2 -sorted structures.

Definition:

Lemma (W)
Let Σ be an idempotent set of identities such that
(1) Every identity in Σ mentions at most two variables;
(2) The 2-element connected graph admits Σ.

Let \mathbf{G} be a connected bipartite graph and let $\overrightarrow{\mathbf{G}}$ and \mathbf{G}^{\sharp} be the corresponding strongly bipartite and 2-sorted digraphs respectively. If any of $\mathbf{G}, \overrightarrow{\mathbf{G}}$ or \mathbf{G}^{\sharp} admit Σ, then all admit Σ.

Useful tool: reduction to 2 -sorted structures.

Definition:

Lemma (W)
Let Σ be an idempotent set of identities such that
(1) Every identity in Σ mentions at most two variables;
(2) The 2-element connected graph admits Σ.

Let \mathbf{G} be a connected bipartite graph and let $\overrightarrow{\mathbf{G}}$ and \mathbf{G}^{\sharp} be the corresponding strongly bipartite and 2-sorted digraphs respectively.

If any of $\mathbf{G}, \overrightarrow{\mathbf{G}}$ or \mathbf{G}^{\sharp} admit Σ, then all admit Σ.

Proof: $\mathbf{G}^{\sharp} \leq_{p p c} \overrightarrow{\mathbf{G}} \leq_{p p c} \mathbf{G}$. A recipe shows \mathbf{G}^{\sharp} admits $\Sigma \Rightarrow \mathbf{G}$ admits Σ.

Theorem (Feder, Vardi (1990's))
For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Theorem (Feder, Vardi (1990's))

For every finite structure \mathbf{A} there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $\operatorname{CSP}\left(\mathcal{B}(\mathbf{A})^{c}\right) \equiv{ }_{p} \operatorname{CSP}(\mathbf{A})$.

The construction, assuming $\mathbf{A}=(A ; R)$ is a digraph.

Question: How close are \mathbf{A} and $\mathcal{B}(\mathbf{A})$ in $\mathcal{P}_{p p c}$?
Theorem (Payne, W)
Given a finite structure \mathbf{A}, let $\mathcal{B}(\mathbf{A})$ be the associated bipartite graph.
(1) $\mathbf{A} \leq_{p p c} \mathcal{B}(\mathbf{A})$.

Question: How close are \mathbf{A} and $\mathcal{B}(\mathbf{A})$ in $\mathcal{P}_{p p c}$?
Theorem (Payne, W)
Given a finite structure \mathbf{A}, let $\mathcal{B}(\mathbf{A})$ be the associated bipartite graph.
(1) $\mathbf{A} \leq_{p p c} \mathcal{B}(\mathbf{A})$.
(2) For each of the six order ideals \mathcal{J} of $\mathcal{P}_{p p c}$ associated with omitting types, if one of $\mathbf{A}, \mathcal{B}(\mathbf{A})$ belongs to \mathcal{J}, then so does the other.

Question: How close are \mathbf{A} and $\mathcal{B}(\mathbf{A})$ in $\mathcal{P}_{p p c}$?
Theorem (Payne, W)
Given a finite structure \mathbf{A}, let $\mathcal{B}(\mathbf{A})$ be the associated bipartite graph.
(1) $\mathbf{A} \leq_{p p c} \mathcal{B}(\mathbf{A})$.
(2) For each of the six order ideals \mathcal{J} of $\mathcal{P}_{p p c}$ associated with omitting types, if one of $\mathbf{A}, \mathcal{B}(\mathbf{A})$ belongs to \mathcal{J}, then so does the other.
(3) $\mathcal{B}(\mathbf{A})$ never admits the Gumm identities for CM.

Sketch of the proof of (1).

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.
Let $\mathbf{X}^{\prime \prime}$ be the induced 4-sorted structure with universes A_{0}, A_{1}, A, R.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.
Let $\mathbf{X}^{\prime \prime}$ be the induced 4-sorted structure with universes A_{0}, A_{1}, A, R.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.
Let $\mathbf{X}^{\prime \prime}$ be the induced 4-sorted structure with universes A_{0}, A_{1}, A, R.
Then $\mathbf{A} \equiv_{p p c} \mathbf{X}^{\prime \prime} \leq_{p p c} \mathbf{X}^{\prime} \leq_{p p c} \mathbf{X}=\mathcal{B}(\mathbf{A})^{\sharp} \leq_{p p c} \mathcal{B}(\mathbf{A})$.

Sketch of the proof of (1).

Let $\mathbf{X}=\left(X_{0}, X_{1} ; \vec{E}\right)=\mathcal{B}(\mathbf{A})^{\sharp}$.
Let $\mathbf{X}^{\prime}=\left(\mathbf{X} \backslash\{\alpha, \rho, 0,1\}, A_{0}, A_{1}, A, R\right)$.
Let $\mathbf{X}^{\prime \prime}$ be the induced 4-sorted structure with universes A_{0}, A_{1}, A, R.
Then $\mathbf{A} \equiv_{p p c} \mathbf{X}^{\prime \prime} \leq_{p p c} \mathbf{X}^{\prime} \leq_{p p c} \mathbf{X}=\mathcal{B}(\mathbf{A})^{\sharp} \leq_{p p c} \mathcal{B}(\mathbf{A})$.
Show $\mathbf{X}^{\prime \prime}$ admits $\Sigma(n) \Rightarrow \mathbf{X}$ admits $\Sigma(n+4)$, for relevant Σ.

Problems

(1) Are \mathbf{A} and $\mathcal{B}(\mathbf{A})$ "essentially the same" modulo the 5 -perm $\Rightarrow \mathrm{NU}$ and Kazda gaps?
(2) Find a better map $\mathbf{A} \longmapsto \mathcal{B}^{\prime}(\mathbf{A})$ à la BDJN.
(3) Prove or disprove: $\mathrm{CM} \Rightarrow \mathrm{NU}$ for bipartite graphs.
(9) For each "omitting-types" order ideal \mathcal{J} of $\mathcal{P}_{p p c}$, characterize the bipartite graphs in J.

Problems

(1) Are \mathbf{A} and $\mathcal{B}(\mathbf{A})$ "essentially the same" modulo the 5 -perm $\Rightarrow \mathrm{NU}$ and Kazda gaps?
(2) Find a better map $\mathbf{A} \longmapsto \mathcal{B}^{\prime}(\mathbf{A})$ à la BDJN.
(3) Prove or disprove: $\mathrm{CM} \Rightarrow \mathrm{NU}$ for bipartite graphs.
(9) For each "omitting-types" order ideal \mathcal{J} of $\mathcal{P}_{p p c}$, characterize the bipartite graphs in J.

Hvala!

