Automorphic equivalence of many-sorted algebras.

Arkady Tsurkov.

Institute of Mathematics and Statistics, University of São Paulo, Brazil.

By support of FAPESP Fundação de Amparo à Pesquisa do
Estado de São Paulo
(Foundation for Support Research of
the State São Paulo),
project No. 2010/50948-2.

Motivation. Universal algebraic geometry.

$$\Theta$$
 - variety of algebras. Category Θ^0 : $|X_0| = \aleph_0$, $Ob\Theta^0 = \{F(X) \in \Theta \mid X \subset X_0, |X| < \aleph_0\}$, mophisms - homomorphisms. Equations: $T \subset (F(X))^2$, $F(X) \in Ob\Theta^0$. $H \in \Theta$. Solutions in H : $T'_H = \{\varphi \in \operatorname{Hom}(F(X), H) \mid T \subseteq \ker \varphi\}$. Algebraic closure of T in H : $T''_H = \bigcap_{\varphi \in T'_H} \ker \varphi$. $Cl_H(F(X)) = \{T \subset (F(X))^2 \mid T''_H = T\}$. Definition: $H_1, H_2 \in \Theta$ are geometrically equivalent if $\forall F \in Ob\Theta^0$ holds $Cl_{H_1}(F) = Cl_{H_2}(F)$.

B. Plotkin, Algebras with the same (algebraic) geometry, 2003.

Definition: $H_1, H_2 \in \Theta$ are automorphically equivalent if $\exists \Phi \in \operatorname{Aut}\Theta^0$, $\forall F \in \operatorname{Ob}\Theta^0$ exists bijection $\alpha(\Phi)_F : \operatorname{Cl}_{H_1}(F) \to \operatorname{Cl}_{H_2}(\Phi(F))$ such that if $F_1, F_2 \in \operatorname{Ob}\Theta^0$, $\mu_1, \mu_2 \in \operatorname{Hom}(F_1, F_2)$, $T \in \operatorname{Cl}_{H_1}(F_2)$ and $\tau \mu_1 = \tau \mu_2$, then $\tau \Phi(\mu_1) = \tau \Phi(\mu_2)$, where $\tau : F_2 \to F_2/T$, $\tau : \Phi(F_2) \to \Phi(F_2)/\alpha(\Phi)_{F_2}(T)$ - natural epimorphisms.

If this condition holds then $\alpha(\Phi)_F$ are uniquely defined by Φ .

Both these relations are really equivalences.

Definition: An automorphism Υ of a category \Re is inner if $\forall A \in \operatorname{Ob} \Re \exists$ an isomorphism $s_A^{\Upsilon}: A \to \Upsilon(A)$ such that $\forall \alpha \in \operatorname{Mor}_{\Re}(A, B)$

$$\begin{array}{ccc}
A & \overrightarrow{s_A^{\Upsilon}} & \Upsilon(A) \\
\downarrow \alpha & \Upsilon(\alpha) \downarrow \\
B & \underline{s_B^{\Upsilon}} & \Upsilon(B)
\end{array}$$

is a commutative diagram.

Proposition: If an inner automorphism Υ of Θ^0 provide an automorphic equivalence of $H_1, H_2 \in \Theta$ then H_1 and H_2 are geometrically equivalent.

Quotient group $\mathfrak{A}/\mathfrak{Y}$ measures the difference from the automorphic equivalence to the geometric equivalence. \mathfrak{A} is a group of the all automorphisms of the category Θ^0 , \mathfrak{Y} is a group of the all inner automorphisms.

Automorphisms of the category Θ⁰. Many-sorted case.

We need to consider one-generated free algebras.

