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Stone Duality

Stone Duality is a categorical duality from the prevariety of Boolean algebras
to the topological prevariety of Stone spaces (= compact, Hausdorff, totally
disconnected spaces).

2 = ({0, 1},∧,∨, ′, 0, 1) is the BA of character values.
For B ∈ SP(2), the elements of Hom(B, 2) (=: B∂) are the characters of B.
A basis for the topology on B∂ consists of the following types of sets: for
each character ϕ and for each finite sequence b̄ ∈ Bk, Oϕ,b̄ is the set of
characters χ which agree with ϕ at each entry of b̄.

A homomorphism α : B→ C between BA’s induces a continuous function
α∗ : C∂ → B∂ between character spaces, defined by α∗(χ) = χ ◦ α.

In the reverse direction, if X and Y are Stone spaces and 2 is the 2-element
discrete space, then X∂ = Hom(X, 2) is a BA under pointwise operations
(f ∧ g)(x) = f(x) ∧ g(x), ETC. If a : : X→ Y is continuous, then
a∗ : Y∂ → X∂ : f 7→ f ◦ a is a BA homomorphism.
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Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B. A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B. A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B. A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B. A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B.

A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Natural Duality Theory

Given a finite algebra and a finite, discrete, relational structure

A = (A; {f , g, . . .}) A = (A; { ρ, σ, . . .︸ ︷︷ ︸
compatible rels of A

})

there are functors

algebras top. rel. structures

SP(A) −→ ScP+(A)

B 7−→ B∂ := Hom(B,A)
T∂ := Hom(T,A) ←− [ T

For each B, the function

eB : B −→ B∂∂ = Hom(B∂ ,A)
b 7−→ (χ 7→ χ(b))

is a 1–1 algebra homomorphism.

Definition. A is dualized by A if eB is onto for all B. A is dualizable if it is
dualized by some A.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 3 / 16



Two Galois connections

Let A be a finite algebra. LetR be the set of all finitary relations on the set A
and let F be the set of all continuous functions f : B∂ → A for all B ∈ SP(A).
Let F0 be the subset of F consisting of those f : B∂ → A where B = F(k) is a
finitely generated free algebra of SP(A). (So B∂ = Ak as sets.)

The compatibility of a function with a relation determines a Galois connection
betweenR and F0, and betweenR and F :

R F0
-

� F
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|=c versus |=d

For a set of finitary relations R ∪ {ρ} of A write R |=c ρ if any function in F0
preserving R also preserves ρ. Write R |=d ρ if any function in F preserving R
also preserves ρ. Since F0 ⊆ F , it follows that R |=d ρ implies R |=c ρ. The
difference between |=c and |=d is identified by:

[BKKR]
R |=c ρ iff ρ is constructible from R using =, permutation of coordinates,
product, intersection and projection onto a subset of coordinates.

[Z, DHP]
R |=d ρ iff ρ is constructible from R using =, permutation of coordinates,
product, intersection and bijective projection onto a subset of coordinates.
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A Useful Theorem

Theorem. [Willard, Zádori] Assume that R is a finite set of compatible
relations of A. If R |=d ρ for any compatible relation ρ of A, then A is
dualizable. (In fact, A = (A,R) is a dualizing structure for A.)

For example, if A = 2 is the 2-element BA, the only compatible relations
ρ ≤ 2k are those determined by equivalence relations on k. For any of these
∅ |=d ρ. Hence ({0, 1}, ∅) is a dualizing structure for the prevariety of BA’s.

Call A finitely related if there is a finite set R of compatible relations of A
such that R |=c ρ for all compatible relations ρ of A. The above theorem
concerns finitely related algebras only.

There exist finite algebras that are not finitely related, but for ∼25 years the
only algebras shown to be dualizable were finitely related. Within some large
classes (e.g. CD, unary) it has been shown that every dualizable algebra must
be finitely related. Recently (2010) Jane Pitkethly proved that there are 2ℵ0

dualizable algebras of size 3, so they can’t all be finitely related.
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∅ |=d ρ. Hence ({0, 1}, ∅) is a dualizing structure for the prevariety of BA’s.

Call A finitely related if there is a finite set R of compatible relations of A
such that R |=c ρ for all compatible relations ρ of A. The above theorem
concerns finitely related algebras only.

