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What is the permutohedron?

The permutohedron on n letters, denoted by P(n), can be
defined as the set of all permutations of n letters, with the
ordering

α ≤ β ⇐⇒
def.

Inv(α) ⊆ Inv(β) ,

where we set

[n] =
def.
{1, 2, . . . , n} ,

In =
def.
{(i , j) ∈ [n]× [n] | i < j} ,

Inv(α) =
def.
{(i , j) ∈ In | α−1(i) > α−1(j)} .

Alternate definition: P(n) = {Inv(σ) | σ ∈ Sn}, ordered
by ⊆.
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What are the Inv(σ)?

Both Inv(σ) and In \ Inv(σ) are transitive relations on [n].

(Proof: let (i , j) ∈ In. Then (i , j) ∈ Inv(σ) iff
σ−1(i) > σ−1(j); (i , j) /∈ Inv(σ) iff σ−1(i) < σ−1(j).)

Conversely, every subset x ⊆ In, such that both x and
In \ x are transitive, is Inv(σ) for a unique σ ∈ Sn

(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

Say that x ⊆ In is closed if it is transitive, open if In \ x is
closed, and clopen if it is both closed and open.

Hence P(n) = {x ⊆ In | x is clopen}, ordered by ⊆.

Observe that each x ∈ P(n) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly
the finite strict orderings of order-dimension 2.
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The permutohedra P(2), P(3), and P(4).
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The permutohedra P(5) and P(6)
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The permutohedron P(7)
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Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron P(n) is a lattice, for every positive
integer n.

The assignment x 7→ xc = In \ x defines an
orthocomplementation on P(n):

x ≤ y⇒ yc ≤ xc ;

(xc)c = x ;

x ∧ xc = 0 (equivalently, x ∨ xc = 1) .

Hence P(n) is an ortholattice.
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Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de
Poly-Barbut 1994)

The permutohedron P(n) is semidistributive, for every positive
integer n. Thus it is also pseudocomplemented.

Semidistributivity means that
x ∨ z = y ∨ z ⇒ x ∨ z = (x ∧ y) ∨ z , and, dually,
x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z .

Theorem (Caspard 2000)

The permutohedron P(n) is a bounded homomorphic image of
a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F
and a surjective lattice homomorphism f : F � P(n) such that
each f −1{x} has both a least and a largest element.
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Regular closed sets

Closure space: pair (Ω, ϕ), where ϕ : P(Ω)→ P(Ω), with
ϕ(∅) = ∅, X ⊆ Y ⇒ ϕ(X ) ⊆ ϕ(Y ), X ⊆ ϕ(X ),
ϕ ◦ ϕ = ϕ.

Associated interior operator: ϕ̌(X ) = Ω \ ϕ(Ω \ X ).

Closed sets: ϕ(X ) = X . Open sets: ϕ̌(X ) = X . Clopen
sets: ϕ(X ) = ϕ̌(X ) = X . Regular closed sets:
X = ϕϕ̌(X ).

Clop(Ω, ϕ) (the clopen sets) is contained in Reg(Ω, ϕ)
(the regular closed sets).

Reg(Ω, ϕ) is always an ortholattice (with x⊥ = ϕ(xc)), but
Clop(Ω, ϕ) may not be a lattice.

Every orthoposet appears as some Clop(Ω, ϕ)
(Mayet 1982, Katrnoška 1982)
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What happens for convex geometries?

Convex geometry: closure space (Ω, ϕ) such that (x closed,
p, q ∈ Ω \ x, and ϕ(x ∪ {p}) = ϕ(x ∪ {q})) ⇒ p = q.

Theorem (Santocanale and W. 2012)

For (more general spaces than) finite convex geometries, the
lattice Reg(Ω, ϕ) is always pseudocomplemented.
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Transitive binary relations

For a transitive binary relation e ⊆ P × P, set Ω = e,
ϕ(a) = cl(a) =transitive closure of a (∀a ⊆ e).

