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1. Motivation. Universal algebraic

geometry.

O - variety of algebras. Category @": [Xo| = Ny,
Ob@O = {F(X) e ® | X C X(),|X| < No},
mophisms - homomorphisms.

Equations: T < (F(X))*, F(X) € Ob®°.

H € ©. Solutions in H:

Ty = {9 € Hom(F(X),H) | T < kero}.

Algebraic closure of Tin H: Ty = n ker .

Ty,

Cly(F(X)) = {T < (F(X))* | Ty =T}.

Definition: H,,H, € © are geometrically
equivalent if VF € Ob®" holds
Cly,(F) = Cly,(F).



B. Plotkin, Algebras with the same (algebraic)
geometry, 2003.

Definition: H;, H, € © are automorphically
equivalent if 3@ € Aut®?, VF € Ob®" exists
bijection a(®)r : Cly,(F) - Cly,(P(F)) such
that if F|,F> € Ob@o, Hi, U2 € Hom(F|,F2),
T € Cly,(F2) and Tu; = T,

then TO(u) = TO(u2),

where 7 : Fa — F)/T,

T : DO(F,) » O(F2)/a(®)r,(T) - natural
epimorphisms.

If this condition holds then a(®) are uniquely
defined by O.

Both these relations are really equivalences.



Definition: An automorphism Y of a category K
is inner if VA € Ob& 3 an isomorphism
sk : A - Y(A) such that Va € Morg(A,B)

o

A 5 Y@
la Y(a) |
B sp Y(B)

1S a commutative diagram.

Proposition: If an inner automorphism Y of @
provide an automorphic equivalence of
H|,H, € © then H, and H, are geometrically
equivalent.

Quotient group 2/2) measures the difference
from the automorphic equivalence to the
geometric equivalence. 2l is a group of the all
automorphisms of the category ®°, 2) is a group
of the all inner automorphisms.



2. Automorphisms of the category @°.
Many-sorted case.
We need to consider one-generated free algebras.
® - variety of the all representations of group
over linear spaces over the field k.

(G,V) € ©, F(X,Y) = (G(X),@kG(X)y),

yeY

F(x) = (G(x),{0}), F(y) = ({1},ky).
® - variety of the all actions of semigroups over
sets. (S,M) € O,

F(X,Y) = (S(X),YU L S(X) o y))

yeY

F(x) = (8(x),9), F(y) = (,{y}). 7!



Set of names of sorts I,

set of operations (signature) €.

o € Q, typeof 0: 76 = (i1,...,0nsj),
i],...,i,,,j e[,

Many-sorted algebra 1s a set A with the "sorting'
na :A-T.n3'(G) =AY, i eT.

Ifa® e AW ... al) e AU then
dw(al),...,a) € AV,

It is possible A" = &,

Homomorphism ¢ : A - B must be conforms
with the "sorting": na = nge -

and with the operations: for every
a e AU alin) e Aln) the
p(@(@",...,a™m)) = o(p(a'),...,pa"))
holds.

IfA® + &, BY = & then Hom(A,B) = &.



Xo = UXP, X9 = {30,009, 3 FiXo) -
iel’
algebra of terms (in the signature Q) in the

alphabet Xo
(1)
w?, i (F(x )) A w? =Wl if

Vo € Hom(F(X),A) the (p<w(1)> = (p(Wé')
holds, where 'IF(X ) 1s an algebra of terms in the

alphabet X, X < Xo set of symbols which really
enter in w'"” or w}’. Ifx() € XbutA®) = @ then

A+ w()
(1)
9§ < U((F(Xo)) ) , O(J) = O - the variety
iel’
of algebras defined by the identities J.

= wz) by the prmmple of the empty set.



The first and the second theorems of
homomorphisms, the projective propriety of free
algebras fulfill according to this approach to the
notions of many-sorted algebras, their
homomorphisms and their varieties.

If A € ® and there exists i € I'" such that
A" = & then there are free algebras F(X) of the
variety O, such that Hom(F(X),A) = <. But for
every A € O there exists free algebra F(X) € O,
such that A = F(X)/T, where T 1s a congruence.

The Birkhoff theorem about varieties can be
proved according to this approach.



We define the notions of the universal algebraic
geometry with minimal obvious changes:
equations 7' U((F(X))(i)> 2,
iel’
also algebraic closure of 7'in H:
Ty = () kere < | J(@FEx)ND)”.
(PET;/ i€l
If Hom(F(X),H) = & and
Hom(F(X),H) o Ty = & then
Ty = () kerg © U((F(X))‘”)2 by the
peTy iel’
principle of the empty set.
F(X) € 0b@° if X® < X 1XD| < Ry, i € T.