There exist finite algebras that are not finitely related, but for ∼25 years the
only algebras shown to be dualizable were finitely related. Within some large
classes (e.g. CD, unary) it has been shown that every dualizable algebra must
be finitely related. Recently (2010) Jane Pitkethly proved that there are 2ℵ0

dualizable algebras of size 3, so they can’t all be finitely related.
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Finitely Related Algebras in CM Varieties

Theorem. The following are equivalent for a finite algebra A.
(1) A is (a) dualizable and (b) lies in a congruence distributive variety.
(2) A is (a) finitely related and (b) lies in a congruence distributive variety.
(3) A has a near unanimity term.

[(1)⇒(3): Davey–Heindorf–McKenzie; (2)⇒(3): Barto; (3)⇒(1)(a): Davey–Werner;
(3)⇒(1)(b)=(2)(b): Mitschke; (3)⇒(2)(a): Baker–Pixley.]

We would like to enlarge the scope of this theorem to congruence modular
varieties. Here the analogue of (2)⇔(3) has been announced to be true:

Theorem. The following are equivalent for a finite algebra A.
((2)) A is (a) finitely related and (b) lies in a congruence modular variety.
((3)) A has a cube term.

[((2))⇒((3)): Barto (announced); ((3))⇒((2))(a): Aichinger–Mayr–McKenzie;
((3))⇒((2))(b): BIMMVW]
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Dualizability in CM Varieties; Groups and Rings

We conjecture that a finite dualizable algebra in a congruence modular variety
must have a cube term. This talk concerns only dualizability for algebras with
such a term.

Theorem. [Clark–Idziak–Sabourin–Szabó–Willard]
A finite commutative ring is dualizable iff its Jacobson radical squares to zero.

Theorem. [Quackenbush–Szabó (⇒), Nickodemus (⇐)]
A finite group is dualizable iff its Sylow subgroups are abelian.

Theorem. [Idziak]
The expansion by constants of the (dualizable) symmetric group S3 is
nondualizable.
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Critical Relations

Let A be a finite algebra.
Let B be an n-ary compatible relation of A.

We call B or the corresponding subalgebra B ≤ An critical if B is

completely
⋂

-irreducible in Sub(An) and

directly indecomposable, i.e., B 6= projU(R)× projV(R).

Examples. Critical relations of a
1 the 2-element BA 2 = ({0, 1};∧,∨,′ , 0, 1): equality relation;
2 a 1-dim. vector space: solution sets of equations

∑n
i=1 cixi = 0, ci 6= 0.

Easy Fact. {critical relations of A} |=d {all compatible relations of A}.

Consequence. A is dualizable by a finite set of relations iff there exists
` = `(A) such that {compatible relations of A of arity ≤ `} |=d ρ for every
critical relation ρ of A.
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The Structure of Critical Relations

Theorem. [Kearnes, ASz]
Assume that A is a finite algebra with a k-cube term, and
let B ≤ An be a critical subalgebra with n ≥ max(k, 3).
Let

B ≤sd B1 × · · · × B` (Bi ≤ A),

θ = θ1 × · · · × θ` (θi ∈ Con(Bi)) be largest s.t. B is θ-saturated.

Then

(1) the algebras Bi/θi are subdirectly irreducible (s.i.);

(2) they have abelian monoliths; and

(3) B/θ is a ‘joint similarity’ between them.
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Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.

Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.

Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.

For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 1)

Sketch of Proof. Let A be a finite R-module.
Known: HSP(A) is residually ≤ κ for some positive integer κ.
Let B be a critical submodule of An (n ≥ 3),

B ≤sd B1 × · · · × Bn.

B is completely
⋂

-irreducible in An =⇒ S := (B1 × · · · × Bn)/B is s.i.
For the natural homomorphism

φ : B1 × · · · × Bn −→ S, (b1, . . . , bn) 7−→ (b1, . . . , bn) + B

there exist homomorphisms αi : Bi → S such that

φ(x1, . . . , xn) =

n∑
i=1

αi(xi) for all (x1, . . . , xn) ∈ B1 × · · · × Bn,

so

B =
{

(x1, . . . , xn) ∈ B1 × · · · × Bn :

n∑
i=1

αi(xi) = 0
}
.

