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A Steiner triple system is an incidence structure consisting of points
and blocks such that:

every two distinct points are contained in precisely one block,
any block has precisely three points.
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Quasigroup
A quasigroup is a set with a binary operation such that the
equations

a · y = b and x · a = b

are uniquely solvable in Q.

Loop
A loop is a quasigroup with unit element.

STS ←→ SL
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Steiner loops form a Schreier variety.

Ganter, Pfüller (1985):

The variety of all diassociative loops of exponent 2 is precisely the
variety of all Steiner loops, which are in a one-to-one
correspondence with Steiner triple systems.
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Multiplication group

For any x ∈ L the maps λx : y 7→ x · y and ρx : y 7→ y · x are the
left and the right translations, respectively.

The permutation group generated by left and right translations of
the loop L is called the multiplication group of L.

The stabilizer of the unit element is called the inner mapping group
of L.
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Multiplication group

Di Paola (1969):

S(S) is an elementary abelian 2-group of order 2m ⇔ S is
isomorphic to the projective space of dimension m− 1 over the field
GF (2).

Multiplication group of a Steiner loop corresponding to a projective
space is an elementary abelian 2-group.

Strambach, S. (2009):

Theorem
If the product of any two distinct translations of the Steiner
quasigroup has odd order, then the multiplication group of the
Steiner loop of order n is the alternating group An or the symmetric
group Sn depending whether n is divisible by 4 or not.

Which groups can occur in the remaining cases?
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Multiplication group

Grishkov, Rasskazova, S. (2012):

Theorem
Let Mult(X ) be the group of the multiplications of the free Steiner
loop D(X ). Then

1 Mult(X ) = ∗v∈D(X )∗Cv is a free product of cyclic groups of
order 2;

2 Mult(X ) acts on D(X ) and
Mult(X ) = {Rv |v ∈ D(X )}StabG (∅). Moreover, StabG (∅) is a
free subgroup generated by RvRwRvw , v ,w ∈ D(X ).
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Automorphisms

Mendelsohn (1978):

Any finite group is the automorphism group of a Steiner triple
system.

Aut(STS) ∼= Aut(SL)
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ϕ : X −→ D(X ) : (x1, ..., xn) 7→ (x1, ..., xi · v , ..., xn), with
v ∈ D(X \ xi ) is an automorphism of D(X ), called elementary
automorphism.

ϕ = ei (v)

Let T (X ) be a subgroup of the group of automorphisms
Aut(D(X )) generated by the elementary automorphisms.
Automorphisms contained in T (X ) are called tame automorphisms.

Theorem
Let D(X ) be a free Steiner loop with free generators X . Then
AutD(X ) = T (X ).

Problem 1. Which relations exist between X -elementary
automorphisms of the loop D(X )?
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3-generated

Theorem
Let D(X ) be a free Steiner loop with free generators
X = {x1, x2, x3}. Then the group of automorphisms AutD(X ) of
the loop D(X ) is generated by the symmetric group S3 and by the
elementary automorphism ϕ = e1(x2).

S3

ϕ = e1(x2) : (x1, x2, x3) 7→ (x1x2, x2, x3)

ψ = e1(x2x3) : (x1, x2, x3) 7→ (x1(x2x3), x2, x3)

Any transposition of S(X ) can be written as product of elementary
automorphisms

(ij) = ei (xj)ej(xi )ei (xj).

e1(x2x3) = (13)e1(x2)(123)e1(x2)(132)e1(x2)(13)
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3-generated

(i − 1, i)(i , i + 1)(i − 1, i) = (i , i + 1)(i − 1, i)(i , i + 1),

yields
(ei (xj)ej(xi ))

3 = 1

Conjecture

The group Aut(D(x1, x2, x3)) is generated by three involutions
(12), (13) and ϕ = e1(x2) with relations

(12)(13)(12) = (13)(12)(13),

(ϕ(12))3 = (ϕ(13))4 = 1.
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3-generated

Corollary

Let D(X ) be the free Steiner loop with free generators
X = {a, b, c} and let Q be the stabilizer StabAutD(X )(c) of c in the
automorphism group of D(X ). Then

Q =< ϕ, τ, ξ >

with ϕ(a, b, c) = (ab, b, c), ξ(a, b, c) =
(ac , b, c), τ(a, b, c) = (b, a, c).

Conjecture

Q = {ϕ, τ, ξ|ξ2 = ϕ2 = τ2 = (τϕ)3 = 1}.

Theorem
If the Conjecture 1 is true then the Conjecture 2 is also true.
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n-generated

Theorem
The automorphism group AutD(X ) of the free loop D(X ) is not
finite generated if |X | > 3.
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ISL

Let a ∈ S be some fixed element and IS = (S, a, ·) be a main
isotope of the quasigroup associated to S with multiplication

x · y = y · x = (ax)(ay).

Then x2 = x · x = (ax)(ax) = ax , hence x2 · y2 = xy ,
x3 = x(ax) = a, and (xy)y = (x2 · y2)2 · y2 = x .

Inversely, from a commutative loop S with identities
x3 = a, (x2y2)2y2 = x , can be recovered a Steiner triple system
with the blocks:

{x , y , x2y2}
{a, x , x2}

for any x 6= y 6= a.

A loop obtained in this way is called an interior Steiner loop.
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Theorem
Let S(X ) be a free Steiner quasigroup with free generators X , let
ES(X ) = S(X ) ∪ e and IS(X ) be the corresponding free exterior
and interior Steiner loop, respectively.

Then
Aut(S(X )) = Aut(ES(X ))

and
Aut(IS(X )) ' StabAutES(X )(a),

where a ∈ IS(X ) is the unit element of the loop IS(X ).
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Thank you for your attention!
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