 Θ - variety of the all representations of group over linear spaces over the field k.

$$(G,V) \in \Theta, F(X,Y) = \left(G(X), \bigoplus_{y \in Y} kG(X)y\right),$$

$$F(x) = (G(x), \{0\}), F(y) = (\{1\}, ky).$$

 Θ - variety of the all actions of semigroups over sets. $(S, M) \in \Theta$,

$$F(X,Y) = \left(S(X), Y \cup \left(\bigcup_{y \in Y} S(X) \circ y\right)\right).$$

$$F(x) = (S(x), \emptyset), F(y) = (\emptyset, \{y\}). ??!!$$

```
Set of names of sorts \Gamma,
  set of operations (signature) \Omega.
  \omega \in \Omega, type of \omega: \tau_{\omega} = (i_1, \dots, i_n; j),
i_1,\ldots,i_n,j\in\Gamma.
 Many-sorted algebra is a set A with the "sorting"
\eta_A:A\to\Gamma. \eta_A^{-1}(i)=A^{(i)},i\in\Gamma.
 If a^{(i_1)} \in A^{(i_1)}, \dots, a^{(i_n)} \in A^{(i_n)} then
\exists \omega(a^{(i_1)}, \ldots, a^{(i_n)}) \in A^{(j)}.
 It is possible A^{(i)} = \emptyset.
  Homomorphism \varphi: A \to B must be conforms
with the "sorting": \eta_A = \eta_B \varphi -
  and with the operations: for every
a^{(i_1)} \in A^{(i_1)}, \dots, a^{(i_n)} \in A^{(i_n)} the
\varphi(\omega(a^{(i_1)},...,a^{(i_n)})) = \omega(\varphi(a^{(i_1)}),...,\varphi(a^{(i_n)}))
holds.
 If A^{(i)} \neq \emptyset, B^{(i)} = \emptyset then \operatorname{Hom}(A, B) = \emptyset.
```

$$X_0 = \bigcup_{i \in \Gamma} X_0^{(i)}, X_0^{(i)} = \{x_1^{(i)}, \dots, x_n^{(i)}, \dots\}. \widetilde{F}(X_0)$$
 -

algebra of terms (in the signature Ω) in the alphabet X_0 .

$$w_1^{(i)}, w_2^{(i)} \in \left(\widetilde{F}(X_0)\right)^{(i)}. A \vdash w_1^{(i)} = w_2^{(i)} \text{ if }$$

$$\forall \varphi \in \text{Hom}\left(\widetilde{F}(X), A\right) \text{ the } \varphi\left(w_1^{(i)}\right) = \varphi\left(w_2^{(i)}\right)$$

holds, where $\widetilde{F}(X)$ is an algebra of terms in the alphabet $X, X \subset X_0$ - set of symbols which really enter in $w_1^{(i)}$ or $w_2^{(i)}$. If $x_j^{(i)} \in X$ but $A^{(i)} = \emptyset$ then $A \vdash w_1^{(i)} = w_2^{(i)}$ by the principle of the empty set.

$$\mathfrak{I} \subset \bigcup_{i \in \Gamma} \left(\left(\widetilde{F}(X_0) \right)^{(i)} \right)^2, \, \Theta(\mathfrak{I}) = \Theta$$
 - the variety

of algebras defined by the identities \Im .

The first and the second theorems of homomorphisms, the projective propriety of free algebras fulfill according to this approach to the notions of many-sorted algebras, their homomorphisms and their varieties.

If $A \in \Theta$ and there exists $i \in \Gamma$ such that $A^{(i)} = \emptyset$ then there are free algebras F(X) of the variety Θ , such that $Hom(F(X),A) = \emptyset$. But for every $A \in \Theta$ there exists free algebra $F(X) \in \Theta$, such that $A \cong F(X)/T$, where T is a congruence.

The Birkhoff theorem about varieties can be proved according to this approach.