For e = In =natural strict ordering on [n],
Reg(e, cl) = Clop(e, cl) = P(n), the permutohedron.

For e = [n]× [n], Reg(e, cl) = Clop(e, cl) = Bip(n), the
bipartition lattice on [n] (Foata and Zeilberger 1996,
Han 1996, Hetyei and Krattenthaler 2011).

Bip(n) contains an M3 whenever n ≥ 3.
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A few things about Reg(e, cl)

Theorem (Santocanale and W. 2012)

1 Reg(e, cl) is always the Dedekind-MacNeille completion of
Clop(e, cl). Both are equal iff e is square-free.

2 The lattice Reg(e, cl) is spatial (i.e., every element is a
join of completely join-irreducible elements).

3 For e finite, Reg(e, cl) is semidistributive iff it is a
bounded homomorphic image of a free lattice, iff every
connected component of e is either antisymmetric or
E × E with card E = 2.
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The lattice Bip(3)
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The lattice Bip(4)
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Relatively convex sets

We are given a real affine space ∆, and a subset E ⊆ ∆.

Setting convE (X ) = conv(X ) ∩ E , it is well-known that
(E , convE ) is a convex geometry.

A subset X ⊆ E is relatively convex if X = convE (X );
bi-convex if X and E \ X are both relatively convex;
strongly bi-convex if conv(X ) ∩ conv(E \ X ) = ∅.

Strongly bi-convex ⇒ bi-convex ⇒ relatively convex.

Clop∗(E , convE ) = {X ⊆ E | X is strongly bi-convex}.
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Convex sets and Dedekind-MacNeille completion

Theorem (Santocanale and W. 2013)

Let E be a subset in a real affine space ∆. Then
Reg(E , convE ) is the Dedekind-MacNeille completion of
Clop∗(E , convE ) (thus of Clop(E , convE )).
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Poset of regions of a central hyperplane
arrangement

Central hyperplane arrangement in Rd : finite set H of
hyperplanes through 0. Regions (set R): connected
components of Rd \⋃

H (necessarily open). Base region
B ∈ R.

sep(X ,Y ) =
def.
{H ∈ H | H separates X and Y }, for

X ,Y ∈ R.

Poset of regions: Pos(H,B) =
def.

(R,≤B), where X ≤B Y

if sep(B,X ) ⊆ sep(B,Y ).

Theorem (Santocanale and W. 2013)

Pos(H,B) ∼= Clop∗(E , convE ), for a suitably defined finite
E ⊆ Rd .
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Partitions in graphs

Graph: (G ,∼), where ∼ is an irreflexive, symmetric binary
relation on G .

δG = {X ⊆ G nonempty | X is connected}.
X = X1 t · · · t Xn if X = X1 ∪ · · · ∪ Xn (disjoint union)
and X and all the Xi are connected.

cl(x) =closure of x under t, ∀x ⊆ δG .

(δG , cl) is a convex geometry.
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Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)

If G is finite, then Reg(δG , cl) is a bounded homomorphic
image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the “extended
permutohedron” Reg(δG , cl) on G is the Dedekind-MacNeille
completion of Clop(δG , cl).

Does not extend to all finite graphs (e.g., K3,3 − edge).

For G the underlying graph of a Dynkin diagram G,
Clop(δG , cl) = Reg(δG , cl) and this lattice bears
mysterious connections with the Coxeter lattice of type G

(thus with hyperplane arrangements).
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The extended permutohedron on D4, and the
corresponding Coxeter lattice
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The extended permutohedron on K3
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Join-semilattices

For a join-semilattice S , set cl(x) =join-closure of x.

(S , cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S .

Reg(S , cl) is always the Dedekind-MacNeille completion of
Clop(S , cl).

If S is finite, then Reg(S , cl) is a bounded homomorphic
image of a free lattice.

However, Reg(S , cl) may not be spatial.
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The extended permutohedron on S3
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