Assumption: VO € 2 F(x) = O(F(x)), x € Xo.
Theorem 1. VO € A, VF € Ob@®"
ds% : A - ®(A) - bijection, such that
D na = Now)si
2) Ya € Morgo(A, B) the ®(a) = s®a(s?)™
holds.
Proof: a® € AD c A.x® e X\,
o: F(x") - OF(x?)) - isomorphism,
a : F(x)) - A - homomorphism such that
a(x?) = a®. s?a@?) = d(a)o(x").H
Definition: An automorphism YV is called
strongly stable if
1) VF € Ob®° W(F) = F,
2) Va € Morgo(A,B) ¥(a) = sfa(s¥)™,
sp : F — F -bijections such that
2.1) e I]FS?;
2.2) VF(X) € Ob®" S?(xnx = id | x.
Theorem 2. 2l = 9)6.



2.1. Method of the verbal operations.
w(x1,...,xn) € F(x1,...,x,) = F € Ob®".
He®,h,...,h, € Hsuch that
nu(hi) = nr(xi),

W;}(/’ll,...,h,,) = W(h],...,/’t,,).

wiy; 1s the verbal operation defined by the word w
and has the type (ng(x1),...,nr(x,);nr(w)).

@D E )Ty = (i1, consini])s

F(x@, ... xin)) = F, € Ob®", where
x@ e X3P,

o(x) ... xt)) e F,.

VY e &, s, : Fp - F, - bijection, which fulfills
conditions 2).

5z (@Y, ., x0n))) = wy, (W), ..., x0)) € F,.

w - set H with operations defined by the system

of words {w, | ® € Q} = W.

VF € ObO' s¥ : F » Fj}, is an isomorphism.



There is a bijection & < set of system of words
{we | ® € Q} = Wsuch that

W) we, € Fy,

W2) VF = F(X) € Ob®" 3 isomorphism
s : F —> Fysuchthat sp | x = idx.
OPeBGNY=3I{ur: F- F} | FeObe’
- system of 1somorphisms such that

Va € Morgo(A,B) the uga = aps holds

(© — W)

Lemma 1. If W fulfills conditions W1), W2),
H € O then Hy, € ©.

LLemma 2. W fulfills conditions W1), W2),
H{,H, € ©.¢ : HA - H;1s a homomorphism <
¢ : (Hi)y — (H2),, is a homomorphism.



3. Application to the universal algebraic

geometry of many-sorted algebras.

Proposition 1. ® € 2 provides automorphic
equivalence of the algebras H;,H> € O if and
only if VF € Ob®"

Cly,(F) 3 T - s®(T) € Cly,(®(F)) is a
bijection. These bijections not depend on choice
of system {s® | F € Ob®"}, only on
automorpism O,

Proposition 2. If ® € 2) provides automorphic
equivalence of the algebras H;,H, € 0, then
H,,H, are geometrically equivalent.



Theorem |. f He ®, 0 e &, ® «— Wthen ©
provides the automorphic equivalence of algebras
wand H.
Proof: By consideration of diagrams:

F o' F F s F
Lo vl Ly ¢ |
H Hi, H3, H

v € Hom(F,Hy) =
w(s®)™" € Hom(Fj, Hiy) = Hom(F,H),

¢ € Hom(F,H) = Hom(Fy,Hy) =
¢ps? € Hom(F,H3,). M

Theorem 2. H|,H, € ©®. They are
automorphically equivalent <= H; geometrically
equivalent to the (H>)y,, where

W= {w, | ® € Q} is a system of words which
fulfills conditions W1), W2).



4. Examples.
4.1. Variety of the all actions of

semigroups on sets.
II'l = 2: 1 - sort of elements of semigroups, 2 -
sort of elements of sets.
Q= ;0% F(X) = F.FY =§(XN) = 8§,
FQ2) = (S(X(')) oX(z)) UX® = Mm.
IBN propriety? IX(V| + 1 = IS/S?1.
Ro = {(a,b) e M?> | s € S(sca = b)}.
R - minimal equivalence such that Ry < R.
IM/R| = |IX®|.
So F(X) = F(Y) & IX(D] = 1YV, [XP)| = Y@,



F(x) = ®(F(x¥)),i e I'?