We define the notions of the universal algebraic geometry with minimal obvious changes:

equations
$$T \subset \bigcup_{i \in \Gamma} ((F(X))^{(i)})^2$$
,

also algebraic closure of T in H:

$$T''_H = \bigcap_{\varphi \in T'_H} \ker \varphi \subset \bigcup_{i \in \Gamma} ((F(X))^{(i)})^2.$$

If $\operatorname{Hom}(F(X), H) = \emptyset$ and

 $\operatorname{Hom}(F(X), H) \supset T'_H = \emptyset$ then

$$T''_H = \bigcap_{\varphi \in T'_H} \ker \varphi \subset \bigcup_{i \in \Gamma} ((F(X))^{(i)})^2$$
 by the

principle of the empty set.

$$F(X) \in \mathrm{Ob}\Theta^0 \text{ if } X^{(i)} \subset X_0^{(i)}, |X^{(i)}| < \aleph_0, i \in \Gamma.$$

Assumption: $\forall \Phi \in \mathfrak{A} F(x) \cong \Phi(F(x)), x \in X_0$.

Theorem 1. $\forall \Phi \in \mathfrak{A}, \forall F \in \mathsf{Ob}\Theta^0$

 $\exists s_A^{\Phi}: A \to \Phi(A)$ - bijection, such that

- 1) $\eta_A = \eta_{\Phi(A)} s_A^{\Phi}$
- 2) $\forall \alpha \in \operatorname{Mor}_{\Theta^0}(A, B)$ the $\Phi(\alpha) = s_B^{\Phi} \alpha (s_A^{\Phi})^{-1}$ holds.

Proof: $a^{(i)} \in A^{(i)} \subset A$. $x^{(i)} \in X_0^{(i)}$.

 $\sigma: F(x^{(i)}) \to \Phi(F(x^{(i)}))$ - isomorphism,

 $\alpha: F(x^{(i)}) \to A$ - homomorphism such that

$$\alpha(x^{(i)}) = a^{(i)}. s_A^{\Phi}(a^{(i)}) = \Phi(\alpha)\sigma(x^{(i)}).$$

Definition: An automorphism Ψ is called strongly stable if

- 1) $\forall F \in \text{Ob}\Theta^0 \ \Psi(F) = F$,
- 2) $\forall \alpha \in \operatorname{Mor}_{\Theta^0}(A, B) \Psi(\alpha) = s_B^{\Psi} \alpha (s_A^{\Psi})^{-1}$,

 $s_F^{\Psi}: F \to F$ -bijections such that

$$2.1) \eta_F = \eta_F s_F^{\Psi}$$

2.2)
$$\forall F(X) \in \mathrm{Ob}\Theta^0 \ s_{F(X)|X}^{\Psi} = id_{|X}.$$

Theorem 2. $\mathfrak{A} = \mathfrak{YS}$.

2.1. Method of the verbal operations.

$$w(x_1,...,x_n) \in F(x_1,...,x_n) = F \in Ob\Theta^0$$
.
 $H \in \Theta, h_1,...,h_n \in H$ such that
 $\eta_H(h_i) = \eta_F(x_i)$,
 $w_H^*(h_1,...,h_n) = w(h_1,...,h_n)$.
 w_H^* is the verbal operation defined by the word w and has the type $(\eta_F(x_1),...,\eta_F(x_n);\eta_F(w))$.
 $\omega \in \Omega, \tau_\omega = (i_1,...,i_n;j)$,
 $F(x^{(i_1)},...,x^{(i_n)}) = F_\omega \in Ob\Theta^0$, where
 $x^{(i_j)} \in X_0^{(i_j)}$.
 $\omega(x^{(i_1)},...,x^{(i_n)}) \in F_\omega$.
 $\Psi \in \mathfrak{S}, s_{F_\omega}^\Psi : F_\omega \to F_\omega$ - bijection, which fulfills conditions 2).
 $s_{F_\omega}^\Psi(\omega(x^{(i_1)},...,x^{(i_n)})) = w_\omega(x^{(i_1)},...,x^{(i_n)}) \in F_\omega$.
 H_W^* - set H with operations defined by the system of words $\{w_\omega \mid \omega \in \Omega\} = W$.
 $\forall F \in Ob\Theta^0 s_F^\Psi : F \to F_W^*$ is an isomorphism.

