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Background

Structure: A = (A; (Ri )).

Always finite and in a finite relational language.

Ac = AA = (A, ({a})a∈A); “A with constants.”

Relations definable in A.

I.e., definable by a 1st-order logical formula in the language of A.

We are interested only in primitive-positive (pp) formulas:

ϕ(x) of the form ∃y[
∧

atomic(u) ]

↑
vars from x, y

A relation is ppc-definable in A if it is definable by a pp-formula
with parameters (i.e., in Ac).
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Let A,B be finite structures. Assume for simplicity that

B = (B; R,S), R ⊆ B2, S ⊆ B3.

Definition

B is ppc-interpretable in A if, for some k ≥ 1, there exist ppc-definable
relations U,E ,R∗,S∗ of A of arities k , 2k , 2k , 3k such that

E is an equivalence relation on U.

R∗ ⊆ U2, S∗ ⊆ U3.

R∗,S∗ are invariant under E .

(U/E ; R∗/E , S∗/E ) ∼= B.

Notation: B ≤ppc A, B ≡ppc A.

In particular, Ac ≡ppc A.

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 3 / 26



In the usual fashion, ≤ppc and ≡ppc determines a poset:

[A] = {B : B ≡ppc A}.
[B] ≤ [A] iff B ≤ppc A.

Pppc = ({all finite structures}/≡ppc ; ≤).

[23SAT ] = [K3] 23SAT = ({0, 1}; R000,R100,R110,R111)

where Rabc = {0, 1}3 \ {abc}

K3 = ({0, 1, 2}; 6=)

[1] 1 = ({0}; )

[(1,∅)]

Pppc =
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Constraint Satisfaction Problems

Fix a finite structure A.

CSP(Ac)

Input: An =-free, quantifier-free pp-formula ϕ(x) in the language of Ac

(i.e., allowing parameters).

Question: Is ∃xϕ(x) true in Ac?

Connection to ≤ppc :

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson 2009)

If B ≤ppc A, then CSP(Bc) ≤L CSP(Ac).
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Corollary

IP = {[A] : CSP(Ac) is in P} is an order ideal of Pppc .

FNPC = {[A] : CSP(Ac) is NP-complete} is an order filter.

[23SAT ]

[1]

FNPC

IP

The CSP Dichotomy Conjecture asserts that

this region is empty (if P 6= NP).

The Algebraic CSP Dichotomy Conjecture asserts

that IP = Pppc \ {[23SAT ]} (if P 6= NP).

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 6 / 26



Corollary

IP = {[A] : CSP(Ac) is in P} is an order ideal of Pppc .

FNPC = {[A] : CSP(Ac) is NP-complete} is an order filter.

[23SAT ]

[1]

FNPC

IP

The CSP Dichotomy Conjecture asserts that

this region is empty (if P 6= NP).

The Algebraic CSP Dichotomy Conjecture asserts

that IP = Pppc \ {[23SAT ]} (if P 6= NP).

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 6 / 26



Corollary

IP = {[A] : CSP(Ac) is in P} is an order ideal of Pppc .

FNPC = {[A] : CSP(Ac) is NP-complete} is an order filter.

[23SAT ]

[1]

FNPC

IP

The CSP Dichotomy Conjecture asserts that

this region is empty (if P 6= NP).

The Algebraic CSP Dichotomy Conjecture asserts

that IP = Pppc \ {[23SAT ]} (if P 6= NP).

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 6 / 26



Corollary

IP = {[A] : CSP(Ac) is in P} is an order ideal of Pppc .

FNPC = {[A] : CSP(Ac) is NP-complete} is an order filter.

[23SAT ]

[1]

FNPC

IP

The CSP Dichotomy Conjecture asserts that

this region is empty (if P 6= NP).

The Algebraic CSP Dichotomy Conjecture asserts

that IP = Pppc \ {[23SAT ]} (if P 6= NP).

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 6 / 26



Connection to algebra

Fix a finite structure A.

Definition

A polymorphism of A is any operation h : An → A which preserves the
relations of A (equivalently, is a homomorphism h : An → A).

h : An → A is idempotent if it satisfies h(x , x , . . . , x) = x ∀x ∈ A.

The polymorphism algebra of A is

PolAlg(A) := (A; {all polymorphisms of A}).

The idempotent polymorphism algebra of A is

IdPolAlg(A) := (A; {all idempotent polymorphisms of A})
= PolAlg(Ac).
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Fix a set Σ of formal identities in operations symbols F,G,H, . . . .

Assume that Σ ` F(x , x , . . . , x) ≡ x , G(x , x , . . . , x) ≡ x , . . . .

(I.e., Σ is idempotent.)

Definition

An algebra A = (A; F) satisfies Σ as a Maltsev condition if there exist
(term) operations f , g , h, . . . of A such that (A; f , g , h, . . .) |= Σ.

Definition

A structure A admits Σ if IdPolAlg(A) satisfies Σ as a Maltsev condition.
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Fix an idempotent set Σ of identities.