VO O transforms isomorphisms to the
isomorphisms, because isomorphisms defined
"algebraically".

(I)<I_| F,) =~ U(D(Fj) (F; € Ob®"), because

jel jet

coproduct defined "algebraically".

|| Fi(X;) = F(X) such that x®1 = Y| x|,

JjeJ Jjet
ieT.

So ® provide automorphism ¢ : NI — NI of
the additive monoid:

(p<(|X(i)|)ieF> = (IY1)._., where
O(F(X)) = F(Y).

¢ transforms the minimal set of generators to the
minimal set of generators.



In our case it is impossible that ¢(1,0) = (0, 1).

If O(F(x™)) = F(x®) then
o(F(x"xz°)) = &(F(4°) UF(x") ) =

F<xg°>,x2 ).

= XM, X1 < o0. F(X) & F(x{",x5").

V" injection also defined "algebraically":

Va € Morgo(A,B) kera = A if and only if
VC € 0b@?, VB,y € Morg(C,A) aff = ay =
p=1.

So @ preserves injections.

O(F(X)) & (D<F<x(1'),x2”>>

F(X@®) o F(x, , X5 )> where IX®)| = [X].x<
If o(1,0) = (1,0), ¢(0,1) = (0,1) then
O(F(x)) = F&x), D(F(x?)) = F(x@®).



Two system of words which fulfill conditions

Wil), W2):
) (1 | 1

Wi w.(x(l ),xg )> = x(, ) -xg ),
wo(x(), x@Y = x(D o x@.

Ws: w.(xﬁ”,xé”) = xél) -x(ll),
wo(xD,x@) = xD 6 x@),

Otherwise sr : F - Fy,suchthat sy | x = idx
will not be isomorphismes.

®, < W, isnotinner: F = F(xﬁ”,x_%”),

a € EndF such that a(xﬁ”) = x(,')xg'),
a xé”) = xél). u : F — Fy, isomorphism.
au + uo. A/ = 2.



Example of actions which are automorphically
equivalent but not geometrically equivalent.
H e ® H free action with generators

{x(” %5 ,x(z)} in the subvariety of ® defined by
identity x!"/x}' )<x, )> ox®) = x4 Hy, and H

are automorphically equivalent.
Clys, (F) > T - s¢T € Cly(F) - monotonic

bl ectlon

Id(H {x(l) x5, x (2)}> = [ - minimal
H-closed set. If Hy,, and H are geometrically
equivalent, then /is a minimal H7j,, -closed set. So

2
spl = Tand s -(x( xS )<x )> Ox(z),x(2)> -
2 . .
((x(ll) R °X(“),x(2)) € [. But identity

(xi”) e 6 x@ = x@ not fulfills in H.b<



4.2. Variety of the all automatons
(ASM’s).
II'l = 3: 1 - sort of input signals, 2 - sort of states,
3 - sort of output signals.
Q =:46,%}, T =(1,2;2), T+ = (1,2:3).
2A/92) = {1}. Automorphic equivalence coincide
with geometric equivalence.



4.3. Variety of the all representations of

the Lie algebras over the field k.

We assume that char(k) = 0

II'l = 2: 1 - sort of elements of the Lie algebras, 2
- sort of elements of the Lie algebras modules.

Q = {OL,OM,/’{L,/’LM,'FL s t+M ,[,],0 | A€ k},
Ta, = (15 1), T4, =(2;2), T. = (1,2;2).

2A/7) = Autk, because the system of words
which fulfill conditions W1), W2) and
corresponds to automorphisms which are not
inner are:

wo, = 0, wo,, = 0, wy,(x) = p(A1)x1),
W (x?) = o(1)x,
Wi, (xﬁl),x2')> = xﬁ') +x§'),

o (22,28) = 2P 4

W[ (Xl ,x21)> [Xgl),le):l

W (x(') x®)) = x( o x) where ¢ € Autk.



Example of representations which are
automorphically equivalent but not geometrically
equivalent.

k = Q(0,,0,) - transcendent extension of Q of
the degree 2, H € @ H free representation with

generators {x, X5 ,x(z)} in the subvariety of ®
deﬁned by identity

I: 1),[x(l) (l)]] 3
0, [[x(ll)’xgl)] gl)]ox(z)) =),
W corresponds to ¢ such that

@(01) = 02, 9(02) = 0.
w and H are automorphically equivalent but not
geometrically equivalent.