There is a bijection $\mathfrak{S} \leftrightarrow \text{set of system of words}$ $\{w_{\omega} \mid \omega \in \Omega\} = W \text{ such that }$ W1) $w_{\omega} \in F_{\omega}$, W2) $\forall F = F(X) \in \text{Ob}\Theta^0 \exists \text{ isomorphism}$ $s_F: F \to F_W^*$ such that $s_F \mid_X = id_X$. $\Phi \in \mathfrak{S} \cap \mathfrak{Y} \Leftrightarrow \exists \{\mu_F : F \to F_W^* \mid F \in \mathrm{Ob}\Theta^0\}$ - system of isomorphisms such that $\forall \alpha \in \mathrm{Mor}_{\Theta^0}(A,B)$ the $\mu_B \alpha = \alpha \mu_A$ holds $(\Phi \leftrightarrow W)$. Lemma 1. If W fulfills conditions W1), W2), $H \in \Theta$ then $H_W^* \in \Theta$. Lemma 2. W fulfills conditions W1), W2), $H_1, H_2 \in \Theta$. $\varphi: H_1 \to H_2$ is a homomorphism \Leftrightarrow $\varphi: (H_1)_w^* \to (H_2)_w^*$ is a homomorphism.

Application to the universal algebraic geometry of many-sorted algebras.

Proposition 1. $\Phi \in \mathfrak{A}$ provides automorphic equivalence of the algebras $H_1, H_2 \in \Theta$ if and only if $\forall F \in \mathsf{Ob}\Theta^0$

 $Cl_{H_1}(F) \ni T \to s_F^{\Phi}(T) \in Cl_{H_2}(\Phi(F))$ is a bijection. These bijections not depend on choice of system $\{s_F^{\Phi} \mid F \in Ob\Theta^0\}$, only on automorpism Φ .

Proposition 2. If $\Phi \in \mathfrak{Y}$ provides automorphic equivalence of the algebras $H_1, H_2 \in \Theta$, then H_1, H_2 are geometrically equivalent.

Theorem 1. If $H \in \Theta$, $\Phi \in \mathfrak{S}$, $\Phi \leftrightarrow W$ then Φ provides the automorphic equivalence of algebras H_W^* and H.

Proof: By consideration of diagrams:

$$\psi \in \operatorname{Hom}(F, H_W^*) \Rightarrow$$

$$\psi(s_F^{\Phi})^{-1} \in \operatorname{Hom}(F_W^*, H_W^*) = \operatorname{Hom}(F, H),$$

$$\varphi \in \operatorname{Hom}(F, H) = \operatorname{Hom}(F_W^*, H_W^*) \Rightarrow$$

$$\varphi s_F^{\Phi} \in \operatorname{Hom}(F, H_W^*). \blacksquare$$

Theorem 2. $H_1, H_2 \in \Theta$. They are automorphically equivalent $\iff H_1$ geometrically equivalent to the $(H_2)_W^*$, where $W = \{w_\omega \mid \omega \in \Omega\}$ is a system of words which fulfills conditions W1), W2).

4. Examples.

Variety of the all actions of semigroups on sets.

 $|\Gamma| = 2$: 1 - sort of elements of semigroups, 2 - sort of elements of sets.

$$\Omega = \{ \bullet, \circ \}. \ F(X) = F. \ F^{(1)} = S(X^{(1)}) = S,$$
 $F^{(2)} = (S(X^{(1)}) \circ X^{(2)}) \cup X^{(2)} = M.$
IBN propriety? $|X^{(1)}| + 1 = |S/S^2|.$
 $R_0 = \{(a,b) \in M^2 \mid \exists s \in S(s \circ a = b)\}.$
 R - minimal equivalence such that $R_0 \subset R.$
 $|M/R| = |X^{(2)}|.$
So $F(X) \cong F(Y) \Leftrightarrow |X^{(1)}| = |Y^{(1)}|, |X^{(2)}| = |Y^{(2)}|.$

$$F(x^{(i)}) \cong \Phi(F(x^{(i)})), i \in \Gamma$$
?