Theorem (Bulatov, Jeavons, Krokhin)

Suppose B ≤ppc A. If A admits Σ, then so does B.

Hence {[A] : A admits Σ} is an order ideal of Pppc .

[23SAT ]

[1]

{[A] : A admits Σ}

In fact, A ≡ppc B iff A,B admit the same (finite) idempotent sets of
identities. ≤ppc has a similar characterization.
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In this way, Pppc is “stratified” by idempotent Maltsev conditions arising
in universal algebra.

Pppc =

omit type 1 ≡ WNU

omit types 1,5

omit types 1,4,5

omit types 1,2

≡
⋃

k≥2 k-perm

CM

CD ≡ NU
= “Maltsev”:

P(x , x , y) ≡ y ≡ P(y , x , x)

= 3-NU:
M(x , x , y) ≡ M(x , y , x)

≡ M(y , x , x) ≡ x

2-permutable

majority

CM

CD ≡ NU

Shaded: CSP(Ac) proved in P

(Warning: not to scale!)

Where are you favorite structures (relative to these Maltsev conditions)?
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Aims of this talk

My goals of this lecture are to:

1 Say some things about bipartite graphs and where they fit in the
picture.

2 Argue that multi-sorted structures are not evil.

3 Give a connection between (1) and (2).
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Multi-sorted structures

Multi-sorted structure: A = (A0,A1, . . . ,An; (Ri )).

0, 1, . . . , n are the sorts; Ak is the universe of sort k .

Each Ri is a sorted relation: e.g., R1 ⊆ A2 × A0 × A0.

(Sorted) Relations definable in A.

Adapt 1st-order logic in the usual way (every variable has a specified
sort; an equality relation for each sort).

Ppc-interpretations of one 2-sorted structure in another, i.e., B ≤ppc A.

each universe Bi of B is realized as a Ui/Ei where Ui ,Ei are (sorted)
ppc-definable relations of A.

each sorted R relation of B is realized as R∗/“the appropriate Ei ’s.”
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Example

Let A be the (1-sorted) structure (A; E0,E1) pictured at right, where
E0,E1 are the indicated equivalence relations on A.

Let B = (B0,B1; R) be the
2-sorted structure pictured below.

B = (B0,B1; R)

R ⊆ B0 × B1

B0 =

B1 =

0 2 4 6

1 3 5

A = (A; E0,E1)

E0 = blocks

E1 = blocks

1 5

0

6

3

2 4

Claim: B ≤ppc A.

Proof: define U0 = U1 = A and (x , y) ∈ R∗ ⇐⇒ ∃z [xE0z & zE1y ].

Then B ∼= (A/E0,A/E1; R∗/E0 × E1).
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Just as in the 1-sorted case, ≤ppc gives a poset:

P+
ppc = ({all finite multi-sorted structures}/≡ppc ; ≤).

Pppc =

[23SAT ]

[1]

P+
ppc = ???

[23SAT ]

[1]

Fact: P+
ppc = Pppc .

I.e., for every multi-sorted B there exists a 1-sorted A ≡ppc B.

Moral: Multi-sorted structures have no value.
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Let’s be immoral.

CSP(Ac) can be defined for a multi-sorted A.

Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to ≤ppc is remains true for multi-sorted A,B:

If B ≤ppc A, then CSP(Bc) ≤L CSP(Ac)

Polymorphisms of multi-sorted A are more complicated.

Definition (Bulatov, Jeavons 2003)

Let A = (A0,A1, . . . ,An; (Ri )). An m-ary polymorphism of A is a tuple
(f 0, . . . , f n) of m-ary operations f k : Am

k → Ak which “jointly preserve”
the relations of A. E.g., if R1 ⊆ A1 × A0, then

∀(a1, b1), . . . , (am, bm) ∈ R1, need (f 1(a), f 0(b)) ∈ R1.
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Polymorphism “algebra”

Fix A = (A0,A1, . . . ,An; (Ri )).

Let Pol(A) = {all polymorphisms ~f = (f 0, f 1, . . . , f n) of A}.

Define

A0 = (A0; (f 0 : ~f ∈ Pol(A))

A1 = (A1; (f 1 : ~f ∈ Pol(A))
...

An = (An; (f n : ~f ∈ Pol(A)).

A0,A1, . . . ,An are (ordinary) algebras with a common language.

Definition (Bulatov, Jeavons 2003)

The polymorphism “algebra” of A is the tuple (A0,A1, . . . ,An) of
algebras defined above.

Similarly for IdPolAlg(A).
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Fix an idempotent set Σ of formal identities.

Definition

Let A be a multi-sorted structure and IdPolAlg(A) = (A0, . . . ,An) its
corresponding idempotent polymorphism “algebra.”

A admits Σ if {A0, . . . ,An} satisfies Σ as a Maltsev condition.

The characterizations of ≡ppc and ≤ppc remain true for multi-sorted A,B.

A ≡ppc B iff A,B admit the same idempotent sets of identities.