K. Kearnes and A. Szendrei (CU Boulder) Dualizable Algebras NSAC 2013 11 / 16



Finite Modules Are Dualizable (Part 2)
Hence:

B = solution set (in B1 × · · · × Bn) of
n∑

i=1

αi(xi) = 0.

Claim. Assume that α1 = α2 = α, and let

P := solution set of x1 + x2 = y, C := solution set of α(y) +
n∑

i=3

αn(xn) = 0.

Then P and C are compatible relation of A, and (∗) {P,C} |=d B.

Proof of (∗):
∑n

i=1 αi(xi) = 0 ⇐⇒ α(x1) + α(x2) +
∑n

i=3 αn(xn) = 0
⇐⇒ α(x1 + x2) +

∑n
i=3 αn(xn) = 0, therefore

B = proj1,2,4,...,n+1{(x1, x2, y, x3, . . . , xn) ∈ B3
1 × B3 × · · · × Bn :

(x1, x2, y) ∈ P and (y, x3, . . . , xn) ∈ C}
= proj1,2,4,...,n+1

(
(P× An−2) ∩ (A2 × C)

)
where the projection is bijective.
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Finite Modules Are Dualizable (Part 3)

Since HSP(A) is residually ≤ κ,
if n > κ|A|, then there are repetitions among α1, . . . , αn.

Let ` = κ|A| and
letR≤` be the set of all compatible relations of A of arity ≤ `.

Corollary. R≤` |=d ρ for every critical relation ρ of A.

Hence A is dualizable.
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Comments on the General Case

Let A be a finite algebra with a k-cube term, and assume that the variety
HSP(A) is residually small. Then

[Freese–McKenzie]
HSP(A) is residually ≤ κ for some positive integer κ, and

[from the Structure Theorem for Critical Relations]
If B ≤sd B1 × · · · × B` (Bi ≤ A) is a critical subalgebra of An with
n ≥ max(k, 3), and θ = θ1 × · · · × θ` (θi ∈ Con(Bi)) is largest s.t. B is
θ-saturated, then B/θ is essentially the solution set of a single linear
equation on a product of modules over a finite ring whose size is
bounded by a function of |A|.
Therefore, if θ = 0, one can bound the arity of B as in the module case.

If θ 6= 0, one can try to encode B into a similar relation B′ where θ′ = 0.
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bounded by a function of |A|.
Therefore, if θ = 0, one can bound the arity of B as in the module case.

If θ 6= 0, one can try to encode B into a similar relation B′ where θ′ = 0.
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Example: S3

The group S3 has a Maltsev term, which is a 2-cube term.

Each critical relation involves a set of similar s.i. sections. The s.i. sections
are: S3, A3, S3/A3 ∼= C2. (Different isomorphism types are not similar.)

The non-troublesome critical relations are those whose coordinate groups are
only S3, only A3, or only C2. (The centralizer of the monolith in each coordinate is
abelian.)

An example of a troublesome critical relation is

B = {(x1, . . . , xn) ∈ Sn
3 : x1 · · · xn ∈ A3}.

B is A3 × · · · × A3-saturated, and B/An
3 is the solution set of a single linear

equation. One can encode B into Cn
2 by choosing an endomorphism

r : S3 → C2 and applying r coordinatewise to B to obtain B′ ≤ Cn
2.

B′ can be entailed from relations of small arity by a module argument.

B can be entailed from B′ as follows:
B = proj1,...,n{(x̄, ȳ) ∈ Sn

3 × Cn
2 : (xi, yi) ∈ r, ȳ ∈ B′}.
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Two Remarks

1 In general, the troublesome relations in a finite group with abelian Sylow
subgroups arise from subgroups Bi that have ∩-irreducible normal
subgroups Ni with upper cover Mi such that Mi is abelian over Ni and the
centralizer (Ni : Mi) is not abelian.

But it is a fact about groups with abelian Sylow subgroups that when this
situation arises, there exists an endomorphism r : Bi → Bi such that
ker(ri) ≤ Ni and r((Ni : Mi)) is abelian.
These ri’s can be used as in the previous example.

2 Note that if we expand S3 by constants, we are prevented from encoding
S3/A3 into an abelian subgroup by an endomorphism. This might explain
Idziak’s non-dualizability theorem.
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