 $\forall \Theta \ \Phi$ transforms isomorphisms to the isomorphisms, because isomorphisms defined "algebraically".

$$\Phi\left(\bigsqcup_{j\in J} F_i\right) \cong \bigsqcup_{j\in J} \Phi(F_j) \ (F_j \in \mathrm{Ob}\Theta^0), \text{ because}$$

coproduct defined "algebraically".

$$\bigsqcup_{j\in J} F_j(X_j) \cong F(X) \text{ such that } |X^{(i)}| = \sum_{j\in J} |X_j^{(i)}|,$$

 $i \in \Gamma$.

So Φ provide automorphism $\varphi : \mathbb{N}^{|\Gamma|} \to \mathbb{N}^{|\Gamma|}$ of the additive monoid:

$$\varphi((|X^{(i)}|)_{i\in\Gamma}) = (|Y^{(i)}|)_{i\in\Gamma}$$
, where $\Phi(F(X)) = F(Y)$.

 φ transforms the minimal set of generators to the minimal set of generators.

In our case it is impossible that
$$\varphi(1,0) = (0,1)$$
. If $\Phi(F(x^{(1)})) \cong F(x^{(2)})$ then $\Phi(F(x_1^{(1)}, x_2^{(1)})) \cong \Phi(F(x_1^{(1)}) \sqcup F(x_2^{(1)})) \cong F(x_1^{(2)}, x_2^{(2)})$. $X = X^{(1)}, |X| < \infty$. $F(X) \hookrightarrow F(x_1^{(1)}, x_2^{(1)})$. $\forall \Theta^0$ injection also defined "algebraically": $\forall \alpha \in \operatorname{Mor}_{\Theta^0}(A, B) \ker \alpha = \Delta$ if and only if $\forall C \in \operatorname{Ob}\Theta^0, \forall \beta, \gamma \in \operatorname{Mor}_{\Theta^0}(C, A) \alpha\beta = \alpha\gamma \Rightarrow \beta = \gamma$. So Φ preserves injections. $\Phi(F(X)) \hookrightarrow \Phi(F(x_1^{(1)}, x_2^{(1)}))$ $F(X^{(2)}) \hookrightarrow F(x_1^{(2)}, x_2^{(2)})$, where $|X^{(2)}| = |X|$. \bowtie If $\varphi(1,0) = (1,0)$, $\varphi(0,1) = (0,1)$ then $\Phi(F(x^{(1)})) \cong F(x^{(1)})$, $\Phi(F(x^{(2)})) \cong F(x^{(2)})$.

Two system of words which fulfill conditions W1), W2):

$$W_{1}: w.\left(x_{1}^{(1)}, x_{2}^{(1)}\right) = x_{1}^{(1)} \cdot x_{2}^{(1)},$$

$$w_{\circ}(x^{(1)}, x^{(2)}) = x^{(1)} \circ x^{(2)};$$

$$W_{2}: w.\left(x_{1}^{(1)}, x_{2}^{(1)}\right) = x_{2}^{(1)} \cdot x_{1}^{(1)},$$

$$w_{\circ}(x^{(1)}, x^{(2)}) = x^{(1)} \circ x^{(2)}.$$

Otherwise $s_F: F \to F_W^*$ such that $s_F \mid_X = id_X$ will not be isomorphisms.

$$\Phi_2 \leftrightarrow W_2$$
 is not inner: $F = F\left(x_1^{(1)}, x_2^{(1)}\right)$, $\alpha \in \operatorname{End} F$ such that $\alpha\left(x_1^{(1)}\right) = x_1^{(1)} x_2^{(1)}$, $\alpha\left(x_2^{(1)}\right) = x_2^{(1)}$. $\mu : F \to F_{W_2}^*$ isomorphism. $\alpha\mu \neq \mu\alpha$. $|\mathfrak{A}/\mathfrak{Y}| = 2$.

Example of actions which are automorphically equivalent but not geometrically equivalent.