B ≤ppc A iff every such Σ admitted by A is admitted by B.

Immoral Moral: Nothing bad will happen if we embrace multi-sorted
structures.
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Bipartite graphs in Pppc

Question: How “dense” in Pppc are graphs, digraphs, posets, etc?

Theorem (Kazda (2011))

Let D be a finite digraph. If D admits the Maltsev identities

P(x , x , y) ≡ y ≡ P(y , x , x)

for 2-permutability, then D admits the majority (or 3-NU) identities

M(x , x , y) ≡ M(x , y , x) ≡ M(y , x , x) ≡ x .

Theorem (Maróti, Zádori (2012))

Let P be a reflexive digraph (e.g., a poset). If P admits identities for
congruence modularity, then P admits the k-ary near unanimity (NU)
identities for some k ≥ 3.

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 18 / 26



Bipartite graphs in Pppc

Question: How “dense” in Pppc are graphs, digraphs, posets, etc?

Theorem (Kazda (2011))

Let D be a finite digraph. If D admits the Maltsev identities

P(x , x , y) ≡ y ≡ P(y , x , x)

for 2-permutability, then D admits the majority (or 3-NU) identities

M(x , x , y) ≡ M(x , y , x) ≡ M(y , x , x) ≡ x .
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2-permutable
= “Maltsev”

majority
= 3-NU

CM

CD ≡ NU

= “Kazda gap” for digraphs

= “Maróti-Zádori gap” for reflexive digraphs

Theorem (Buĺın, Delić, Jackson, Niven (?))

For every finite structure A there is a directed graph D(A) such that

1 CSP(D(A)) ≡L CSP(A).

2 A ≤ppc D(A).

3 The “Kazda gap” is essentially all that separates D(A) from A.

Ross Willard (Waterloo) Graphs, Polymorphisms, Multi-Sorted Struc NSAC 2013 19 / 26
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What about (symmetric, irreflexive) graphs?

Some things we know.

(Bulatov) If G is a non-bipartite graph, then [G] ≡ppc [23SAT ].

(Using Rival) If G is bipartite with girth ≥ 6, then [G] ≡ppc [23SAT ].

Trees and complete bipartite graphs admit the majority identities and
hence are low in Pppc .

(Kazda) Bipartite graphs suffer the “Kazda gap.”

(Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite
graphs admitting the k-NU identities, k ≥ 3.

A new gap (W)

If G is bipartite and admits the Hagemann-Mitschke identities for
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omit types 1,4,5
CM

CD ≡ NU

5-permutable

= No bipartite graphs
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Useful tool: reduction to 2-sorted structures.

Definition:

G
bipartite

~G
strongly bipartite

G]

2-sorted

G0

G1

Lemma (W)

Let Σ be an idempotent set of identities such that

1 Every identity in Σ mentions at most two variables;

2 The 2-element connected graph admits Σ.

Let G be a connected bipartite graph and let ~G and G] be the
corresponding strongly bipartite and 2-sorted digraphs respectively.

If any of G, ~G or G] admit Σ, then all admit Σ.

Proof: G] ≤ppc
~G ≤ppc G. A recipe shows G] admits Σ ⇒ G admits Σ.
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Theorem (Feder, Vardi (1990’s))

For every finite structure A there is a bipartite graph B(A) such that
CSP(B(A)c) ≡P CSP(A).

The construction, assuming A = (A; R) is a digraph.

B(A) =

A0 A1

A

a a

a

b b

b

R

(ab)

>

⊥

α ρ

0 1
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Question: How close are A and B(A) in Pppc?

Theorem (Payne, W)

Given a finite structure A, let B(A) be the associated bipartite graph.

1 A ≤ppc B(A).

2 For each of the six order ideals I of Pppc associated with omitting
types, if one of A, B(A) belongs to I, then so does the other.

3 B(A) never admits the Gumm identities for CM.

omit type 1 ≡ WNU

omit types 1,5

omit types 1,4,5
omit types 1,2

CM
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Sketch of the proof of (1).

= X0

= X1

= X ′0

= X ′1

A0 A1

A R

>

⊥

α ρ

0 1

B(A) =

X =X′ =X′′ =

Let X = (X0,X1; ~E ) = B(A)].

Let X′ = (X \ {α, ρ, 0, 1}, A0,A1,A,R).

Let X′′ be the induced 4-sorted structure with universes A0,A1,A,R.

Then A ≡ppc X′′ ≤ppc X′ ≤ppc X = B(A)] ≤ppc B(A).

Show X′′ admits Σ(n) ⇒ X admits Σ(n + 4), for relevant Σ.
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Problems

1 Are A and B(A) “essentially the same” modulo the 5-perm ⇒ NU
and Kazda gaps?

2 Find a better map A 7−→ B′(A) à la BDJN.

3 Prove or disprove: CM ⇒ NU for bipartite graphs.

4 For each “omitting-types” order ideal I of Pppc , characterize the
bipartite graphs in I.

Hvala!
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