 $H \in \Theta$, H free action with generators $\left\{x_1^{(1)}, x_2^{(1)}, x_2^{(2)}\right\}$ in the subvariety of Θ defined by identity $x_1^{(1)}x_2^{(1)}\left(x_1^{(1)}\right)^2 \circ x^{(2)} = x^{(2)}$. $H_{W_2}^*$ and H are automorphically equivalent.

 $Cl_{H_{W_2}^*}(F) \ni T \to s_F T \in Cl_H(F)$ - monotonic bijection.

 $\Delta_H'' = Id(H, \{x_1^{(1)}, x_2^{(1)}, x^{(2)}\}) = I$ - minimal H-closed set. If $H_{W_2}^*$ and H are geometrically equivalent, then I is a minimal $H_{W_2}^*$ -closed set. So $s_F I = I$ and $s_F \left(x_1^{(1)} x_2^{(1)} \left(x_1^{(1)}\right)^2 \circ x^{(2)}, x^{(2)}\right) = \left(\left(x_1^{(1)}\right)^2 x_2^{(1)} x_1^{(1)} \circ x^{(2)}, x^{(2)}\right) \in I$. But identity $\left(x_1^{(1)}\right)^2 x_2^{(1)} x_1^{(1)} \circ x^{(2)} = x^{(2)}$ not fulfills in H.

4.2. Variety of the all automatons (ASM's).

 $|\Gamma| = 3$: 1 - sort of input signals, 2 - sort of states, 3 - sort of output signals.

$$\Omega = \{\circ, *\}, \tau_{\circ} = (1, 2; 2), \tau_{*} = (1, 2; 3).$$

 $\mathfrak{A}/\mathfrak{Y} = \{1\}$. Automorphic equivalence coincide with geometric equivalence.

4.3. Variety of the all representations of the Lie algebras over the field *k*.

We assume that char(k) = 0.

inner are:

 $|\Gamma| = 2$: 1 - sort of elements of the Lie algebras, 2 - sort of elements of the Lie algebras modules.

 $\Omega = \{0_L, 0_M, \lambda_L, \lambda_M, +_L, +_M, [,], \circ \mid \lambda \in k\},\$ $\tau_{\lambda_L} = (1;1), \tau_{\lambda_M} = (2;2), \tau_{\circ} = (1,2;2).$ $\mathfrak{A}/\mathfrak{Y} \cong \text{Aut}k$, because the system of words which fulfill conditions W1), W2) and corresponds to automorphisms which are not

 $w_{0L} = 0, w_{0M} = 0, w_{\lambda L}(x^{(1)}) = \varphi(\lambda)x^{(1)},$ $w_{\lambda M}(x^{(2)}) = \varphi(\lambda)x^{(2)},$ $w_{+L}(x_1^{(1)}, x_2^{(1)}) = x_1^{(1)} + x_2^{(1)},$ $w_{+M}(x_1^{(2)}, x_2^{(2)}) = x_1^{(2)} + x_2^{(2)},$ $w_{[,]}(x_1^{(1)}, x_2^{(1)}) = [x_1^{(1)}, x_2^{(1)}],$ $w_{\circ}(x^{(1)}, x^{(2)}) = x^{(1)} \circ x^{(2)}, \text{ where } \varphi \in \text{Aut}k.$ Example of representations which are automorphically equivalent but not geometrically equivalent.

 $k = \mathbb{Q}(\theta_1, \theta_2)$ - transcendent extension of \mathbb{Q} of the degree $2, H \in \Theta$, H free representation with generators $\{x_1^{(1)}, x_2^{(1)}, x_2^{(2)}\}$ in the subvariety of Θ defined by identity

$$(\theta_1 [x_1^{(1)}, [x_1^{(1)}, x_2^{(1)}]] + \theta_2 [[x_1^{(1)}, x_2^{(1)}], x_2^{(1)}] \circ x^{(2)}) = 0.$$

W corresponds to φ such that

$$\varphi(\theta_1) = \theta_2, \varphi(\theta_2) = \theta_1.$$

 H_W^* and H are automorphically equivalent but not geometrically equivalent.